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Explicit uniform estimation of rational points
II. Hypersurface coverings

By Huayi Chen at Paris

Abstract. We obtain an explicit uniform estimate for the number of rational points
in a projective plane curve whose heights do not exceed the degree of the curve.

1. Introduction

This article is a continuation of [12]. Let K be a number field and X be a sub-variety
of Pn

K of dimension d and of degree d. The purpose of this article is to establish the follow-
ing explicit estimate (see Theorem 4.2):

Theorem A. Let e > 0 and D be an integer such that

D > max
�
ðe�1 þ 1Þ

�
2d�

1
dðd þ 1Þ þ d� 2

�
; 2ðn � dÞðd� 1Þ þ d þ 2

�
:

There is an explicitly computable constant C ¼ Cðe; d; n; d;KÞ such that, for any Bf ee, the

set S1ðX ;BÞ of regular rational points of X with exponential heighteB is covered by not

more than CBð1þeÞd�
1
d ðdþ1Þ hypersurfaces of degreeeD not containing X.

This theorem generalizes some results of Heath-Brown [16], Theorem 14, and Bro-
berg [6], Theorem 1, in the sense that we estimate explicitly the degree and the number of
the auxiliary hypersurfaces needed to cover the set of rational points with bounded height.

The strategy of Heath-Brown in the proof of [16], Theorem 14, consists of establish-
ing that a family of rational points having the same reduction modulo a ‘‘large’’ prime
number are contained in one hypersurface (not containing X ) with ‘‘low’’ degree. This
idea is inspired by results of Bombieri–Pila [1] and Pila [22], and has been developed later
in [6], [7], [8], [9], [10], [14], [17], [18], [23], [24].

Suggested by Bost, we adapt the above idea into the framework of his slope method
[2], [3], [4]. Note that Bogomolov has asked a similar question on the possibility of replac-
ing the method of Heath-Brown by arguments in Arakelov geometry (see [13], Question
34). We consider the evaluation map from the space of homogeneous polynomials to the
space of values of these polynomials on a family of rational points. If the rational points



in the family have the same reduction modulo some finite place p of K such that the norm
of p is big, then the (logarithmic) height of this evaluation map is very negative. Hence by
the slope inequality, the evaluation map cannot be injective and thus we obtain a non-zero
homogeneous polynomial whose image by the evaluation map vanishes. The desired hyper-
surface is obtained as the zero locus of the homogeneous polynomial.

The flexibility of the geometric framework (see Theorem 3.1) permits us to develop
several interesting variants. For example, instead of considering the reduction modulo a fi-
nite place p, we treat the case where the family of rational points has the same reduction
modulo some power of p. In other words, we can take a finite place p with relatively lower
norm and consider a family of rational points whose p-adic distances are very small. Such a
family is contained in a hypersurface of lower degree. This argument permits us to prove
that the constant C figuring in Theorem A depends on the degree of K over Q but not on
the discriminant. Another variant consists of taking into account the local Hilbert–Samuel
functions of the variety, which generalizes a result of Salberger [23], Theorem 3.2. This per-
mits us to sharpen the constant C in Theorem A in the case where X is a plane curve and B

is small. As a consequence, we obtain the following result.

Theorem B. Assume that X is an integral plane curve of degree d. Then, for any e > 0,
one has

KSðX ; dÞfK d2þe:

This gives an answer to a question of Heath-Brown [13], Question 27.

To obtain an explicit upper bound for the number and the degree of the auxiliary hy-
persurfaces, we need several e¤ective estimates in algebraic geometry and in Arakelov ge-
ometry, which shall be recalled in the second section. In the third section, we explain the
conditions which ensure that a family of rational points lies in the same hypersurface of
low degree. Finally, in the fourth section, we estimate the number of hypersurface needed
to cover rational points; in the fifth section, we discuss the plane curve case.

We keep Notation 1–8 introduced in [12], §2. Remind that K denotes a number field
and OK denotes its integer ring. We shall also use the following notation.

Notation. 9. Denote by n A Nnf0g an integer and by E the trivial Hermitian vector

bundle of rank n þ 1. In other words, E ¼O
lðnþ1Þ
K , and for any embedding s : K ! C, the

canonical basis of E is an orthonormal basis of k � ks. See Notation 4 for the notion of Her-
mitian vector bundles.

10. Denote by L the universal quotient sheaf on Pn
OK

¼ PðEÞ, equipped with the
Fubini–Study metrics.

11. Any point P ¼ ðx0 : . . . : xnÞ A PnðKÞ gives rise to a unique OK -point P A PðEÞ.
The height of P (with respect to L) is by definition the slope (see Notation 6) of P �ðLÞ,
denoted by hðPÞ. Note that one has

hðPÞ ¼ 1

½K : Q�

� P
p A SpmOK

log max
1eien

jxijp þ
1

2

P
s:K!C

log
Pn
j¼0

jxjj2s
�
:
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See Notation 2 for the definition of the absolute values j � jp and j � js. Define
HðPÞ :¼ exp

�
½K : Q�hðPÞ

�
. Remind that here the logarithmic height function h is absolute

(i.e., invariant under finite field extensions of K), while the exponential one H is relative.

12. For any integer Df 1, let ED be the OK -module H 0
�
PðEÞ;LnD

�
, equipped with

the John metrics k � ks;J associated to the sup-norm k � ks; sup. We remind that the sup-norm
is defined as follows:

Es A ED nOK ;s C; ksks; sup :¼ sup
x APn

s ðCÞ
ksðxÞks:

The John norm k � ks;J is a Hermitian norm on ED nOK ;sC such that

ksks; sup e ksks;J e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkðEDÞ

p
� ksks; sup:

Denote by rðDÞ the rank of ED. One has rðDÞ ¼ n þ D

D

� �
.

13. Let X be an integral closed subscheme of Pn
K ¼ PðEKÞ. Let d be the dimension

of X and d be the degree of X . Recall that one has d ¼ deg
�
c1ðLKÞd � ½X �

�
. Denote by X

the Zariski closure of X in PðEÞ. The (relative) Arakelov height of X is denoted by h
L
ðX Þ.

