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a b s t r a c t

Semistability and the Harder–Narasimhan filtration are important notions in algebraic
and arithmetic geometry. Although these notions are associated to mathematical objects
of quite different natures, their definition and the proofs of their existence are quite
similar. We propose in this article a generalization of Quillen’s exact category and we
discuss conditions on such categories under which one can define the notion of the
Harder–Narasimhan filtrations and establish its functoriality.
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1. Introduction

The notion of the Harder–Narasimhan flag of a vector bundle on a smooth projective curve defined over a field was firstly
introduced by Harder and Narasimhan [1]. Let C be a smooth projective curve defined over a field and E be a non-zero vector
bundle on C . Harder and Narasimhan have proved that there exists a flag 0 = E0 ( E1 ( E2 ( · · · ( En = E of subbundles
of E such that each subquotient Ei/Ei−1 is a semistable vector bundle and that we have the inequalities of successive slopes

µmax(E) := µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1) =: µmin(E).

The avatar of the above constructions in Arakelov geometrywas introduced by Stuhler [2] and Grayson [3]. Similar construc-
tions exist also in the theory of filtered isocrystals. In [4], Faltings suggested the functoriality of theHarder–Narasimhan flags,
but it is not evident how to state such a functoriality, because the length of the Harder–Narasimhan flag varies.
Previously, the categorical approach for studying semistability problems has been developed in various contexts such as

[5–8].
The category of vector bundles is exact in the sense of Quillen [9]. However, it is not the case for the category of Hermitian

vector bundles in Arakelov geometry. We shall propose a new notion – geometric exact category – which generalizes
them simultaneously. A geometric exact category is a classical exact category equipped with geometric structures. After
introducing a rank function and a degree function, the existence of the Harder–Narasimhan filtration results from a
supplementary condition that themaximal destabilizing geometric subobject exists. The condition is automatically satisfied
if the underlying exact category is an Abelian category. This formalism includes not only standard examples, but also
examples like spectrum filtration of positive definite self-adjoint operator which is classical but less often interpreted in
this way.
In order to state the functoriality, we need to take into account the successive slopes in the filtration. That leads to the

notion of R-indexed Harder–Narasimhan filtration. We expect that the subobject morphism, quotient morphism, and their
compositionswill be compatiblewithR-indexedHarder–Narasimhan filtrations. However, we observe that the functoriality
of the Harder–Narasimhan filtration does not follow from the existence of maximal destabilizing subobject. This is shown
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by a concrete example (see Section 4 Example 2, see also Remark 5.10). The functoriality is actually equivalent to the validity
of a slope inequality, which compares the slopes of semistable objects.
The rest of the article is organized as follows. We recall the notions of R-filtration and of Quillen’s exact category in

the second section. In the third section, we present the geometric exact categories. In the fourth section, we develop
the formalism of the Harder–Narasimhan category, followed by several examples. In the fifth section, we discuss slope
inequalities and the functoriality of the Harder–Narasimhan filtrations.

2. Notation and preliminaries

2.1. Filtrations in a category

We fix a category C which has an initial object. Let X be an object in C. By filtration of X , we mean a family F = (Xt)t∈R
of subobjects of X , which satisfies the following conditions:

(1) (decreasing property) if s 6 t are two real numbers, then the canonical monomorphism Xt → X factorizes through Xs;
(2) (separation property) for sufficiently positive t , Xt is an initial object;
(3) (exhaustivity) for sufficiently negative t , Xt = X;
(4) (left locally constant property) for any t ∈ R, there exists δ > 0 such that, for any s ∈ (t− δ, t], the canonical morphism
Xt → Xs is an isomorphism;

(5) (finite jump) the following jump set is finite:

J(F ) := {s ∈ R | ∀ t > s, the canonical map Xt → Xs is not an isomorphism}.

