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ARITHMETIC FUJITA APPROXIMATION

by Huayi CHEN

Abstract. – We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov
geometry, conjectured by Moriwaki, by using measures associated to R-filtrations.

RÈsumÈ. – On démontre un analogue arithmétique du théorème d’approximation de Fujita en
géométrie d’Arakelov — conjecturé par Moriwaki — par les mesures associées aux R-filtrations.

1. Introduction

Fujita approximation is an approximative version of Zariski decomposition of pseudo-
eVective divisors [20]. Let X be a projective variety defined over a field K and L be a big line
bundle on X, i.e., the volume of L, defined as

vol(L) := lim sup

n!1

rk

K

H0

(X,L⌦n

)

ndim X/(dim X)!

,

is strictly positive. Fujita’s approximation theorem asserts that, for any " > 0, there exist
a projective birational morphism ⌫ : X 0 ! X, an integer p > 0, together with a
decomposition ⌫⇤(L⌦p

)

⇠
=

A ⌦ E, where A is an ample line bundle, E is eVective, such
that p�dim X

vol(A) > vol(L)� ". This theorem had been proved by Fujita himself [7] in
characteristic 0 case (see also [4]) before its generalization to any characteristic case by Takagi
[17]. It is the source of many important results concerning big divisors and the volume
function in algebraic geometry, such as the volume function as a limit, its log-concavity and
diVerentiability, etc. We refer readers to [10, 11.4] for a survey, see also [1, 5, 6, 11].

The arithmetic analogue of the volume function and the arithmetic bigness in Arakelov
geometry have been introduced by Moriwaki [12, 13]. Let K be a number field and O

K

be
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its integer ring. Let X be a projective arithmetic variety of total dimension d over Spec O
K

.
For any Hermitian line bundle L on X , the arithmetic volume of L is defined as

(1) ”
vol( L) := lim sup

n!1

bh0

( X , L
⌦n

)

nd/d!

,

where
bh0

( X , L
⌦n

) := log

�

�{s 2 H0

( X , L⌦n

) | ksk
sup

6 1}
�

�.

Similarly, L is said to be (arithmetically) big if ”vol( L) > 0. In [13, 14], Moriwaki has proved
that the arithmetic volume function is continuous with respect to L, and admits a unique
continuous extension to ”

Pic( X)R. In [13], he asked the following question (Remark 5.9 loc.
cit.): does the Fujita approximation hold in the arithmetic case? A consequence of this
conjecture is that the right-hand side of (1) is actually a limit (see [13, Remark 4.1]), which is
similar to a result of Rumely, Lau and Varley [16] on the existence of the sectional capacity
of Hermitian line bundles.

Recall that in [3], the author has proved that, by slope method, one can associate naturally
a sequence of Borel probability measures (⌘

n

)

n>1

on R to the Hermitian line bundle L such
that

d

deg(⇡⇤( L
⌦n

)) = [K : Q] rk(⇡⇤( L
⌦n

))

Z

R
x ⌘

n

(dx).

In this probabilistic framework, the existence of sectional capacity is interpreted as the
convergence of the sequence of expectations (

R

R x ⌘
n

(dx))

n>1

. The author has actually
proved the vague convergence of the sequence (⌘

n

)

n>1

to a Borel probability measure, under
the ampleness hypothesis of L

K

.
In this article, we consider another sequence (⌫

n

)

n>1

of Borel probability measures de-
fined by the successive minima of ⇡⇤( L

⌦n

) and establish its vague convergence under the
bigness hypothesis of L

K

. By the arithmetic Riemann-Roch theorem of Gillet and Soulé
[9], bh0

(⇡⇤( L)

⌦n

) is compared to [K : Q] rk(⇡⇤( L
⌦n

))

R1
0

x ⌫
n

(dx) and it follows that

”
vol( L) = lim

n!1

bh0

( X , L
⌦n

)

nd/d!

= [K : Q]dvol( L
K

)

Z 1

0

x ⌫(dx),

where ⌫ denotes the vague limit of ⌫
n

.
By developing a variant of the convergence result, we prove the arithmetic Fujita approxi-

mation. One diYculty is that, if A is an ample Hermitian line subbundle of L which approx-
imates well L, then in general the section algebra of A

K

does not approximate that of L
K

at
all. In fact, it approximates only the graded linear series of L

K

generated by small sections
(see §4.3). To overcome this diYculty, we need a recent result of Lazarsfeld and Mustat

,

ă
[11] on a very general approximation theorem for graded linear series of a big line bundle on
a projective variety. It permits to approximate the graded linear series of the generic fiber
generated by small sections.

Shortly after the first version of this article had been written, X. Yuan told me that he was
working on the same subject and had obtained (see [19]) the arithmetic Fujita approximation
independently by using a diVerent method inspired by [11].

The organization of this article is as follows. In the second section, we introduce the
notion of approximable graded algebras and study their asymptotic properties. We then
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ARITHMETIC FUJITA APPROXIMATION 557

recall the notion of Borel measures associated to filtered vector spaces. At the end of the
section, we establish a convergence result for filtered approximable algebras. In the third
section, we recall the theorem of Lazarsfeld and Mustat

,

ă on the approximability of certain
graded linear series. We then describe some approximable graded linear series which come
from the arithmetic of a Hermitian line bundle on an arithmetic projective variety. The
main theorem of the article is established in the fourth section. We prove that the arithmetic
volume of a big Hermitian line bundle can be approximated by the arithmetic volume of its
graded linear series of finite type, which implies the Moriwaki’s conjecture. We also prove
that, if a graded linear series generated by small sections approximates well a big Hermitian
line bundle L, then it also approximates well the asymptotic measure of L truncated at 0.
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2. Approximable algebras and asymptotic measures

In [3], the author has used the measures associated to filtered vector spaces to study
asymptotic invariants of Hermitian line bundles. Several convergence results have been
established for graded algebras equipped with R-filtrations under the finite generation
condition on the underlying graded algebra [3, Theorem 3.4.3]. However, some graded
algebras coming naturally from the arithmetic do not satisfy this condition. In this section,
we generalize the convergence result to a so-called approximable graded algebra case.

2.1. Approximable graded algebras

In the study of projective varieties, graded algebras are natural objects which often appear
as graded linear series of a line bundle. In general, such graded algebras are not always
finitely generated. However, according to approximation theorems due to Fujita [7], Takagi
[17], Lazarsfeld and Mustat

,

ă [11] etc., they can often be approximated arbitrarily closely by
their graded subalgebras of finite type. Inspired by [11], we formalize this observation as a
notion. In this section, K denotes an arbitrary field. All algebras and all vector spaces are
supposed to be over K.

Definition 2.1. – Let B =

L

n>0

B
n

be an integral graded K-algebra. We say that B

is approximable if the following conditions are verified:

(a) all vector spaces B
n

are finite dimensional and B
n

6= 0 for suYciently large n;
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(b) for any " 2 (0, 1), there exists an integer p
0

> 1 such that, for any integer p > p
0

, one
has

lim inf

n!1

rk(Im(SnB
p

! B
np

))

rk(B
np

)

> 1� ",

where SnB
p

! B
np

is the canonical homomorphism defined by the algebra structure
on B.

Remark 2.2. – The condition (a) serves to exclude the degenerate case so that the pre-
sentation becomes simpler. In fact, if an integral graded algebra B is not concentrated on
B

0

, then by choosing an integer q > 1 such that B
q

6= 0, we obtain a new graded algebra
L

n>0

B
nq

which verifies (a). This new algebra often contains the information about B in
which we are interested.

Example 2.3. – The following are some examples of approximable graded algebras.

1) If B is an integral graded algebra of finite type such that B
n

6= 0 for suYciently large n,
then it is clearly approximable.

2) Let X be a projective variety over Spec K and L be a big line bundle on X. Then by
Fujita’s approximation theorem, the total graded linear series

L

n>0

H0

(X,L⌦n

) of L

is approximable.
3) More generally, Lazarsfeld and Mustat

,

ă have shown that, with the notation of 2), any
graded subalgebra of

L

n>0

H0

(X,L⌦n

) containing an ample divisor (see Definition
3.1) and verifying the condition (a) above is approximable.

We shall revisit the examples 2) and 3) in §3.1.

The following properties of approximable graded algebras are quite similar to some
classical results on big line bundles.