Recall that

h
L
ðX Þ :¼ 1

½K : Q�
ddegdeg
�
ĉc1ðLÞdþ1 � ½X�

�
:

14. For any integer Df 1, let FD be the saturation (in H 0ðX;LjnD
X Þ) of the image of

the restriction map

hX ;D : ED;K ¼ H 0
�
PðEK ;L

nD
K Þ

�
! H 0ðX ;LjnD

X Þ;

namely FD is the largest sub-OK -module of H 0ðX;LjnD
X Þ containing ImðhX ;DÞ and such

that FD;K ¼ ImðhX ;DÞK . We equip FD with the quotient metrics (from the metrics of ED)
so that FD becomes a Hermitian vector bundle on SpecOK . Denote by r1ðDÞ the rank
of FD.

15. Let p be a maximal ideal of OK with residue field Fp. For any point in XðFpÞ,
denote by Ox the local ring of X at x and by mx the maximal ideal of Ox. Note that Ox is
a local algebra over OK ;p. Denote by Hx : N ! N the Hilbert–Samuel function of Ox=pOx

(which is the local ring of XFp at x), namely,

HxðkÞ ¼ rkFp

�
ðmx=pOxÞk=ðmx=pOxÞkþ1�:

Let
�
qxðmÞ

�
mf1

be the increasing sequence of non-negative integers such that the integer
k A N appears exactly HxðkÞ times. Let QxðmÞ ¼ qxð1Þ þ � � � þ qxðmÞ. Denote by mx the
multiplicity of the local ring Ox=pOx. Recall that one has

HxðkÞ ¼
mx

ðd � 1Þ! k
d�1 þ oðkd�1Þ:
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16. For any real number B > 0, let SðX ;BÞ be the subset of XðKÞ consisting of
points P such that HðPÞeB (see Notation 11 for the definition of Hð�Þ). Denote by
S1ðX ;BÞ the subset of SðX ;BÞ of regular points. Define NðX ;BÞ and N1ðX ;BÞ to be the
cardinality of SðX ;BÞ and S1ðX ;BÞ respectively.

17. For any maximal ideal p of OK , x A XðFpÞ and B > 0, denote by SðX ;B; xÞ the
set of points P A SðX ;BÞ whose reduction modulo p is x. Define

S1ðX ;B; pÞ ¼
S

x AXðFpÞ
x regular

SðX ;B; xÞ;

where x regular means that x is a regular point of XFp , or equivalently, Ox=pOx is a regular
local ring.

18. More generally, for any maximal ideal p and any a A Nnf0g, denote by A
ðaÞ
p the

Artinian local ringOK ;p=p
aOK;p. For any point h A XðAðaÞ

p Þ, denote by SðX ;B; hÞ the set of
points in SðX ;BÞ whose reduction modulo pa coincides with h. We shall use the fact that

Ea A Nnf0g; Ex A XðFpÞ; SðX ;B; xÞ ¼
S

h AXðAðaÞ
p Þ

x¼ðhmodpÞ

SðX ;B; hÞ:

19. We introduce several constants as follows:

C1 ¼ ðd þ 2Þm̂mmax

�
S dðE4Þ

�
þ 1

2
ðd þ 2Þ log rkðS dEÞ

þ d

2
log
�
ðd þ 2Þðn � dÞ

�
þ d

2
ðd þ 1Þ logðn þ 1Þ;

C2 ¼ r

2
log rkðS dEÞ þ 1

2
log rkðLn�dEÞ þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � dÞ!

p
þ ðn � dÞ log d;

C3 ¼ ðn � dÞC1 þ C2:

Recall that the constant C1 has been defined in [12], (21).1) With the notation of [12], The-
orem 3.8, the constant C2 is just C2ðE ; n � d; dÞ (see also Remark 3.9 loc. cit.). Finally, the
constant C3 appears in [12], Theorem 3.10. Recall that one has C3 fn;d d (see Theorem 3.10
loc. cit.).

20. By the e¤ective version of Chebotarev’s theorem (cf. [20], see also [25], Theorem
2) there exists an explicitly computable constant aðKÞ such that, for any real number xf 1,
there exists a finite place p A Sf such that Np A

�
x; aðKÞx

�
. This is an analogue of Ber-

trand’s postulate for number fields.

2. Reminders

We recall in this section several results that we shall use in the sequel. They are either
well known or described in [12].

1) Since S dE is a direct sum of Hermitian line bundles, the quantity %ðdþ2Þ�GdðEÞ
�

vanishes (see [12], §2.2).

Furthermore, when E is trivial, one has m̂mmaxðLn�dEÞ ¼ 0.
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2.1. Let ðPiÞi A I be a collection of distinct rational points of X (see Notation 13) and
Df 1 be an integer. Assume that the evaluation map f : FD;K !

L
i A I

P�
i L

nD is an isomor-
phism (see Notation 14). Then the equality

m̂mðFDÞ ¼
1

r1ðDÞ

	P
i A I

DhðPiÞ þ hðLr1ðDÞf Þ



holds. In particular, one has

m̂mðFDÞ
D

e sup
i A I

hðPiÞ þ
1

Dr1ðDÞ hðLr1ðDÞf Þ;ð1Þ

where hðLr1ðDÞf Þ is defined as

hðLr1ðDÞf Þ ¼ 1

½K : Q�

�P
p

logkLr1ðDÞf kp þ
P

s:K!Q

logkLr1ðDÞf ks
�
:

A slight variant of this argument shows that, if ðPiÞi A J is a family of rational points
of X such that

sup
i A J

hðPiÞ <
m̂mmaxðFDÞ

D
� 1

2
logðn þ 1Þ;ð2Þ

then there exists a hypersurface of degree D in Pn
K not containing X which contains all ra-

tional points Pi. See [12], Proposition 2.12, for details.