Assume that X and Y are two objects inC, andF = (Xt)t∈R andG = (Yt)t∈R are respectively filtrations of X and of Y . We call

morphism from F to G any morphism f in C from X to Y such that, for any t ∈ R, the composed map Xt
it // X

f // Y
factorizes through Yt , where it : Xt → X denotes the canonical morphism. Alternatively, we say that the morphism f is
compatiblewith the filtrationsF and G. All filtrations inC and all morphisms of filtrations form a category which we denote
by Fil(C).
Suppose that all fiber products exist in C. For any monomorphism f : X → Y in C and any filtration G = (Yt)t∈R of Y ,

the family f ∗G := (Yt ×Y X)t∈R is a filtration of X , called the induced filtration.
Let f : X → Y be an epimorphism in C and F = (Xt)t∈R be a filtration of X . For any t ∈ R, denote by it : Xt → X the

canonical monomorphism. Assume that, for any t ∈ R, fit : Xt → Y has an image Yt . Then (Yt)t∈R is a filtration of Y , denoted
by f∗F , called the quotient filtration.

2.2. Exact categories

The notion of exact category is defined by Quillen [9]. Let C be an essentially small additive category and let E be a class
of diagrams of morphisms in C of the form

0 // X ′ // X // X ′′ // 0 .

If 0 // X ′
f // X

g // X ′′ // 0 is a diagram in E , we say that f is an admissible monomorphism and that g is
an admissible epimorphism. We shall use the symbol to denote an admissible monomorphism, and for an
admissible epimorphism.
If 0 // X ′ // X // X ′′ // 0 and 0 // Y ′ // Y // Y ′′ // 0 are two diagrams of

morphisms in C, we callmorphism from the first diagram to the second one any commutative diagram

0

(Φ) :

// X ′ //

ϕ′

��

X //

ϕ

��

X ′′ //

ϕ′′

��

0

0 // Y ′ // Y // Y ′′ // 0.

We say that (Φ) is an isomorphism if ϕ′, ϕ and ϕ′′ are all isomorphisms in C.

Definition 2.1 (Quillen). We say that (C, E) is an exact category if the following axioms are verified:

(Ex1) For any diagram 0 // X ′
ϕ // X

ψ // X ′′ // 0 in E , ϕ is a kernel of ψ and ψ is a cokernel of ϕ.
(Ex2) If X and Y are two objects in C, then the following diagram is in E :

0 // X
(Id,0) // X ⊕ Y

pr2 // Y // 0
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(Ex3) Any diagram which is isomorphic to a diagram in E lies also in E .
(Ex4) If f : X → Y and g : Y → Z are two admissible monomorphisms (resp. admissible epimorphisms), then so is gf .
(Ex5) For any admissible monomorphism f : X ′ � X and any morphism u : X ′ → Y in C, the pushout of f and u exists.

Furthermore, if the diagram

X ′ // f //

u

��

X

v

��
Y g

// Z

is cocartesian, then g is an admissible monomorphism.
(Ex6) For any admissible epimorphism f : X � X ′′ and any morphism u : Y → X ′′ in C, the fiber product of f and u exists.

Furthermore, if the diagram

Z
g //

v

��

Y

u

��
X

f
// // X ′′

is cartesian, then g is an admissible epimorphism.

Keller [10] has shown that the axioms above imply the following property, which was initially an axiom in Quillen’s
definition:

(Ex7) For any morphism f : X → Y in C having a kernel (resp. cokernel), if there exists an morphism g : Z → X (resp.
g : Y → Z) such that fg (resp. gf ) is an admissible epimorphism (resp. admissible monomorphism), then also is f
itself.

If f : X → Y is an admissible monomorphism, by (Ex1), the morphism f admits a cokernel, which is denoted by Y/X .
According to [9], if C is an Abelian category and if E is the class of all exact sequences in C, then (C, E) is an exact

category. Furthermore, any exact category can be naturally embedded (through the additive version of Yoneda’s functor)
into an Abelian category.

3. Geometric exact categories

Some natural categories, like the category of Hermitian spaces, are not exact categories. However, a Hermitian space
can be considered as a vector space over C (which is an object in an Abelian category), equipped with a Hermitian inner
product (which can be considered as a geometric structure). This observation leads to the following notion of geometric
exact categories.