Proposition 2.4. – Let B =

L

n>0

B
n

be an integral graded algebra which is
approximable. Then there exists a constant a 2 N \ {0} such that, for any sufficiently
large integer p, the algebra

L

n>0

Im(SnB
p

! B
np

) has Krull dimension a. Furthermore, set
d(B) := a� 1. The sequence

(2)
⇣

rk(B
n

)

nd(B)/d(B)!

⌘

n>1

converges in R
+

.

Proof. – Assume that B
m

6= 0 for all m > m
0

, where m
0

2 N. Since B is integral, for
any integer n > 1 and any integer m > m

0

, one has

(3) rk(B
n+m

) > rk(B
n

).

For any integer p > m
0

, denote by a(p) the Krull dimension of
L

n>0

Im(SnpB
p

! B
np

),
and define

(4) f(p) := lim inf

n!1

rk(Im(SnB
p

! B
np

))

rk(B
np

)

.
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The approximable condition shows that lim

p!1
f(p) = 1. Recall that the classical result on

Hilbert polynomials implies

rk(Im(SnB
p

! B
np

)) ⇣ na(p)�1

(n !1).

Thus, if f(p) > 0, then rk(B
np

) ⇣ na(p)�1, and hence by (3), one has rk(B
n

) ⇣ na(p)�1

(n !1). So a(p) is constant if f(p) > 0. In particular, a(p) is constant when p is suYciently
large. Denote by d(B) this constant minus 1.

In the following, we shall establish the convergence of the sequence (2). It suYces to
establish

(5) lim inf

n!1

rk(B
n

)

nd(B)

> lim sup

n!1

rk(B
n

)

nd(B)

.

By (3), for any integer p > 1, one has

(6) lim sup

n!1

rk(B
n

)

nd(B)

= lim sup

n!1

rk(B
np

)

(np)

d(B)

and lim inf

n!1

rk(B
n

)

nd(B)

= lim inf

n!1

rk(B
np

)

(np)

d(B)

.

Suppose that f(p) > 0. Then one has

lim sup

n!1

rk(B
np

)

(np)

d(B)

=

⇣

lim sup

n!1

rk(B
np

)

rk(Im(SnB
p

! B
np

))

⌘

·
⇣

lim

n!1

rk(Im(SnB
p

! B
np

))

(np)

d(B)

⌘

= f(p)

�1

lim

n!1

rk(Im(SnB
p

! B
np

))

(np)

d(B)

6 f(p)

�1

lim inf

n!1

rk(B
np

)

(np)

d(B)

.

Combining with (6) and the approximability hypothesis, we obtain (5).

Corollary 2.5. – Assume that B is approximable. For any r 2 N, one has

lim

n!1

rk(B
n+r

)

rk(B
n

)

= 1.

Definition 2.6. – Let B be an integral graded K-algebra which is approximable.
Denote by vol(B) the limit

vol(B) := lim

n!1

rk(B
n

)

nd(B)/d(B)!

.

Note that, if B is the total graded linear series of a big line bundle L, then vol(B) is just the
volume of the line bundle L.

Remark 2.7. – It might be interesting to know whether any approximable graded alge-
bra can always be realized as a graded linear series of a big line bundle.

2.2. Reminder on R-filtrations

Let K be a field and W be a vector space of finite rank over K. By a filtration on W

we mean a sequence F = ( F
t

W )

t2R of vector subspaces of W , satisfying the following
conditions:

1) if t 6 s, then F
s

W ⇢ F
t

W ;
2) F

t

W = 0 for suYciently positive t, F
t

W = W for suYciently negative t;
3) the function t 7! rk( F

t

W ) is left continuous.
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The couple (W, F ) is called a filtered vector space.
If W 6= 0, we denote by ⌫

(W, F )

(or simply ⌫
W

if this does not lead to any ambiguity) the
Borel probability measure obtained by taking the derivative (in the sense of distribution) of
the function t 7! � rk( F

t

W )/ rk(W ). If W = 0, then there is a unique filtration on W and
we define ⌫

0

to be the zero measure by convention. Note that the measure ⌫
W

is actually
a linear combination of Dirac measures. In fact, the filtration F corresponds to a flag
W = W

0

) W
1

) · · · ) W
n

= 0 together with a sequence of real numbers �
1

< · · · < �
n

indicating the jumps. Then one has

⌫
(W, F )

=

n

X

i=1

rk(W
i�1

/W
i

)

rkW
�
�i .

All filtered vector spaces and linear maps preserving filtrations form an exact category.
The following proposition shows that mapping (W, F ) 7! ⌫

(W, F )

behaves well with respect
to exact sequences.

Proposition 2.8. – Assume that

0

//
(W 0, F 0) //

(W, F )

//
(W 00, F 00) //

0

is an exact sequence of filtered vector spaces. Then

⌫
W

=

rk(W 0
)

rk(W )

⌫
W

0
+

rk(W 00
)

rk(W )

⌫
W

00 .

Proof. – For any t 2 R, one has

rk( F
t

W ) = rk( F 0
t

W 0
) + rk( F 00

t

W 00
),

which implies the proposition by taking the derivative in the sense of distribution.

Corollary 2.9. – Let (W, F ) be a non-zero filtered vector space, V ⇢ W be a non-zero
subspace, equipped with the induced filtration, and " = 1� rk(V )/ rk(W ).

1) For any bounded Borel function h on R, one has
�

�

�

�

Z

h d⌫
W

�
Z

h d⌫
V

�

�

�

�

6 2"khk
sup

.

2) One has
Z

+1

0

x ⌫
W

(dx) > (1� ")

Z

+1

0

x ⌫
V

(dx).

Proof. – The case where W = V is trivial. In the following, we assume that U := W/V

is non-zero, and is equipped with the quotient filtration. By Proposition 2.8, one has

⌫
W

= (1� ")⌫
V

+ "⌫
U

= ⌫
V

+ "(⌫
U

� ⌫
V

).

Therefore
�

�

�

�

Z

h d⌫
W

�
Z

h d⌫
V

�

�

�

�

= "

�

�

�

�

Z

h d⌫
U

�
Z

h d⌫
V

�

�

�

�

6 2"khk
sup

.

Z

+1

0

x ⌫
W

(dx) = (1� ")

Z

+1

0

x ⌫
V

(dx) + "

Z

+1

0

x ⌫
U

(dx) > (1� ")

Z

+1

0

x ⌫
V

(dx).
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Let (W, F ) be a filtered vector space. We denote by � : W ! R [ {+1} the mapping
which sends x 2 W to

(7) �(x) := sup{a 2 R |x 2 F
a

W}.

The function � takes values in supp(⌫
W

) [ {+1}, and is finite on W \ {0}. We define

(8) �
+

(W ) :=

Z

+1

0

x ⌫
W

(dx), �
max

(W ) := max

x2W\{0}
�(x) and �

min

(W ) := min

x2W

�(x).

By definition, �
min

(W ) (resp. �
max

(W )) is the infimum (resp. supremum) of the support
of ⌫

W

. Note that �
min

(0) = +1 and �
max

(0) = �1. When �
max

(W ) > 0, one has
0 6 �

+

(W ) 6 �
max

(W ).
We introduce an order “�” on the space M of all Borel probability measures on R. Denote

by ⌫
1

� ⌫
2

, or by ⌫
2

� ⌫
1

the relation:

for any bounded increasing function h on R,
R

h d⌫
1

6
R

h d⌫
2

.

This relation can also be described by 8x 2 R, ⌫
1

([x,+1[) 6 ⌫
2

([x,+1[).
For any x 2 R, denote by �

x

the Dirac measure concentrated at x. For any a 2 R, let
⌧
a

be the operator acting on the space M which sends a measure ⌫ to its direct image by the
map x 7! x + a.

Proposition 2.10. – Let (V, F ) and (W, G) be non-zero filtered vector spaces. Assume
that � : V ! W is an isomorphism of vector spaces and a is a real number such that
�( F

t

V ) ⇢ G
t+a

W holds for all t 2 R, or equivalently, 8x 2 V , �(�(x)) > �(x) + a, then
⌫

W

� ⌧
a

⌫
V

.

See [3, Lemma 1.2.6] for a proof.