2.2. For any integer Df 1, one has the following estimates:

D þ d þ 1

d þ 1

� �
� D � dþ d þ 1

d þ 1

� �
e r1ðDÞ :¼ rkðFDÞe d

D þ d

d

� �
:ð3Þ

See [11] for the upper bound and [26] for the lower bound.

2.3. For any integer Df 2ðn � dÞðd� 1Þ þ d þ 2, one has

m̂mðFDÞ
D

f
d!

dð2d þ 2Þdþ1
h
L
ðX Þ � logðn þ 1Þ � 2d ;ð4Þ

where h
L
ðXÞ is the Arakelov height of X . See [12], Theorem 4.8 and Remark 4.9, for details.

2.4. Since FD is a quotient of ED, one has (see Notation 12)

m̂mðFDÞf m̂mminðEDÞf� 1

2
D logðn þ 1Þ:ð5Þ

We refer to [12], Corollary 2.9, for the proof. Note that this bound is much less precise than
(4). However, it works for any integer Df 1.
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2.5. For any integer Df 1, one has

m̂mðFDÞ
D

e
1

d
h
L
ðX Þ þ 1

2
logðn þ 1Þ:ð6Þ

See [12], Remark 4.11.

2.6. There exists a Hermitian vector subbundle M of S ðd�1Þðn�dÞE such that

(i) m̂mminðMÞf�ðn � dÞh
L
ðXÞ � C3,

(ii) the subscheme of PðEÞ defined by vanishing of M contains the singular loci of
fibres of X but not the generic point of X,

where the constant C3 is defined in Notation 19. This result has been proved in [12], Theo-
rem 3.10. In particular, the singular locus of X is contained in a hypersurface of degree
ðd� 1Þðn � dÞ not containing X .

2.7. Suppose that P A XðKÞ is a regular point and P is theOK -point of PðEÞ extend-
ing P. For any maximal ideal p ofOK , if the reduction of P modulo p is a singular point of
XFp , we write apðPÞ ¼ 1, else we write apðPÞ ¼ 0. We have shown in [12], Proposition 2.11,
that, for any real number N0 > 0, the following inequality holds:

P
NpfN0

apðPÞe
ðn � dÞðd� 1ÞhðPÞ þ ðn � dÞh

L
ðXÞ þ C3

ðlog N0Þ=½K : Q� :ð7Þ

In fact, it su‰ces to apply [12], Proposition 2.11, to the special case I ¼ M, where M is as
in §2.6.

2.8. The following estimates of binomial coe‰cients will be used:

ðN � k þ 1Þk

k!
e

N

k

� �
e

�
N � ðk � 1Þ=2

�k

k!
; N f k f 1:

The second inequality comes from the comparison of the arithmetic and the geometric
means:

NðN � 1Þ � � � ðN � k þ 1Þe N þ ðN � 1Þ þ � � � þ ðN � k þ 1Þ
k

� �k

:

3. Existence of the auxiliary hypersurface

The purpose of this section is to establish the following theorem.

Theorem 3.1. Let S ¼ ðpjÞj A J be a finite family of maximal ideals of OK and

ðajÞj A J A ðNnf0gÞJ
. For each pj, let hj be a point in XðAðaÞ

pj
Þ (see Notation 18) whose reduc-

tion modulo p is denoted by xj . Assume that ðxjÞj A J are distinct. Consider a family ðPiÞi A I of
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rational points of XK such that, for any i A I and any j A J, the reduction of Pi modulo p
aj

j

coincides with hj . Assume that (see Notation 11, 14 and 15)

sup
i A I

hðPiÞ <
m̂mðFDÞ

D
� log r1ðDÞ

2D
þ 1

½K : Q�
P
j A J

Qxj

�
r1ðDÞ

�
Dr1ðDÞ log N

aj

pj
:ð8Þ

Then there exists a section s A ED;K which does not vanish identically on XK and such that

Pi A divðsÞ for any i A I .

This theorem generalizes a result of Salberger [23], Theorem 3.2, in two aspects. On
one hand, we treat projective varieties over a number field; on the other hand, we consider
a family of thickenings of points over finite places.

The proof of Theorem 3.1 consists of adapting the idea of Bombieri–Pila and Heath-
Brown in the framework of the slope method. Note that Broberg has generalized [16], The-
orem 14, to the number field case, which corresponds to the case where jJj ¼ 1 and aj ¼ 1
here. However, his method is di¤erent from ours. In fact, the slope method permits us to
avoid using Siegel’s lemma. Moreover, in (8), there appears only the degree of the number
field K but not the discriminant.

The following subsections are devoted to the proof of Theorem 3.1 and to discuss
several applications. We first estimate the heights of the determinants of some evaluation
maps. This stage is quite similar to the determinant argument of Bombieri–Pila and
Heath-Brown. Then we use the slope inequality to obtain the desired result. To apply the
theorem, we need explicit estimates of the functions Qxj

and r1ðDÞ, which we discuss in the
end of this section.

3.1. Estimation of norms.

Lemma 3.2. Let A be a ring and M be an A-module.

(i) If N is a sub-A-module of M such that M=N is generated by q elements, then for

any integer mf q, we have LmM ¼ ðLm�qNÞ5ðLqMÞ.