Definition 3.1. Let (C, E) be an exact category. We call geometric structure on (C, E) the data:
(1) a mapping A from objC to the class of sets,
(2) for any admissible monomorphism f : Y → X , a map f ∗ : A(X)→ A(Y ),
(3) for any admissible epimorphism g : X → Z , a map g∗ : A(X)→ A(Z),

subject to the following axioms:

(A1) A(0) is a one-point set,

(A2) if X // i // Y // j // Z are admissible monomorphisms, then (ji)∗ = i∗j∗,

(A3) if X
p // // Y

q // // Z are admissible epimorphisms, then (qp)∗ = q∗p∗,
(A4) for any object X of C, Id∗X = IdX∗ = IdA(X),
(A5) if f : X → Y is an isomorphism, then f ∗f∗ = IdA(X), f∗f ∗ = IdA(Y ),
(A6) for any cartesian or1 cocartesian square

X // u //

p
����

Y

q
����

Z //
v

// W

(1)

1 Here we can prove that the square is actually cartesian and cocartesian.
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in C, where u and v (resp. p and q) are admissible monomorphisms (resp. admissible epimorphisms), we have
v∗q∗ = p∗u∗,

(A7) if X
u // // Y // v // Z is a diagram in C where u (resp. v) is an admissible epimorphism (resp. admissible

monomorphism) and if (hX , hZ ) ∈ A(X) × A(Z) satisfies u∗(hX ) = v∗(hZ ), then there exists h ∈ A(X ⊕ Z) such
that (Id, vu)∗(h) = hX and that pr2∗(h) = hZ (note that (Id, vu) is always an admissible monomorphism, since it
is the composition of the isomorphism (pr1, vupr1 + pr2) : X ⊕ Z → X ⊕ Z with the admissible monomorphism
(Id, 0) : X → X ⊕ Z).

The triplet (C, E, A) is called a geometric exact category. For any object X of C, we call any element h in A(X) a geometric
structure on X . The pair (X, h) is called a geometric object in (C, E, A). If p : X → Z is an admissible epimorphism, p∗(h) is
called the quotient geometric structure on Z . If i : Y → X is an admissible monomorphism, i∗h is called the induced geometric
structure on Y . (Z, p∗(h)) is called a geometric quotient of (X, h) and (Y , i∗(h)) is called a geometric subobject of (X, h).

Let (C, E) be an exact category. If for any object X of C, we denote by A(X) a one-point set, and we define induced
and quotient geometric structures in the obvious way, then (C, E, A) becomes a geometric exact category. The geometric
structure A is called the trivial geometric structure on the exact category (C, E). Therefore, exact categories can be viewed as
trivial geometric exact categories.
Let (C, E, A) be a geometric exact category. If (X ′, h′) and (X ′′, h′′) are two geometric objects in (C, E, A), we say that a

morphism f : X ′ → X ′′ in C is compatiblewith geometric structures if there exists a geometric object (X, h), an admissible
monomorphism u : X ′ → X and an admissible epimorphism v : X → X ′′ such that h′ = u∗(h) and that h′′ = v∗(h).

Remark 3.2. From the definition of morphisms compatible with geometric structures, we obtain the following results:
(1) If (X1, h1) and (X2, h2) are two geometric objects and if f : X1 → X2 is an admissible monomorphism (resp. admissible
epimorphism) such that f ∗h2 = h1 (resp. f∗h1 = h2), then f is compatible with geometric structures.

(2) If (X1, h1) and (X2, h2) are two geometric objects and if f : X1 → X2 is the zero morphism, then f is compatible with
geometric structures.

(3) The composition of two morphisms compatible with geometric structure is also compatible with geometric structure.
This is a consequence of axiom (A7).

Let (C, E, A) be a geometric exact category. By argument (3) above, all geometric objects in (C, E, A) and morphisms
compatible with geometric structures form a category which we shall denote by CA.
We give below some examples of geometric exact categories.