2.3. Convergence of measures of an approximable algebra

Let B be an integral graded K-algebra, assumed to be approximable. Assume that, for
each integer n > 0, the vector space B

n

is equipped with an R-filtration F such that B is
filtered, that is, for all homogeneous elements x

1

, x
2

in B of degrees n
1

, n
2

in N, respectively,
one has

�(x
1

x
2

) > �(x
1

) + �(x
2

),

where � is the function defined in (7).
For any " > 0, let T

"

be the operator acting on the space M of all Borel probability
measures which sends ⌫ 2 M to its direct image by the mapping x 7! "x.

The purpose of this subsection is to establish the following convergence result.

Theorem 2.11. – Let B be an approximable graded algebra equipped with filtrations as
above such that B is filtered. Assume in addition that

sup

n>1

�
max

(B
n

)/n < +1.

Then the sequence (�
max

(B
n

)/n)

n>1

converges in R, and the measure sequence (T 1
n
⌫

Bn)

n>1

converges vaguely to a Borel probability measure on R.
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Remark 2.12. – We say that a sequence (⌫
n

)

n>1

of Borel measures on R converges
vaguely to a Borel measure ⌫ if, for any continuous function h on R whose support is
compact, one has

(9) lim

n!+1

Z

h d⌫
n

=

Z

h d⌫.

In the case where ⌫ and all ⌫
n

are probability measures, the vague convergence of ⌫
n

to ⌫

implies that the condition (9) holds for all bounded continuous function h.

Proof. – The first assertion has been established in [3, Proposition 3.2.4] in a more general
setting without the approximability condition on B. Here we only prove the second asser-
tion.

Assume that B
n

6= 0 holds for any n > m
0

, where m
0

> 0 is an integer, and set
⌫

n

= T 1
n
⌫

Bn . The supports of ⌫
n

are uniformly bounded from above since
sup

n>1

�
max

(B
n

)/n < +1. Let p be an integer such that p > m
0

. Denote by A(p)

the graded subalgebra of B generated by B
p

. For any integer n > 1, we equipped each
vector space A

(p)

np

with the induced filtration, and set ⌫
(p)

n

:= T 1
np

⌫
A

(p)
np

. Furthermore, we
choose, for any r 2 {p + 1, · · · , 2p� 1}, a non-zero element e

r

2 B
r

, and define

M (p)

n,r

= e
r

B
np

⇢ B
np+r

, N (p)

n,r

= e
3p�r

M (p)

n,r

⇢ B
(n+3)p

,

a(p)

n,r

=

�(e
3p�r

)

np
, b(p)

n,r

= a(p)

n,r

+

�(e
r

)

np
,

⌫(p)

n,r

= T 1
np

⌫
M

(p)
n,r

, ⌘(p)

n,r

= T 1
np

⌫
N

(p)
n,r

,

where M
(p)

n,r

and N
(p)

n,r

are equipped with induced filtrations. Note that, for all x 2 B
np

,
y 2 M

(p)

n,r

, one has

�(e
r

x) > �(x) + �(e
r

),

�(e
3p�r

y) > �(y) + �(e
3p�r

).

By Proposition 2.10, one has ⌘
(p)

n,r

� ⌧
a

(p)
n,r

⌫
(p)

n,r

� ⌧
b

(p)
n,r

⌫
np

. Let h(x) be a bounded increasing
and continuous function on R whose support is bounded from below, and which is constant
when x is suYciently positive. One has

(10)
Z

h d⌘(p)

n,r

>
Z

h d⌧
a

(p)
n,r

⌫(p)

n,r

>
Z

h d⌧
b

(p)
n,r

⌫
np

.

Note that |h(x + "x)� h(x)| converges uniformly to zero when " ! 0. By Corollaries 2.9 1)
and 2.5, we obtain

lim

n!1

�

�

�

�

Z

h d⌘(p)

n,r

�
Z

h d⌫
(n+3)p

�

�

�

�

= 0,(11)

lim

n!1

�

�

�

�

Z

h d⌫(p)

n,r

�
Z

h d⌫
np+r

�

�

�

�

= 0.(12)
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Note that |h(x + u)� h(x)| converges uniformly to zero when u ! 0. Combining with the
fact that lim

n!1
a(p)

n,r

= lim

n!1
b(p)

n,r

= 0, we obtain

lim

n!1

�

�

�

�

Z

h d⌧
a

(p)
n,r

⌫(p)

n,r

�
Z

h d⌫(p)

n,r

�

�

�

�

= 0,(13)

lim

n!1

�

�

�

�

Z

h d⌧
b

(p)
n,r

⌫
np

�
Z

h d⌫
np

�

�

�

�

= 0.(14)

Thus

lim sup

n!1

�

�

�

�

Z

h d⌫
np+r

�
Z

h d⌫
np

| = lim sup

n!1

�

�

�

�

Z

h d⌧
a

(p)
n,r

⌫(p)

n,r

�
Z

h d⌧
b

(p)
n,r

⌫
np

�

�

�

�

6 lim sup

n!1

�

�

�

�

Z

h d⌘(p)

n,r

�
Z

h d⌧
b

(p)
n,r

⌫
np

�

�

�

�

= lim sup

n!1

�

�

�

�

Z

h d⌫
(n+3)p

�
Z

h d⌫
np

�

�

�

�

,

(15)

where the first equality comes from (12), (13) and (14). The inequality comes from (10), and
the second equality results from (11) and (14).

Let " 2 (0, 1). By the approximability condition on B, there exist two integers p > m
0

and n
1

> 1 such that, for any integer n > n
1

, one has

rkA
(p)

np

rkB
np

> 1� ".

Therefore, by Corollary 2.9 1), one has

(16)
�

�

�

�

Z

h d⌫
np

�
Z

h d⌫(p)

n

�

�

�

�

6 2"khk
sup

.

As A(p) is an algebra of finite type, by [3, Theorem 3.4.3], the sequence of measures (⌫
(p)

n

)

n>1

converges vaguely to a Borel probability measure ⌫(p). Note that the supports of measures
⌫

(p)

n

are uniformly bounded from above. Hence (

R

h d⌫
(p)

n

)

n>1

is a Cauchy sequence. By
the relations (15) and (16), we obtain that there exists an integer n

2

> 1 such that, for any
integers m and n, m > n

2

, n > n
2

, one has
�

�

�

�

Z

h d⌫
n

�
Z

h d⌫
m

�

�

�

�

6 8"khk
sup

+ ".

Since " is arbitrary, the sequence (

R

h d⌫
n

)

n>1

converges in R. Denote by C1
0

(R) the space of
all smooth functions of compact support on R. Since any function in C1

0

(R) can be written
as the diVerence of two continuous increasing and bounded functions whose supports are
both bounded from below and which are constant on a neighborhood of +1, we obtain that
h 7! lim

n!1

R

h d⌫
n

is a well defined positive continuous linear functional on (C1
0

(R), k·k
sup

).

As C1
0

(R) is dense in the space C
c

(R) of all continuous functions of compact support on R
with respect to the topology induced by k · k

sup

, the linear functional extends continuously
to a Borel measure ⌫ on R. Finally, by Corollary 2.9 and by passing to the limit, we obtain
that for any p > m

0

, one has |1 � ⌫(R)| = |⌫(p)

(R) � ⌫(R)| 6 1 � f(p), where f(p) was
defined in (4). As lim

p!1
f(p) = 1, ⌫ is a probability measure.
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2.4. A positivity criterion

Let B be an approximable graded K-algebra. Assume that B is equipped with filtrations
such that B is filtered. The above theorem shows that the sequence (�

max

(B
n

)/n)

n>1

converges to a real number which we shall denote by �asy

max

(B). Furthermore, the sequence
of measures (T 1

n
⌫

Bn)

n>1

converges vaguely to a Borel probability measure on R, denoted by
⌫

B

. Note that the support of ⌫
B

is bounded from above by �asy

max

(B). We define

�asy

+

(B) :=

Z

+1

0

x ⌫
B

(dx).

One has

�asy

+

(B) = lim

n!+1
�

+

(B
n

)/n,

where �
+

(B
n

) was defined in (8).

The following theorem shows that �asy

+

(B) is positive if and only if �asy

max

(B) is. This will
be useful in the criterion of bigness of Hermitian line bundles (Proposition 3.11).