(ii) If M ¼ M1 IM2 I � � �IMi IMiþ1 I � � � is a decreasing sequence of sub-A-

modules of M such that, for any if 1, Mi=Miþ1 is isomorphic to a principal ideal of A,
then for any integer rf 1, we have

LrM ¼ M15M25� � �5Mr:

Proof. (ii) is a consequence of (i). To prove (i), by induction it su‰ces to establish
the case where m ¼ r þ 1. Since M=N is generated by q elements, we have Lrþ1ðM=NÞ ¼ 0
(see [5], Chapter III, §7, n� 3, Proposition 3). Furthermore, since the kernel of the canonical
homomorphism of exterior algebras LM ! LðM=NÞ is the ideal generated by N (loc. cit.),
we obtain that Lrþ1M HN5ðLrMÞ. r

Lemma 3.3. Let k be a field equipped with a non-archimedean absolute value j � j, U

and V be two k-linear ultranormed spaces of finite rank and j : U ! V be a k-linear
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homomorphism. Let m be the rank of U. For any integer 1e iem, let

li ¼ inf
WHU

codim W¼i�1

kjjWk:

If i > m, let li ¼ 0. Then for any integer r > 0, we have

kLrjke
Qr
i¼1

li:ð9Þ

Proof. Let e > 0 be an arbitrary positive real number. We shall construct a decreas-
ing filtration of U ,

U ¼ U1 lU2 l � � �lUm;ð10Þ

such that kjjUi
ke li þ e. By definition, there exists a vector xm A U of norm 1 such that

kjðxmÞke lm þ e. Suppose that we have chosen Uiþ1 I � � �IUm such that kjjUj
ke lj þ e

for any i þ 1e j em. Since Uiþ1 has codimension i in U , the set of vectors x A U of norm
1 with kjðxÞke li þ e can not be contained in Uiþ1. Pick an element xi A UnUiþ1 of norm
1 with kjðxiÞke li þ e. Let Ui be the linear subspace generated by xi and Uiþ1. Since the
norm of U is ultrametric, one obtains kjjUi

ke li þ e. By induction we can construct the
filtration as announced. By Lemma 3.2, one obtains

kLrjke
Qr
i¼1

ðli þ eÞ:

Since e > 0 is arbitrary, the proposition is proved. r

3.2. A preliminary result on local homomorphisms. Let p be a maximal ideal of OK

and x be an Fp-point of X. Suppose given a family ð fiÞ1eiem of local homomorphisms of
OK ;p-algebras from Ox (see Notation 15) to OK;p. Let E be a free sub-OK;p-module of finite
type of Ox and let f be the OK;p-linear homomorphism ð fijEÞ1eiem : E !O m

K ;p. As f1 is a
homomorphism of OK ;p-algebras, it is surjective. Let a be the kernel of f1. One has
Ox=aGOK;p. Furthermore, since Ox is a local ring of maximal ideal mx, one has mx I a.
Moreover, since f1 is a local homomorphism, the equality aþ pOx ¼ mx holds. For any
integer j f 0, a j=a jþ1 is an Ox=aGOK;p-module of finite type, and

FpnOK ; p
ða j=a jþ1ÞG ða=pOxÞ j=ða=pOxÞ jþ1 G ðmx=pOxÞ j=ðmx=pOxÞ jþ1:

By Nakayama’s lemma, the rank of a j=a jþ1 over OK ;p is equal to the rank of
ðmx=pOxÞ j=ðmx=pOxÞ jþ1 over Fp, that is, Hxð jÞ according to Notation 15. The filtration

Ox ¼ a0 I a1 I � � �I a j I a jþ1 I � � �

of Ox induces a filtration

F : E ¼ E X a0 IE X a1 I � � �IE X a j IE X a jþ1 I � � �ð11Þ

of E whose j-th subquotient E X a j=E X a jþ1 is a free OK ;p-module of rankeHxð jÞ.
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Assume that a A Nnf0g is such that the reductions of fi modulo pa are the same (in
other words, the composed homomorphisms Ox !OK ;p !OK;p=p

aOK;p
fi are the same),

then the restriction of f on E X a j has normeN�ja
p . In fact, for any 1e iem, one has

fiðaÞH paOK;p and hence fiða jÞH pajOK ;p.

By Lemma 3.3, we obtain the following result.

Proposition 3.4. Let p be a maximal ideal of OK and x A XðFpÞ. Suppose that

ð fiÞ1eiem is a family of local OK ;p-linear homomorphisms from Ox to OK;p whose reductions

modulo pa are the same, where a A Nnf0g. Let E be a free sub-OK;p-module of finite type

of Ox and f ¼ ð fijEÞ1eiem. Then, for any integer rf 1, one has

kLrfKkeN�QxðrÞa
p ;ð12Þ

where Np is the degree of Fp over its characteristic field. See Notation 15 for the definition

of Qx.

Proof. Consider the filtration (11) above. The restriction of f on E X a j has
normeN�ja

p , which implies that (see Notation 15 for the definition of qx)

inf
WHEK

codim W¼j�1

k fK jWkeN�qxð jÞa
p ;

where we have used the fact that rkðE X a jÞ � rkðE X a jþ1ÞeHxð jÞ. The inequality (12)
then follows from Lemma 3.3. r

3.3. Proof of Theorem 3.1. Let Df 1 be an integer. Let FD and r1ðDÞ ¼ rk FD be as
in Notation 14. Assume that the section predicted by the theorem does not exist. Then the
evaluation map f : FD;K !

L
i A I

P�
i LK is injective. By possibly replacing I by a subset, we

may suppose that f is an isomorphism. For any embedding s : K ! C, one has

1

r1ðDÞ logkLr1ðDÞf ks e logk f kse log
ffiffiffiffiffiffiffiffiffiffiffiffi
r1ðDÞ

p
;

where the second inequality comes from the definition of metrics of John (see Notation 12).
Furthermore, f is induced by a homomorphism of OK -modules FD !

L
i A I

P �
i L

nD, where

P i denotes the OK -point of X extending Pi. Hence for any finite place p of K , one has
logkLr1ðDÞf kp e 0.

Let j A J. For each i A I , the OK -point P i defines a local homomorphism from Oxj
to

OK ;pj
which is OK ;pj

-linear. By taking a local trivialization of L at xj, we identify FD with a
sub-OK;pj

-module of Oxj
. Proposition 3.4 then implies that

logkLr1ðDÞf kpj
e�Qxj

�
r1ðDÞ

�
log N

aj

pj
:

We then obtain (see §2.1)

m̂mðFDÞ
D

e sup
i A I

hðPiÞ þ
1

2D
log r1ðDÞ � 1

½K : Q�
P
j A J

Qxj

�
r1ðDÞ

�
Dr1ðDÞ log N

aj

pj
;
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which leads to a contradiction. Thus the evaluation homomorphism FD;K !
L
i A I

P�
i L

nD is

not injective. In other words, there exists a homogeneous polynomial of degree D which
is not identically zero on X but vanishes on each Pi.