Theorem 2.13. – Let B be a filtered approximable graded K-algebra. Then �asy

+

(B) > 0

if and only if �asy

max

(B) > 0.

Proof. – Assume that �asy

+

(B) > " > 0. Then for suYciently large n, one has
�

max

(B
n

) > �
+

(B
n

) > "n. Hence �asy

max

(B) > 0.

It suYces then to prove the converse implication. Assume that ↵ > 0 is a real number
such that �asy

max

(B) > 2↵. Choose suYciently large n
0

2 N such that there exists a non-zero
x

0

2 B
n0 satisfying �(x

0

) > 2↵n
0

. Since the algebra B is filtered, one has �(xm

0

) > 2↵mn
0

.
The algebra B is approximable. Hence there exists an integer p divisible by n

0

such that

lim inf

n!1

rk(Im(SnB
p

! B
np

))

rkB
np

> 0.

By Corollary 2.9 2), lim

n!1
�

+

(Im(SnB
p

! B
np

))/np > 0 implies

lim

n!1
�

+

(B
np

)/np = lim

n!1
�

+

(B
n

)/n > 0.

Therefore, after replacing B by
L

n>0

Im(SnB
p

! B
np

) we reduce our problem to the case
where

1) B is an algebra of finite type generated by B
1

,
2) there exists x

1

2 B
1

, x
1

6= 0 such that �(x
1

) > 2↵ with ↵ > 0,

Furthermore, by Noether’s normalization theorem (and by possible extension of the field K),
the algebra B is finite over a subalgebra of polynomials K[x

1

, · · · , x
q

], where x
1

coincides
with the element in the condition 2), x

2

, · · · , x
q

are elements in B
1

. Note that

(17) �(xa1
1

· · ·xaq
q

) >
q

X

i=1

a
i

�(x
i

) > 2↵a
1

+

q

X

i=2

a
i

�(x
i

).
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Let � > 0 such that �� 6 �(x
i

) for any i 2 {2, · · · , q}. We obtain from (17) that
�(xa1

1

· · ·xaq
q

) > ↵a
1

as soon as a
1

> �

↵

P

q

i=2

a
i

. For n 2 N⇤, let

u
n

= #

n

(a
1

, · · · , a
q

) 2 Nq

�

�

�

a
1

+ · · · + a
q

= n, a
1

> �

↵
(a

2

+ · · · + a
q

)

o

= #

n

(a
1

, · · · , a
q

) 2 Nq

�

�

�

a
1

+ · · · + a
q

= n, a
1

> �

↵ + �
n
o

=

Ç
n� b �

↵+�

nc+ q � 1

q � 1

å
,

and v
n

= #

�

(a
1

, · · · , a
q

) 2 Nq

�

� a
1

+ · · · + a
q

= n
 

=

�

n+q�1

q�1

�

. Thus

lim

n!1
u

n

/v
n

=

⇣ ↵

↵ + �

⌘

q�1

> 0

and hence
lim

n!+1
u

n

/ rk(B
n

) > 0.

For any n > 1, let C
n

be the subspace of B
n

generated by elements of the form xa1
1

· · ·xaq
q

,
where a

1

+ · · · + a
q

= n and a
1

> �n/(↵ + �). By Corollary 2.9 2), one has

�
+

(B
n

) > u
n

rk(B
n

)

�
+

(C
n

) > u
n

rk(B
n

)

· ↵�n

↵ + �
.

Hence �asy

+

(B) > 0.

3. Approximable graded linear series in arithmetic

In this section, we recall a result on Fujita approximation for graded linear series due to
Lazarsfeld and Mustat

,

ă [11]. We then give several examples of approximable graded linear
series which come naturally from the arithmetic setting.

3.1. Reminder on geometric Fujita approximation

Let K be a field and X be a projective variety (i.e. integral projective scheme) defined
over K. Let L be a big line bundle on X. Denote by B :=

L

n>0

H0

(X,L⌦n

) the graded
K-algebra of global sections of tensor powers of L. For graded linear series of L we mean a
graded sub-K-algebra of B. The following definition is borrowed from [11].

Definition 3.1. – We say that a graded linear series W =

L

n>0

W
n

of L contains an
ample divisor if there exist an integer p > 1, an ample line bundle A and an eVective line
bundle M on X, together with a non-zero section s 2 H0

(X,M), such that L⌦p ⇠
=

A⌦M ,
and that the homomorphism of graded algebras

M

n>0

H0

(X,A⌦n

) �!
M

n>0

H0

(X,L⌦np

)

induced by s factors through
L

n>0

W
np

.

Remark 3.2. – In [11, Definition 2.9], this condition was called the “condition (C)”. As
a big divisor is always the sum of an ample divisor and an eVective one, the total graded linear
series B contains an ample divisor.
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Definition 3.3. – Let W =

L

n>0

W
n

be a graded linear series of L. Denote by vol(W )

the number

(18) vol(W ) := lim sup

n!1

rk(W
n

)

ndimX/(dimX)!

.

Note that vol(B) = vol(L). For a general linear series W of L, one has vol(W ) 6 vol(L).
By using the method of Okounkov bodies introduced in [15], Lazarsfeld and Mustat

,

ă have
established the following generalization of Fujita’s approximation theorem.

Theorem 3.4 (Lazarsfeld-Mustat

,

ă). – Assume that W =

L

n>0

W
n

is a graded linear
series of L which contains an ample divisor and such that W

n

6= 0 for sufficiently large n. Then
W is approximable.

In particular, the total graded linear series B is approximable. In [11, Remark 3.4], the
authors have explained why their theorem implies Fujita’s approximation theorem in its
classical form. We include their explanation as the corollary below.

Corollary 3.5 (Geometric Fujita approximation). – For any " > 0, there exist an
integer p > 1, a birational projective morphism ' : X 0 ! X, an ample line bundle A and an
effective line bundle M such that

1) one has '⇤(L⌦p

)

⇠
=

A⌦M ;
2) vol(A) > pdim X

(vol(L)� ").

Proof. – For any integer p such that B
p

6= 0, let '
p

: X
p

! X be the blow-up (twisted
by L) of X along the base locus of B

p

. That is

X
p

= Proj

⇣

Im

⇣

M

n>0

Sn

(⇡⇤B
p

) �!
M

n>0

L⌦np

⌘⌘

.

Denote by E
p

the exceptional divisor and by s the global section of O(E
p

) which trivializes
O(E

p

) outside the exceptional divisor. By definition, one has O
Xp(1)

⇠
=

'⇤
p

L⌦p ⌦ O(�E
p

).
On the other hand, the canonical homomorphism '⇤

p

⇡⇤B
p

! O
Xp(1) is surjective, therefore

corresponds to a morphism of schemes i
p

: X
p

! P(B
p

) such that i⇤
p

OP(Bp)

(1) = O
Xp(1).

The restriction of global sections of OP(Bp)

(n) on X
p

gives an injective homomorphism

Im(SnB
p

! B
np

) �! H0

(X
p

, O
Xp(n)),

where we have identified H0

(X
p

, O
Xp(n)) with a subspace of H0

(X
p

, '⇤
p

L⌦n

) via s. Since
the total graded linear series B is approximable, one has

sup

p

lim inf

n!1

rk(Im(SnB
p

! B
np

))

rk(B
np

)

= 1,

which implies

sup

p

lim

n!1

rkH0

(X
p

, O
Xp(n))

(np)

d/d!

= vol(L).

The line bundle O
Xp(1) constructed above is actually nef and big. However, a slight

perturbation of L permits to conclude.
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3.2. Arithmetic volume of approximable graded linear series

Let K be a number field and O
K

be its integer ring. Denote by �
K

:= [K : Q] the degree
of K over Q. By a metrized vector bundle on Spec O

K

we mean a projective O
K

-module of
finite type E together with a family (k ·k

�

)

�:K!C, where k ·k
�

is a norm on E
�,C, assumed to

be invariant by the complex conjugation. We often use the expression E to denote the couple
(E, (k·k

�

)

�:K!C). A metrized vector bundle of rank one is also called a metrized line bundle.
On a metrized vector bundle on Spec O

K

, one has a natural filtration defined by its
successive minima. Let E be a metrized vector bundle on Spec O

K

. Let r be the rank of
E and i 2 {1, · · · , r}. Recall that the ith (logarithmic) minimum of E is defined as

e
i

(E) := � log inf{a > 0 | rk(Vect

K

{B(E, a)}) > i},

where B(E, a) = {s 2 E | 8� : K ! C, ksk
�

6 a}. Set e
max

(E) = e
1

(E) and
e
min

(E) = e
r

(E). Define an R-filtration F on E
K

as

F
t

E
K

:= Vect

K

{B(E, e�t

)},

called the minima filtration of E. Note that �
max

(E
K

, F ) = e
max

(E) and
�

min

(E
K

, F ) = e
min

(E).
Let E be a metrized vector bundle on Spec O

K

. Denote by ⌫
E

the Borel probability
measure on R associated to the filtered vector space (E

K

, F ) and set

bh0

(E) := log #B(E, 1) = log #{s 2 E | 8� : K ! C, ksk
�

6 1}.