3.4. Applications. Let p be a maximal ideal of OK and x be a rational point of XFp .
Recall (see Notation 15) that Ox denotes the local ring of X at x, mx denotes its maximal
ideal, and the local Hilbert–Samuel function of x is defined as

HxðkÞ :¼ rkFp

�
ðmx=pOxÞk=ðmx=pOxÞkþ1�:

In some particular cases, the local Hilbert–Samuel function of x can be explicitly
estimated.

(i) If x is regular (i.e., the local ring Ox=pOx is regular), then one has

HxðkÞ ¼
k þ d � 1

d � 1

� �
for any k f 0.

(ii) Assume that the local ring Ox=pOx is one-dimensional and Cohen–Macaulay
(that is, mx=pOx contains a non zero-divisor of Ox=pOx), then by [21], Theorem 1.9, one
has HxðkÞe mx for any integer k f 0, where mx denotes the multiplicity of the local ring
Ox=pOx. Moreover, if k f mx � 1, then one has HxðkÞ ¼ mx (see [19], Theorem 2).

Proposition 3.5. Let p be a maximal ideal ofOK , x be a rational point of XFp , and r be

an integer, rf 1.

(i) If the Fp-point x is regular, then (see Notation 15 for the definition of Qx)

QxðrÞ > ðd!Þ
1
d

d

d þ 1
r1þ1

d � d þ 3

2d þ 2
dr:ð13Þ

(ii) If d ¼ 1 and x is Cohen–Macaulay, then

QxðrÞf
r2

2mx
� r

2mx
:ð14Þ

Proof. Let Ux be the partial sum function of Hx. Namely,

UxðkÞ :¼ Hxð0Þ þ � � � þ HxðkÞ:

One has

Qx

�
UxðkÞ

�
¼
Pk
j¼0

jHxð jÞ:

Moreover, if r A
�
Uxðk � 1Þ;UxðkÞ

�
, then one has Qx

�
Uxðk � 1Þ

�
eQxðrÞeQx

�
UxðkÞ

�
.
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(i) In the case where x is regular, one has

UxðkÞ ¼
Pk
j¼0

j þ d � 1

d � 1

� �
¼ k þ d

d

� �
:ð15Þ

Therefore

Qx

�
UxðkÞ

�
¼
Pk
j¼0

jHxð jÞ ¼
Pk
j¼0

j
j þ d � 1

d � 1

� �
¼
Pk
j¼0

d
j þ d � 1

d

� �
¼ d

k þ d

d þ 1

� �
:

Let r be an integer in
�
Uxðk � 1Þ;UxðkÞ

�
. One has

QxðrÞ ¼ Qx

�
Uxðk � 1Þ

�
þ k
�
r � Uxðk � 1Þ

�
ð16Þ

¼ kr þ d
k þ d � 1

d þ 1

� �
� k

k þ d � 1

d

� �
¼ kr � k þ d

d þ 1

� �
¼ kr � k þ d

d þ 1
Uxðk � 1Þ > d

d þ 1
ðk � 1Þr;

where in the last inequality, we have used the estimate Uxðk � 1Þ < r. Note that (see §2.8)

reUxðkÞ ¼
k þ d

d

� �
e

�
k þ ðd þ 1Þ=2

�d

d!

implies

k f ðrd!Þ
1
d � ðd þ 1Þ=2:ð17Þ

Combining with (16), we obtain that (13) holds.

(ii) Assume that d ¼ 1 and Ox=pOx contains a non zero-divisor, then one has
1eHxðkÞe mx for any integer k f 1. Let ðakÞkf1 be the increasing sequence of non-
negative integers such that the integer 0 appears exactly one time, and other integers appear
exactly mx times. Note that one has qxðkÞf ak for any k A Nnf0g. Hence

QxðrÞ ¼
Pr

k¼1

qxðkÞf
Pr

k¼1

ak ¼
mx
2

AðA þ 1Þ þ ðA þ 1Þðr � 1 � mxAÞ

¼ ðA þ 1Þðr � 1Þ �
mx
2

AðA þ 1Þ ¼ ðA þ 1Þðr � 1 � mxA=2Þ;

where A ¼ r � 1

mx

� �
. Using the fact that

r � 1

mx
�
mx � 1

mx
eAe

r � 1

mx
;

we obtain

QxðrÞf
r

mx
r � 1 � r � 1

2

� �
f

r2

2mx
� r

2mx
: r
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Remark 3.6. When d ¼ 1, the estimate (13) is less precise than (14). The reason is
that in the last inequality of (16), we have used the estimate Uxðk � 1Þ < r but not the
more precise one Uxðk � 1Þe r � 1.

Corollary 3.7. Let ðpjÞj A J be a finite family of maximal ideals of OK and e > 0. For

any j A J, let aj A Nnf0g, xj A XðFpj
Þ be a regular rational point of XFpj

and hj A XðAðajÞ
pj

Þ
whose reduction modulo pj is xj . If

P
j A J

log N
aj

pj
f ð1 þ eÞ

�
log B þ ½K : Q� logðn þ 1Þ

�
d�

1
d
d þ 1

d
;ð18Þ

then, for any integer D such that

D > ðe�1 þ 1Þ
�
d�

1
dðd þ 3Þ=2 þ d� 2

�
;ð19Þ

there exists a hypersurface of degree D of Pn
K not containing X which containsT

j A J

SðX ;B; hjÞ.