A classical result of Gillet and Soulé leads to the following estimation.

Lemma 3.6. – One has

(19)
�

�

�

�

�
K

r

Z

+1

0

x ⌫
E

(dx)� bh0

(E)

�

�

�

�

⌧ rk(E) log rk(E),

where the implicit constant only depends on K.

Proof. – It is a direct consequence of [9, Proposition 6] (see also [9, Theorem 1]).

Remark 3.7. – Let B =

L

n>0

B
n

be a graded K-algebra. Assume that, for each n,
B

n

is a metrized vector bundle on Spec O
K

such that B
n

= B
n,K

. As explained above, the
successive minima of B

n

induces a filtration F on B
n

. The graded algebra B is filtered with
respect to these filtrations notably when the following conditions are fulfilled.

(a) the K-algebra structure on B gives rise to an O
K

-algebra structure on
L

n>0

B
n

;
(b) for any (m, n) 2 N2, any � : K ! C and for all s 2 B

n,�,C, s0 2 B
m,�,C, one has

kss0k
�

6 ksk
�

ks0k
�

;

A typical example of such filtered graded algebra is arithmetic graded linear series. Let
⇡ : X ! Spec O

K

be a projective arithmetic variety of total dimension d and X = X
K

.
Let L be a Hermitian line bundle on X , L = L

K

and B be a graded linear series of L.
For any integer n > 0, denote by B

n

the saturation of B
n

in ⇡⇤( L⌦n

). For any embedding
� : K ! C, denote by k · k

�,sup

the sup-norm on B
n,�,C. Thus we obtain a metrized vector

bundle (B
n

, g
n

) on Spec O
K

with g
n

= (k · k
�,sup

)

�:K!C. Then the graded algebra B is
filtered with respect to the minima filtrations F associated to B

n

.
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Inspired by [12], we define the arithmetic volume function of B as follows:

”
vol(B) := lim sup

n!1

bh0

(B
n

, g
n

)

nd/d!

.

In particular, when B is the total graded linear series
L

n>0

H0

(X,L⌦n

), then ”
vol(B) is just

the arithmetic volume of L in the sense of Moriwaki [12], denoted by ”
vol( L). Recall that

L is said to be (arithmetically) big if ”vol( L) > 0. Note that if L is big, then L is a big line
bundle on X (see [13, Introduction] and [18, Corollary 2.4]).

Theorem 3.8. – Assume that the graded linear series B is approximable. Then the
sequence (

1

n

e
max

(B
n

, g
n

))

n>1

converges in R. Furthermore, for any integer n > 1, let
⌫

n

:= T 1
n
⌫
(Bn, F )

be the normalized probability measure associated to the minima filtration
of (B

n

, g
n

), then the sequence of measures (⌫
n

)

n>1

converges vaguely to a Borel probability
measure ⌫

B

. Moreover, one has

(20) �asy

+

(B) :=

Z

+1

0

x ⌫
B

(dx) =

”
vol(B)

�
K

d vol(B)

.

Proof. – Note that the graded algebra B is filtered with respect to the minima filtrations.
By Theorem 2.11, it suYces to prove that e

max

(B
n

, g
n

) ⌧ n. Let ⌃ be a Zariski dense
family of algebraic points in X. Each point P in ⌃ extends in a unique way to a O

K(P )

point of X , where K(P ) is the field of definition of P . Therefore we may consider elements
in ⌃ as points of X valued in algebraic integer rings. Now consider the evaluation map
⇡⇤( L⌦n

) �!
L

P2⌃

P ⇤ L. It is generically injective since ⌃ is dense in X. Therefore, one
has

e
max

(⇡⇤( L⌦n

), g
n

) 6 n sup

P2⌃

h L(P ).

Since ⌃ is arbitrary, we obtain that 1

n

e
max

(⇡⇤( L⌦n

), g
n

) is bounded from above by the
essential minimum of L (see [21, §5 ] for definition. Attention, in [21], the author denoted it
by e

1

( L)).

The equality (20) is a consequence of Lemma 3.6. In fact, Lemma 3.6 implies that

(21)
�

�

�

�

bh0

(B
n

, g
n

)� nr
n

�
K

Z

+1

0

x ⌫
n

(dx)

�

�

�

�

⌧ r
n

log r
n

,

where r
n

= rk(B
n

). We have shown that (⌫
n

)

n>1

converges vaguely to ⌫
B

. Furthermore,
Proposition 2.4 shows that r

n

= vol(B)nd�1/(d� 1)!+ o(nd�1

). By passing to the limit, we
obtain (20).

Remark 3.9. – The relations (19) and (20) actually imply that

”
vol(B) = lim

n!+1

bh0

(B
n

, g
n

)

nd/d!

.
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3.3. Examples of approximable graded linear series in arithmetic

Let ⇡ : X ! Spec O
K

be a projective arithmetic variety, X = X
K

. Let L be a Hermitian
line bundle on X such that L := L

K

is big on X. In this subsection, we give some examples
of approximable graded linear series of L which come from the arithmetic.

Denote by B =

L

n>0

H0

(X,L⌦n

) the sectional algebra of L. For any real number �, let
B[�] be the graded sub-K-module of B defined as follows:

(22) B
[�]

0

:= K, B[�]

n

:= Vect

K

�

{s 2 B
n

| 8� : K ! C, ksk
�,sup

6 e��n}
�

.

The following property is straightforward from the definition.

Proposition 3.10. – For any � 2 R, B[�] is a graded linear series of L.

Note that B[0] is nothing but the graded linear series generated by eVective sections. For
any integer n > 0 and any real number �, set B

n

= ⇡⇤( L⌦n

) and denote by B[�]

n

the
saturation of B

[�]

n

in B
n

. We shall use the symbol g
n

to denote the family of sup-norms on
B

n

or on B[�]

n

. By definition, for any integer n > 1 and any � 2 R, one has

B[�]

n

= F
n�

B
n

,

where F is the minima filtration of (B
n

, g
n

).
By Corollary 3.13, we obtain that the sequence (

1

n

e
max

(B
n

, g
n

))

n>1

converges to a real
number which we denote by bµ⇡

max

( L).

Proposition 3.11. – Assume that L = L
K

is big. Then ”
vol( L) > 0 if and only if

bµ⇡

max

( L) > 0.

Proof. – Let B be the total linear series of L. Since L is big, B is approximable.
We equip B with the minima filtrations so that B is filtered. By definition, one has
bµ⇡

max

( L) = �asy

max

(B). Furthermore, Theorem 3.8 shows that �asy

+

(B) =

”
vol( L)/�

K

dvol(B),
where d is the dimension of X . Therefore, by Theorem 2.13, we obtain the result.

For any real number �, denote by O
�

the Hermitian line bundle on Spec O
K

whose
underlying O

K

-module is trivial, and such that k1k
�

= e�� for any �.

Proposition 3.12. – Let � be a real number such that � < bµ⇡

max

( L). Then the graded
linear series B[�] contains an ample divisor, and for sufficiently large n, one has B

[�]

n

6= 0.