Proof. Assume that such hypersurface does not exist. By Theorem 3.1, one has

log B

½K : Q� f
m̂mðFDÞ

D
� log r1ðDÞ

2D
þ
P
j A J

Qxj

�
r1ðDÞ

�
Dr1ðDÞ

log N
aj

pj

½K : Q� :ð20Þ

Moreover, since xj is regular, Proposition 3.5 shows that

Qxj

�
r1ðDÞ

�
f ðd!Þ

1
d

d

d þ 1
r1ðDÞ1þ1

d � d þ 3

2d þ 2
dr1ðDÞ:

Hence

Qxj

�
r1ðDÞ

�
Dr1ðDÞ f ðd!Þ

1
d

d

d þ 1

r1ðDÞ
1
d

D
� ðd þ 3Þd
ð2d þ 2ÞD :

By a result of Sombra recalled in §2.2, one has (for Df d� 2)

r1ðDÞf D þ d þ 1

d þ 1

� �
� D � dþ d þ 1

d þ 1

� �
¼
Pd
j¼1

D � dþ d þ j

d

� �
f

dðD � dþ 2Þd

d!
:

Combining with (5) and the trivial estimate r1ðDÞe ðn þ 1ÞD, (20) implies

log B

½K : Q� f� 1

2
logðn þ 1Þ � 1

2
logðn þ 1Þ þ d

1
d

d

d þ 1

D � dþ 2

D
� ðd þ 3Þd
ð2d þ 2ÞD

� �P
j A J

log N
aj

pj

½K : Q� :

Or equivalently�
d

1
d

d

d þ 1

P
j A J

log N
aj

pj

½K : Q� �
log B

½K : Q� � logðn þ 1Þ
�

De
P
j A J

log N
aj

pj

½K : Q� d
1
d

d

d þ 1
ðd� 2Þ þ d þ 3

2d þ 2
d

� �
:
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By the hypothesis (18), the left side is not less than

e

1 þ e
d

1
d

d

d þ 1

P
j A J

log N
aj

pj

½K : Q�D;

which implies that

De ðe�1 þ 1Þ
�
d�

1
dðd þ 3Þ=2 þ d� 2

�
:

This contradicts (19). r

Corollary 3.8. Assume that X is Cohen–Macaulay and d ¼ 1. Let ðpjÞj A J be a finite

family of maximal ideals of OK and e > 0. For any j A J, let aj A Nnf0g, xj A XðFpj
Þ and

hj A XðAðajÞ
pj

Þ whose reduction modulo pj is xj . If

P
j A J

log N
aj

pj

mxj

f ð1 þ eÞ 2

d

�
log B þ ½K : Q� logðn þ 1Þ

�
;ð21Þ

then for any integer D such that

D > ð1 þ e�1Þðd� 2 þ d�1Þ;ð22Þ

there exists a hypersurface of degree D of Pn not containing X which contains
T

j A J

SðX ;B; hjÞ.

Proof. The proof is quite similar to that of Corollary 3.7. By Proposition 3.5, one
has the estimate

Qxj

�
r1ðDÞ

�
Dr1ðDÞ f

r1ðDÞ
2mxj

D
� 1

2mxj
D
:

Assume that the hypersurface does not exist. By Theorem 3.1, one has

log B

½K : Q� þ logðn þ 1Þf
P
j A J

log N
aj

pj

½K : Q�
d

2mxj

� D � dþ 2

D
� 1

2mxj
D

 !
;

or equivalently

D

�P
j A J

log N
aj

pj

½K : Q�
d

2mxj

� log B

½K : Q� � logðn þ 1Þ
�
e
P
j A J

log N
aj

pj

½K : Q�mxj

dðd� 2Þ
2

þ 1

2

� �
:

By the assumption (21), one obtains

D
e

1 þ e

P
j A J

log N
aj

pj

½K : Q�
d

2mxj

e
P
j A J

log N
aj

pj

½K : Q�mxj

� d
2 � 2dþ 1

2
;

De ð1 þ e�1Þðd� 2 þ d�1Þ:

The last formula leads to a contradiction. r
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4. Covering rational points by hypersurfaces

In this section, we explain how to suitably cover S1ðX ;BÞ and SðX ;BÞ by hypersur-
faces of low degree. If p is a maximal ideal of OK and x is a singular rational point of
XðFpÞ, there seems to be no general explicit estimate of the local Hilbert–Samuel func-
tion Qx.2) The idea of Heath-Brown is to consider only regular points. The di‰culty then
comes from the fact that the reduction modulo p of a regular point P in XðKÞ is not nec-
essarily regular. Hence we need to estimate the ‘‘smallest’’ maximal ideal p such that P spe-
cializes to a regular point modulo p. This has been obtained in [16] and in [6] by using the
Jacobian criterion. Here we prove that the singular loci of fibres of X are actually con-
tained in a divisor whose degree and height are controlled.

Lemma 4.1. Let N0 > 0 be a real number and r the integral part of the number

ðn � dÞðd� 1Þ log B þ
�
ðn � dÞh

L
ðX Þ þ C3

�
½K : Q�

log N0
þ 1;ð23Þ

where the constant C3 is defined in Notation 19. If p1; . . . ; pr are r distinct finite places of K

such that Npi
fN0 for any i, then

S1ðX ;BÞ ¼
Sr
i¼1

S1ðX ;B; piÞ:

Proof. With the notation of §2.7, if P is a rational point in S1ðX ;BÞ which does not
lie in any S1ðX ;B; piÞ, then one has api

ðPÞf 1 for any i ¼ 1; . . . ; r. Hence, by §2.7, one has

re
P

NpfN0

apðPÞe
ðn � dÞðd� 1ÞhðPÞ þ ðn � dÞh

L
ðX Þ þ C3

ðlog N0Þ=½K : Q� ;

which leads to a contradiction. r

Theorem 4.2. Let e > 0 be an arbitrary positive real number. Let D be an integer such

that

D > max
�
ðe�1 þ 1Þ

�
d�

1
dðd þ 3Þ=2 þ d� 2

�
; 2ðn � dÞðd� 1Þ þ d þ 4

�
:

There exists an explicitly computable constant Cðe; d; n; d;KÞ such that, for any Bf ee, the

set S1ðX ;BÞ is covered by not more than Cðe; d; n; d;KÞBð1þeÞd�
1
d ðdþ1Þ hypersurfaces of de-

gree D not containing X.