Proof. – Note that bµ⇡

max

( L⌦⇡⇤ O��

) > 0. Since L is big, by Proposition 3.11, L⌦⇡⇤ O��

is arithmetically big. Therefore, for suYciently large n, L⌦n has a non-zero global section s
n

such that ks
n

k
�,sup

6 e��n for any � : K ! C, which proves that B
[�]

n

6= 0. Furthermore,
since L ⌦ ⇡⇤ O��

is arithmetically big, by [18, Corollary 2.4], there exist an integer p > 1

and two Hermitian line bundles A and M, such that A is ample in the sense of Zhang [21],
M has a non-zero eVective global section s, and that ( L ⌦ ⇡⇤ O��

)

⌦p ⇠
=

A ⌦ M. By
taking p suYciently divisible, we may assume that the graded K-algebra

L

n>0

H0

(X, A⌦n

K

)

is generated by eVective sections of A. These sections, viewed as sections of A⌦⇡⇤ O
⌦p

�

, have
sup-norms 6 e�p�. Therefore the homomorphism

M

n>0

H0

(X, A⌦n

K

) �!
M

n>0

H0

(X,L⌦np

)
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induced by s factors through
L

n>0

B
[�]

np

.

Corollary 3.13. – For any real number � such that � < bµ⇡

max

( L), the graded linear
series B[�] of L is approximable.

Proof. – This is a direct consequence of Proposition 3.12 and Theorem 3.4.

4. Arithmetic Fujita approximation

In this section, we establish the conjecture of Moriwaki on the arithmetic analogue of
Fujita’s approximation. We firstly present an approximation theorem in a form similar to
[11, Theorem 3.3] and then explain how to deduce Moriwaki’s conjecture from it.

4.1. An approximation theorem

Let ⇡ : X ! Spec O
K

be an arithmetic variety of total dimension d and L be a Hermitian
line bundle on X which is arithmetically big.

Write L = L
K

and denote by B :=

L

n>0

H0

(X,L⌦n

) the total graded linear series
of L. For any integer n > 1, let B

n

be the O
K

-module ⇡⇤( L⌦n

) equipped with sup-
norms. Define by convention B

0

as the trivial Hermitian line bundle on Spec O
K

. Set
bµ⇡

max

( L) = lim

n!1
1

n

e
max

(B
n

).

For any real number �, let B[�] be the graded linear series of L defined in (22). For any

integer n > 0, let B
[�]

n

be the saturation of B
[�]

n

in B
n

, equipped with induced metrics. For
any integer p > 1 such that B

[0]

p

6= 0, let B(p) be the graded sub-K-algebra of B generated

by B
[0]

p

. For any integer n > 1, let B
(p)

np

be the saturated metrized vector subbundle of B
np

such that B(p)

np,K

= B
(p)

np

.

Theorem 4.1. – The following equality holds:
”
vol( L) = sup

p

”
vol

�

B(p)

�

,

where B(p) is the graded linear series of L generated by B
[0]

p

defined above.

Proof. – For any integer n > 1, let ⌫
n

= T 1
n
⌫
(Bn, F )

, where F is the minima filtration

of B
n

. We have shown in Theorem 3.8 that the sequence (⌫
n

)

n>1

converges vaguely to a
Borel probability measure which we denote by ⌫. Similarly, for any integer n > 1, let
⌫

(p)

n

= T 1
np

⌫
(B

(p)
np , F )

. The sequence (⌫
(p)

n

)

n>1

also converges vaguely to a Borel probability

measure which we denote by ⌫(p). Our strategy is to prove that the restriction of ⌫ on [0,+1[

can be well approximated by the measures ⌫(p) (see §4.3 for further discussions).
For any subdivision D : 0 = t

0

< t
1

< · · · < t
m

< bµ⇡

max

( L) of the interval [0, bµ⇡

max

( L)[

such that

(23) ⌫({t
1

, · · · , t
m

}) = 0,

denote by h
D

: R ! R the function such that

h
D

(x) =

m�1

X

i=0

t
i

11

[ti,ti+1[
(x) + t

m

11

[tm,1[

(x).
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By Corollary 3.13, for any " > 0, there exists a suYciently large integer p = p(", D) > 1

such that B(p) approximates all algebras B[ti] (i 2 {0, · · · , m}) simultaneously. That is, there
exists N

0

2 N such that, for any n > N
0

, one has

inf

06i6m

rk

�

Im(SnB
[ti]
p

! B
[ti]
np

)

�

rk(B
[ti]
np

)

> 1� ".

We then obtain that

(24) rk( F
nptiB

(p)

np

) > rk

�

Im(SnB[ti]
p

! B[ti]
np

)

�

> (1� ") rk(B[ti]
np

).

Note that

np rk(B(p)

np

)

Z

+1

0

t ⌫(p)

np

(dt) = �
Z

+1

0

t d rk( F
t

B(p)

np

) =

Z

+1

0

rk( F
t

B(p)

np

) dt

>
m

X

i=1

(npt
i

� npt
i�1

) rk( F
nptiB

(p)

np

) > np(1� ")
m

X

i=1

(t
i

� t
i�1

) rk(B[ti]
np

),

where in the first inequality we have used the decreasing property of F , and the second
inequality comes from (24) and the fact that B

[ti]
np

= F M

npti
B

np

.

From the above inequality, one obtains, by Abel’s summation formula,

rk(B(p)

np

)

Z

+1

0

t ⌫(p)

np

(dt) > (1� ") rk(B
np

)

Z

h
D

(t) ⌫
np

(dt).

By (20), one has

lim

n!1

�
K

d

(np)

d�1/(d� 1)!

rk(B(p)

np

)

Z

+1

0

t ⌫(p)

np

(dt)

= �
K

dvol(B(p)

)

Z

+1

0

t ⌫(p)

(dt) =

”
vol(B(p)

).

Therefore,

”
vol(B(p)

) > lim

n!1

�
K

d

(np)

d�1/(d� 1)!

(1� ") rk(B
np

)

Z

R
h

D

d⌫
np

= �
K

d(1� ")vol(L)

Z

R
h

D

d⌫,

where the equality follows from [2, IV §5 n�12 Proposition 22]. Choose a sequence of
subdivisions (D

j

)

j2N verifying the condition (23) and such that h
Dj (t) converges uniformly

to max{t, 0} �max{t � bµ⇡

max

( L), 0} when j ! 1. Note that the support of ⌫ is bounded
from above by bµ⇡

max

( L). Hence one obtains

sup

p

”
vol(B(p)

) > �
K

d(1� ")vol(L)

Z

+1

0

t ⌫(dt) = (1� ")”vol( L),

thanks to (20). The theorem is thus proved.
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4.2. Arithmetic Fujita approximation

In the following, we explain why Theorem 4.1 implies Fujita’s arithmetic approximation
theorem in the form conjectured by Moriwaki. Our strategy is quite similar to Corollary 3.5,
except that the choice of metrics on the approximating invertible sheaf requires rather subtle
analysis (because the arithmetic amplitude needs smooth metrics) on the superadditivity of
probability measures associated to a filtered graded algebra (see Appendix).

The following is a reminder on some positivity conditions for Hermitian line bundles. Let
g : Y ! Spec O

K

be a projective arithmetic variety such that YQ is smooth. We say that
a Hermitian line bundle L (with smooth metrics) is ample if the following conditions are
fulfilled:

1) L is relatively ample,
2) the metrics of L are positive, that is, c

1

( L) is a positive (1, 1)-form on Y(C) (the space
of C-points of Y ⌦Z C, equipped with the analytic topology),

3) for any irreducible closed subscheme Z of Y which is flat over Spec O
K

, the height
h L(Z) := (bc

1

( L)

dim Z · [Z]) is strictly positive.

By [21, Corollary 5.7], under the conditions 1) and 2), the condition 3) is actually equivalent
to

3)0 For any z 2 Y(Q), h L(z) > 0.

Let L be a Hermitian line bundle on Y with smooth metrics. We say that L is nef (cf. [12,
§2]) if the following conditions are fulfilled:

1) L is relatively nef, that is, all fibres of L are nef,
2) c

1

( L) is semipositive on Y(C),
3) for any z 2 Y(Q), one has h L(z) > 0.

Remark 4.2. – It follows from the definition that

(1) the tensor product of an ample Hermitian line bundle with a nef one is ample;
(2) a Hermitian line bundle L with smooth metrics is ample (resp. nef) if and only if, for

some integer n > 0, L
⌦n

is ample (resp. nef);
(3) the pull-back of a nef Hermitian line bundle by a proper morphism is still nef.