Proof. In the first stage, we assume that

h
L
ðXÞe ð2d þ 2Þdþ1

d!
d

log B

½K : Q� þ
3

2
logðn þ 1Þ þ 2d

	 

:

2) In the case where X is Cohen–Macaulay, there are explicit estimates (see for example [27]). However,

they are far from optimal.
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Let M A Nnf0g be the least common multiple3) of 1; 2; . . . ; ½K : Q�. Let N0 A ð0;þyÞ be
such that

log N0 ¼ ð1 þ eÞd�
1
d
d þ 1

dM

�
log B þ ½K : Q� logðn þ 1Þ

�
:

Let r be the natural number as in Lemma 4.1. Note that one has

re
A1 log B þ A2

log N0
þ 1;

where

A1 ¼ ðn � dÞðd� 1Þ þ ð2d þ 2Þdþ1

d!
ðn � dÞd;

A2 ¼ ½K : Q�
�

C3 þ
ð2d þ 2Þdþ1

d!
d

3

2
logðn þ 1Þ þ 2d

� ��
:

Recall that the constant C3 is defined in Notation 19. Since we have assumed that
log Bf e, the value of r is bounded from above by a constant A3 which depends only
on M, e, n, d and d:

A3 :¼ M
A1 þ e�1A2

ð1 þ eÞd�
1
dðd þ 1Þ=d

þ 1:

By Bertrand’s postulate, there exist r distinct prime numbers p1; . . . ; pr such that
N0 e pi e 2 iN0 for any i A f1; . . . ; rg. We choose, for each i, a maximal ideal pi ofOK lying

over pi. By Lemma 4.1, one has S1ðX ;BÞ ¼
Sr
i¼1

S1ðX ;B; piÞ. Note that, for any i, Npi
is a

power of pi whose exponent fi divides M (since fi e ½K : Q�). Let ai ¼ M=fi.

Let x be an arbitrary regular Fpi
-point of XFpi

. By Corollary 3.7, we obtain that, for
any h A XðAðaiÞ

pi
Þ whose reduction modulo pi is x, SðX ;B; hÞ is contained in a hypersurface

of degree D not containing X . Note that there exists at most N
ðai�1Þd
pi

points in XðAðaiÞ
pi

Þ (see
Notation 15) whose reduction modulo pi equals xi and the cardinal of XðFpi

Þ does not ex-
ceed ddN d

pi
. Hence S1ðX ;B; piÞ is covered by at most

ddN aid
pi

¼ ddp
ai fid
i ¼ ddpMd

i e 2 iMdddN Md
0ð24Þ

hypersurfaces of degree D not containing X . Therefore, S1ðX ;BÞ is covered by at most

ddN Md
0

Pr

i¼1

2 iMd
e ddr2rMd

�
ðn þ 1Þ½K :Q�

B
�ð1þeÞd�

1
dðdþ1Þ

3) One has 2 ½K :Q� eM e ½K : Q�pð½K :Q�Þ. See [28], p. 30, for a proof.
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such hypersurfaces. So the theorem is proved with the constant

Cðe; d; n; d;KÞ ¼ ddA32A3Mdðn þ 1Þð1þeÞd�
1
d ðdþ1Þ½K:Q�:ð25Þ

Now we treat the case where

log B

½K : Q� <
d!

dð2d þ 2Þdþ1
h
L
ðX Þ � 3

2
logðn þ 1Þ � 2d :

By §2.1, inequality (2) and §2.3, we obtain that the set SðX ;BÞ is contained in a hypersur-
face of degree D in Pn which does not contain X . The theorem is also true in this case. r

Corollary 4.3. With the notation of Theorem 4.2, assume that d ¼ 1. For any positive

real number Bf ee, one has

KSðX ;BÞe
�
Cðe; d; n; d;KÞ þ 1

�
dDBð1þeÞ2=d:ð26Þ

Proof. By Bézout’s theorem, the intersection of each hypersurface in the conclusion
of Theorem 4.2 and X contains at most dD rational points. Hence the corollary follows
from Theorem 4.2 (see also §2.6). r

Remark 4.4. (i) Observe that one has A1 fn;d d and A2 fn;d d and hence
A3 fn;d; e d

1þ1
d . Therefore, one has

log Cðe; d; n; d;KÞfn;d;K; e d
1þ1

d :

Moreover, the constant Cðe; d; n; d;KÞ does not depend on the discriminant of K (but on
the degree of K over Q).

(ii) The original strategy of Heath-Brown corresponds essentially to the case where
ai ¼ 1 for any i. By taking a larger N0, his strategy also allows to obtain an explicit
upper bound with the same exponent. However, the choice of maximal ideals forces us
to use Bertrand’s postulate for the number field K where the discriminant of K is inevitable,
according to a counter-example of Heath-Brown that Browning has communicated to
me.

5. The case of a plane curve

In this section, we assume that X is an integral plane curve (that is, d ¼ 1 and n ¼ 2).
Note that the model X of X is Cohen–Macaulay since it is a subscheme of P2

OK
defined

by one homogeneous equation. We obtain, for ‘‘small’’ value of B, an explicit estimate of
KSðX ;BÞ.

Theorem 5.1. Assume that d ¼ 1 and n ¼ 2. Let D ¼ b2ðd� 2 þ d�1Þc þ 1. Then, for

any real number B A ðe; ed2Þ, one has

KSðX ;BÞeC4ðK ;BÞdD;ð27Þ
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where

C4ðK ;BÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
log B

p
þ 1ÞaðKÞ2

ffiffiffiffiffiffiffiffi
log B

p
þ2 exp 8

log B þ ½K : Q� log 2ffiffiffiffiffiffiffiffiffiffiffi
log B

p" #

þ ðlog BÞ
ffiffiffiffiffiffiffiffi
log B

p
þ1 d� 1

d�
ffiffiffiffiffiffiffiffiffiffiffi
log B

p ! ffiffiffiffiffiffiffiffi
log B

p
þ1

;

aðKÞ being the constant introduced in Notation 20.

Proof. Let N0 A ð0;þyÞ be such that

log N0 ¼ 4
log B þ ½K : Q� log 2ffiffiffiffiffiffiffiffiffiffiffi

log B
p :

Let r ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
log B

p
e. Choose a family ðpiÞr

i¼1 of distinct maximal ideals of OK such that
N0 eNpi

e aðKÞ i
N0, where aðKÞ is the constant of Bertrand’s postulate introduced in

Notation 20. For any ðxiÞr
i¼1 A

Qr
i¼1

XðFpi
Þ, let

S
�
X ;B; ðxiÞr

i¼1

�
:¼
Tr
i¼1

SðX ;B; xiÞ:

Note that one has

SðX ;BÞ ¼
	Sr

i¼1

S
x AXðFpi

Þ
mxed=

ffiffiffiffiffiffiffiffi
log B

p
SðX ;B; xÞ



W

S
ðxiÞ r

i¼1 A U
r

i¼1

XðFpi
Þ

mxi
>d=

ffiffiffiffiffiffiffiffi
log B

p

S
�
X ;B; ðxiÞr

i¼1

�
:ð28Þ

Let p A fp1; . . . ; prg. Assume that x is an Fp-point of XFp whose multiplicity mx satis-

fies mxe d=
ffiffiffiffiffiffiffiffiffiffiffi
log B

p
. One has

log Np

mx
f

log N0

d=
ffiffiffiffiffiffiffiffiffiffiffi
log B

p ¼ 4

d
ðlog B þ ½K : Q� log 2Þ:

By Corollary 3.8 (the case where e ¼ 1 and jJj ¼ 1), there exists a hypersurface of degree D

not containing X which contains SðX ;B; xÞ. Note that the cardinal of the set

Sr
i¼1

fx A XðFpi
Þ j mx e d=

ffiffiffiffiffiffiffiffiffiffiffi
log B

p
g

does not exceed

Pr

i¼1

KP2ðFpi
Þe

Pr

i¼1

N 2
pi
e raðKÞ2r

N 2
0 :ð29Þ
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Let i A f1; . . . ; rg. By Bézout’s theorem (see [15], 5–22, p. 115), one hasP
x AXðFpi

Þ
mxðmx � 1Þe dðd� 1Þ:ð30Þ

Hence

Kfx A XðFpi
Þ j mx > d=

ffiffiffiffiffiffiffiffiffiffiffi
log B

p
ge ðlog BÞ d� 1

d�
ffiffiffiffiffiffiffiffiffiffiffi
log B

p ;

which implies that the number of r-tubes ðxiÞr
i¼1 A

Qr
i¼1

XðFpi
Þ with mxi

f d=
ffiffiffiffiffiffiffiffiffiffiffi
log B

p
does not

exceed

ðlog BÞr d� 1

d�
ffiffiffiffiffiffiffiffiffiffiffi
log B

p !r

:ð31Þ

Note that the inequality (30) also implies that mxe d for any x A XðFpi
Þ. Therefore, if

ðxiÞr
i¼1 is an element in

Qr
i¼1

XðFpi
Þ, then one has

Pr

i¼1

log Npi

mxi

f r
log N0

d
f

4

d
ðlog B þ ½K : Q� log 2Þ;

where the second inequality comes from the estimate rf
ffiffiffiffiffiffiffiffiffiffiffi
log B

p
. Still by Corollary 3.8,

one obtains that S
�
X ;B; ðxiÞr

i¼1

�
is contained in a hypersurface of degree D not contain-

ing X .

By (28), (29) and (31), the set SðX ;BÞ is contained in a family of hypersurfaces of
degree D not containing X , and the number of the hypersurfaces in the family does not
exceed

raðKÞ2rN 2
0 þ ðlog BÞr d� 1

d�
ffiffiffiffiffiffiffiffiffiffiffi
log B

p !r

eC4ðK ;BÞ:

By Bézout’s theorem the intersection of each hypersurface with X contains at most dD ra-
tional points. Therefore, we obtain

KSðX ;BÞeC4ðK ;BÞdD: r

Remark 5.2. The logarithmic of the first summand of C4ðK ; dÞ is

8
log dþ ½K : Q� log 2ffiffiffiffiffiffiffiffiffiffi

log d
p þ ð2

ffiffiffiffiffiffiffiffiffiffi
log d

p
þ 2Þ log aðKÞ þ logð

ffiffiffiffiffiffiffiffiffiffi
log d

p
þ 1Þf

ffiffiffiffiffiffiffiffiffiffi
log d

p
ðd ! yÞ;

while the logarithmic of the second summand is

ð
ffiffiffiffiffiffiffiffiffiffi
log d

p
þ 1Þ

0@log log dþ log
d� 1

d�
ffiffiffiffiffiffiffiffiffiffi
log d

p !1Af
ffiffiffiffiffiffiffiffiffiffi
log d

p
� log log d ðd ! yÞ:
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Hence there exists a constant MK which only depends on K such that

C4ðK ; dÞeM

ffiffiffiffiffiffiffi
log d

p
�log log dþ

ffiffiffiffiffiffiffi
log d

p
K fK de

for any e > 0.

Corollary 5.2. Assume that X is an integral plane curve of degree d. Then, for any

e > 0, one has

KSðX ; dÞfK d2þe:
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Randriambololona, P. Salberger, C. Soulé and B. Teissier and received many helpful sug-
gestions. I would like to express my deep gratitude to them all. Part of this work has been
written during my visit to the Institut des Hautes Études Scientifiques. I would like to thank
the institute for hospitalities. Finally I am grateful to the referees for their valuable re-
marks.

References

[1] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), no. 2,

337–357.

[2] J.-B. Bost, Périodes et isogénies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G.
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