Moreover, assume that E is a Hermitian line bundle on Spec O
K

and that L is a quotient
bundle of g⇤E, then L is relatively nef and the metrics of L are semipositive. In fact, the
surjective map g⇤E ! L corresponds to an embedding i : Y ! P(E) with L ⇠

=

i⇤ OP(E)

(1),
where the metrics of OP(E)

(1) are Fubini-Study metrics. Therefore, if e
min

(E) > 1

2

log(rkE),
then L is nef.

Theorem 4.3 (Arithmetic Fujita approximation). – For any " > 0, there exist a
birational morphism ⌫ : X 0 ! X , an integer p > 1 together with a decomposition
⌫⇤ L

⌦p ⇠
=

A ⌦ M such that

1) M is effective and A is arithmetically ample;
2) one has p�d”

vol(A) > ”
vol( L)� ".

Remark 4.4. – For establishing Theorem 4.3, it suYces to prove the following weaker
result for any big Hermitian line bundle L:
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For any " > 0 and any � > 0, there exist a birational morphism ⌫ : X 0 ! X with X 0Q
smooth, an integer p > 1 and a decomposition ⌫⇤ L

⌦p ⇠
=

A⌦ M such that M is effective,
A ⌦ ⇡⇤ O

�p

is nef and that p�d”
vol(A) > ”

vol( L)� ".

We show that this assertion implies Theorem 4.3. Let S be a big Hermitian line bundle on X ,
� > 0 and m 2 N⇤ suYciently large so that L

⌦m

⌦ S
_
⌦ ⇡⇤ O��

is big. The above assertion
implies that, for any " > 0, there exist a birational morphism ⌫ : X 0 ! X with X 0Q smooth,
an integer p > 0 and a decomposition

⌫⇤( L
⌦mp

⌦ S
_⌦p

⌦ ⇡⇤ O��p

)

⇠
=

A ⌦ M

with A ⌦ (⇡⌫)

⇤ O
�p

nef, M eVective, such that

p�d”
vol(A) > ”

vol( L
⌦m

⌦ S
_
⌦ ⇡⇤ O��

)� ".

Let S
0

be an ample Hermitian line bundle on X 0. Since ⌫⇤ S is big (see [13, Theorem 4.3]),

there exists an integer q > 0 such that ⌫⇤ S
⌦pq

⌦ S
0_

is eVective. Consider the decomposition

⌫⇤ L
⌦mpq ⇠

=

�

A
⌦q

⌦ (⇡⌫)

⇤ O
�pq

⌦ S
0�
⌦
�

M⌦q ⌦ ⌫⇤ S
⌦pq

⌦ S
0_�

.

Note that A
0
:= A

⌦q

⌦ (⇡⌫)

⇤ O
�pq

⌦ S
0

is ample (see Remark 4.2 (1)), M0
:= M⌦q ⌦ ⌫⇤ S

⌦pq

⌦ S
0_

is eVective, and

(mpq)�d”
vol(A

0
) > (mpq)�d”

vol(A
⌦q

) > m�d

(

”
vol( L

⌦m

⌦ S
_
⌦ O��

)� ").

By the continuity of the arithmetic volume function (cf. [13, Theorem 5.4]), we obtain
Theorem 4.3.

Proof. – By [13, Theorem 4.3], we may assume that X is generically smooth. For any
integer p > 1 such that B

[0]

p

6= 0, let �
p

: X
p

! X be the blow-up (twisted by L) of X along
the base locus of B[0]

p

. In other words, X
p

is defined as

X
p

= Proj

⇣

Im

⇣

M

n>0

⇡⇤ B(p)

np

�!
M

n>0

L⌦np

⌘⌘

.

Let A
p

= O Xp
(1) and M

p

be the invertible sheaf corresponding to the exceptional divisor.
Let s be the global section of M

p

which trivializes M
p

outside the exceptional divisor. By
definition, one has �⇤

p

L⌦p ⇠
=

A
p

⌦ M
p

. On the other hand, the canonical homomorphism

�⇤
p

⇡⇤ B[0]

p

! A
p

induces a morphism i
p

: X
p

! P(B[0]

p

) such that i⇤
p

( L
p

)

⇠
=

A
p

, where
L

p

= OP( B[0]
p )

(1). The restriction of global sections of L⌦n

p

gives an injective homomor-
phism

(25) Im(Sn B[0]

p

! B
np

) = B(p)

np

�! H0

( X
p

, A⌦n

p

),

where the last O
K

-module is considered as a submodule of H0

( X
p

, �⇤
p

L⌦p

) via s.
For any integer n > 1 and any embedding � : K ! C, denote by k · k

�,n

the quotient
Hermitian norm on A

p,�

induced by the surjective homomorphism �⇤
p

⇡⇤ B(p)

np

! A⌦n

p

,

where on B(n)

np

we have chosen the John norm k ·k
�,John

associated to the sup-norm k ·k
�,sup

(recall that one has
»

rk(B
(p)

np

)k ·k
�,sup

> k ·k
�,John

> k ·k
�,sup

, see [8, §4.2] for details), and

the corresponding Hermitian vector bundle will be denoted by B
(n)

np,J

. Thus the Hermitian
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norms on A
p

are positive and smooth. Now let � : K ! C be an embedding and x be a
complex point of X

p,�

outside the exceptional divisor. It corresponds to a one-dimensional
quotient of B

[0]

p,�

, which induces, for any integer n > 1, a one-dimensional quotient l
n,x

of
B

(p)

np,�

. By a classical result on convex bodies in Banach space (Hahn-Banach theorem), there
exists an aYne hyperplane parallel to the Ker(B

(p)

np,�

! l
n,x

) and tangent to the closed unit
ball of B

(p)

np,�

. In other words, there exists v 2 B
(p)

np,�

whose image in A⌦n

p,�

(x) has norm
kvk

�,John

, which is bounded from below by kvk
�,sup

. Note that, as a section of L⌦n

�

over
X

�

(C), one has kv
x

k
�

6 kvk
�,sup

, where k · k
�

denotes the Hermitian metric of index � of
L. Hence, for any section u of A

p,�

over a neighborhood of x, one has ku
x

k
�,n

> ku
x

⌦s
x

k
�

.
In fact, by dilation we may assume that u⌦n

x

equals the image of v
x

in A⌦n

p,�

(x), and hence

ku
x

k
�,n

= kvk
1
n
�,John

> kvk
1
n
�,sup

> kv
x

k
1
n
�

= ku
x

⌦ s
x

k
�

.

Therefore, if we equip A
p

with metrics ↵
n

= (k · k
�,n

)

�:K!C and define
(M

p

, �
n

) := �⇤
p

L ⌦ (A
p

, ↵
n

)

_. Then the section s of M
p

is an eVective section. For
any integer n > 1, one has

p�d”
vol(A

p

, ↵
n

) > ”
vol(B(p), ↵

n

),

where

”
vol(B(p), ↵

n

) := lim

m!+1

bh0

(B
(p)

mp

, k · k
�,n,sup

)

md/d!

.

Note that, for any � : K ! C and any element v 2 B
(p)

np,�

considered as a section in
H0

( X
p,�

(C), A⌦n

p,�

) via (25), the sup-norms of v relatively to the metrics in ↵
n

are bounded
from above by the John norms of v considered as a section of L

�

corresponding to the sup-
norms induced by the norms of L. Note that, for any integer m > 1, one has e

min

(B
(p)

mp

) > 0

and e
min

(B
(p)

mp

, ↵
n

) > �m�
n,p

. Thus Corollary A.2 combined with (20) implies that

lim sup

n!+1
”
vol(B(p), ↵

n

) > ”
vol(B(p)

).

Therefore, by Theorem 4.1, for any " > 0, there exists an integer p > 1 such that
lim sup

n!+1
p�d”

vol(A
p

, ↵
n

) > vol( L) � "/2. For any n, p 2 N⇤, let �
n,p

=

1

2n

log(rkB
(p)

np

).

Note that (A
p

, ↵
n

)⌦ O
2�n,p is nef (see Remark 4.2) since its nth tensor power can be written

as a quotient of �⇤
p

⇡⇤(B
(p)

np,J

⌦ O
2n�n,p) and

e
min

(B
(p)

np,J

⌦ O
2n�n,p) > e

min

(B
(p)

np,J

) + 2n�
n,p

> 1

2

log(rkB(p)

np

).

As lim

n!+1
�

n,p

= 0, we have proved the assertion in Remark 4.4, which is actually equivalent

to Theorem 4.3.

4.3. Approximating subalgebras

In this section, we show that if a positive finitely generated subalgebra of B approximates
well the arithmetic volume of L, then it also approximates well the asymptotic measure of L
truncated at 0.

Let p > 1 be an integer. Assume that L
⌦p

is decomposed as A ⌦ M, where A is
arithmetically ample and M has a non-zero eVective section s. Through the section s we
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may consider the section algebra
L

n>0

H0

(X, A⌦n

K

) as a graded sub-K-algebra of B. As A
is ample, for suYciently large n, one has H0

(X, A⌦n

K

) ⇢ F
0

(B
np

) (cf. [21, Corollary 4.8]).

Proposition 4.5. – Let p > 1 be an integer and S be a graded subalgebra of B generated
by a subspace of B

p

. For any integer n > 1, let S
n

be the saturated sub- O
K

-module
of B

n

, equipped with induced metrics, and such that S
n,K

= S
n

; let ⌫ Sn
be the measure

associated to the minima filtration of S
n

. Denote by ⌫ the vague limit of the measure sequence
(T 1

np
⌫ Snp

)

n>1

. Then for any x 2 R, one has

(26) vol(S)⌫([x,+1[) 6 vol(L)⌫ L([x,+1[),

where ⌫ L is the vague limit of (T 1
n
⌫Bn

)

n>1

, ⌫Bn
being the measure associated to the minima

filtration of B
n

. Furthermore, if e
min

( S
np

) > 0 holds for sufficiently large n, then

(27) vol(S) 6 vol(L)⌫ L([0,+1[).

Proof. – For any x 2 R, one has

rk(S
np

)⌫ Snp
([npx, +1[) 6 rk(B

np

)⌫Bnp
([npx, +1[),

since these two quantities are respectively the ranks of F
npx

S
np

and F
npx

B
np

. By letting
n ! +1, one obtains that, for any x 2 R,

vol(S)⌫([x, +1[) 6 vol(L)⌫ L([x,+1[).

Since the positivity condition on the last minimum implies that ⌫([0,+1[) = 1, one obtains
(27).

Corollary 4.6. – With the notation of Proposition 4.5, assume that

”
vol(S) := lim

n!1

bh0

( S
np

)

(np)

d/d!

> (1� ")”vol( L),

where 0 < " < 1 is a constant. Then one has

(28) 0 6 �
K

d

Z

+1

0

h

vol(L)⌫ L([x,+1[)� vol(S)⌫([x,+1[)

i

dx 6 "”vol( L).

Proof. – By (20), one obtains

”
vol( L) = �

K

d vol(L)

Z

+1

0

t ⌫ L(dt) = �
K

d vol(L)

Z

+1

0

⌫ L([x,+1[) dx.

Similarly,

”
vol(S) = �

K

d vol(S)

Z

+1

0

⌫([x,+1[) dx.

Hence the inequality (28) results from (26).
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Appendix

Comparison of filtered graded algebras

Let B =

L

n>0

B
n

be an integral graded algebra of finite type over an infinite field K.
We suppose that B

1

6= 0 and that B is generated as a K-algebra by B
1

. Assume that
each B

n

is equipped with an R-filtration F such that B becomes a filtered graded algebra
(see §2.3 for definition). For all integers m, n > 0, let F (m) be another R-filtration on
B

n

such that B equipped with R-filtrations F (m) is filtered. For all integers m, n > 1, let
⌫

n

= T 1
n
⌫
(Bn, F )

and ⌫
(m)

n

= T 1
n
⌫
(Bn, F (m)

)

. Assume in addition that �
max

(B
n

, F ) ⌧ n

and �
max

(B
n

, F (m)

) ⌧
m

n. By Theorem 2.11, the sequence of measures (⌫
(m)

n

)

n>1

(resp.
(⌫

n

)

n>1

) converges vaguely to a Borel probability which we denote by ⌫(m) (resp. ⌫).
The purpose of this section is to establish the following comparison result:

Proposition A.1. – Let ' be an increasing, concave and Lipschitz function on R. Assume
that, for any m > 1 and any t 2 R, one has F

t

B
m

⇢ F (m)

t

B
m

, then

(29) lim sup

m!+1

Z

R
' d⌫(m) >

Z

R
' d⌫.

Proof. – By Noether’s normalization theorem, there exists a graded subalgebra A of B

such that A is isomorphic to the polynomial algebra generated by A
1

. We still use F (m) (resp.
F ) to denote the induced filtrations on A. Let e⌫

n

= T 1
n
⌫
(An, F )

and e⌫
(m)

n

= T 1
n
⌫
(An, F (m)

)

.

For any integer m > 1 and any t 2 R, one still has F
t

A
m

⇢ F (m)

t

A
m

. Furthermore,
by [3, Proof of Theorem 3.4.3, Step 1], the sequence of measures (e⌫

(m)

n

)

n>1

(resp. (e⌫
n

)

n>1

)
converges vaguely to ⌫(m) (resp. ⌫). Therefore, we may suppose that B = A is a polynomial
algebra. In this case, [3, Proposition 3.3.3] implies that

nm

Z

' d⌫(m)

nm

> nm

Z

' d⌫(m)

m

> nm

Z

' d⌫
m

,

since ⌫
(m)

m

� ⌫
m

. By letting n !1, we obtain
Z

' d⌫(m) >
Z

' d⌫
m

,

which implies (29).

In the following, we apply Proposition A.1 to study algebras in metrized vector bundles.
From now on, K denotes a number field. We assume given an O

K

-algebra B =

L

n>0

B
n

,
generated by B

1

, and such that

1) each B
n

is a projective O
K

-module of finite type;
2) for any integer n > 0, B

n

= B
n,K

;
3) the algebra structure of B is compatible to that of B.

For each integer n > 1, assume that g is a family of norms on B
n

such that (B
n

, g) becomes
a metrized vector bundle on Spec O

K

. For all integers n > 1 and m > 1, let g(m) be another
metric structure on B

n

such that (B
n

, g(m)

) is also a metrized vector bundle on Spec O
K

.
Let ⌫

( Bn,g)

and ⌫
( Bn,g

(m)
)

be the measures associated to the minima filtration of (B
n

, g) and
of (B

n

, g(m)

), respectively.
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Corollary A.2. – With the notation above, assume in addition that

1) (B, g) and all (B, g(m)

) verify the conditions in Remark 3.7;
2) e

max

(B
n

, g) ⌧ n and e
max

(B
n

, g(m)

) ⌧
m

n;
3) the identity homomorphism Id : (B

m

, g) ! (B
m

, g(m)

) is effective, that is, for any
� : K ! C, the norm of Id

�,C is 6 1.

Let ⌫ and ⌫(m) be respectively the limit measures of (T 1
n
⌫
( Bn,g)

)

n>1

and (T 1
n
⌫
( Bn,g

(m)
)

)

n>1

.
Then for any increasing, concave and Lipschitz function ' on R, one has

lim sup

m!1

Z

R
' d⌫(m) >

Z

R
' d⌫.

In particular, if lim inf

n!1
1

n

e
min

(B
n

, g) > 0 and if lim inf

m!1
lim inf

n!1
1

n

e
min

(B
n

, g(m)

) > 0, then

(30) lim sup

m!1

Z

+1

0

x ⌫(m)

(dx) >
Z

+1

0

x ⌫(dx).

Proof. – The first assertion is a direct consequence of Proposition A.1. In particular, one
has

lim sup

m!1

Z

R
x ⌫(m)

(dx) >
Z

R
x ⌫(dx).

The hypothesis lim inf

n!1
1

n

e
min

(B
n

, g) > 0 implies that the support of ⌫ is bounded from below
by 0, so

Z

+1

0

x ⌫(dx) =

Z

R
x ⌫(dx).

For any integer m > 1, let a
m

= lim inf

n!1
1

n

e
min

(B
n

, g
m

) and b
m

= min(a
m

, 0). One has
R

R x ⌫(m)

(dx) =

R

+1
bm

x ⌫(m)

(dx). Note that

0 >
Z

+1

bm

x ⌫(m)

(dx)�
Z

+1

0

x ⌫(m)

(dx) =

Z

0

bm

x ⌫(m)

(dx) > b
m

.

As b
m

converges to 0 when m !1, we obtain (30).
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