3.1. Hermitian spaces

Let VecC be the category of finite dimensional vector spaces over C. It is an Abelian category. Let E be the class of all
short exact sequences of finite dimensional vector spaces over C. For any X ∈ obj(VecC), denote by A(X) the set of all
Hermitian metrics on X . Let h ∈ A(X). If f : Y → X is a vector subspace of X , then f ∗(h) denotes the induced metric on
Y . If π : X → Z is a quotient space of X , then π∗(h) denotes the quotient metric on Z . Note that for any z ∈ Z , one has
‖z‖π∗(h) := infx∈X,π(x)=z ‖x‖h. We claim that (VecC, E, A) is a geometric exact category. The axioms (A1)–(A6) are easily

verified. The verification of (A7) is as follows. Let X
u // // Y // v // Z be a diagram in VecC. Assume that X and Z are

respectively equipped with Hermitian metrics ‖ · ‖X and ‖ · ‖Z such that the induced metric on Y from ‖ · ‖Z coincides with
the quotient metric from ‖ · ‖X . We equip X ⊕ Z with Hermitian metric ‖ · ‖ such that, for any (x, z) ∈ X ⊕ Z ,

‖(x, z)‖2 = ‖x− ϕ?(z)‖2X + ‖z‖
2
Z

where ϕ = vu, and ϕ? denotes the adjoint of ϕ. With this metric, pr2 : X ⊕ Z → Z is a projection of Hermitian spaces.
Moreover, u? is the identification of Y to (Ker u)⊥, and v? is the orthogonal projection of Z onto Y . Therefore, ϕ?ϕ : X → X
is the orthogonal projection of X onto (Kerϕ)⊥. Hence, for any vector x ∈ X , we have

‖(x, ϕ(x))‖2 = ‖x− ϕ?ϕ(x)‖2X + ‖ϕ(x)‖
2
Z = ‖x− ϕ

?ϕ(x)‖2X + ‖ϕ
?ϕ(x)‖2X = ‖x‖

2
X .

The geometric objects in (VecC, E, A) are Hermitian spaces. From definition we see that if a linear mapping ϕ : X → Y
of Hermitian spaces is compatible with geometric structure, then the norm of ϕ must be smaller than or equal to 1. The
following proposition shows that the converse is also true.

Proposition 3.3. Let ϕ : E → F be a linear map of Hermitian spaces. If ‖ϕ‖ 6 1, then there exists a Hermitian metric on E ⊕ F

such that, in the decomposition E
(Id,ϕ) // E ⊕ F

pr2 // F of ϕ, (Id, ϕ) is an inclusion of Hermitian spaces and pr2 is a projection
of Hermitian spaces.

Proof. Since ‖ϕ‖ 6 1, we have ‖ϕ?‖ 6 1. Therefore, we obtain the inequalities ‖ϕ?ϕ‖ 6 1 and ‖ϕϕ?‖ 6 1. Hence IdE −ϕ?ϕ
and IdF −ϕϕ? are Hermitian endomorphismswith non-negative eigenvalues. So there exist two Hermitian endomorphisms
with non-negative eigenvalues P and Q of E and F respectively such that P2 = IdE − ϕ?ϕ and Q 2 = IdF − ϕϕ?.
If x is an eigenvector of ϕϕ? associated to the eigenvalue λ, then ϕ?x is an eigenvector of ϕ?ϕ associated to the same

eigenvalue. Therefore ϕ?Qx =
√
1− λϕ?x = Pϕ?x. As F is generated by eigenvectors of ϕϕ?, we have ϕ?Q = Pϕ?. For the
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same reason we have Qϕ = ϕP . Let R =
(
P ϕ?

ϕ −Q

)
. As R is Hermitian, and verifies

R2 =
(
P2 + ϕ?ϕ Pϕ? − ϕ?Q
ϕP − Qϕ ϕϕ? + Q 2

)
= IdE⊕F ,

it is an isometry for the orthogonal sum metric on E ⊕ F . Let u : E → E ⊕ F be the mapping which sends x to (x, 0). The
diagram

E
ϕ //

u

��

F

E ⊕ F
R

// E ⊕ F

pr2

OO

is commutative. The endomorphism ϕ?ϕ is auto-adjoint and positive semidefinite, and satisfies ‖ϕ?ϕ‖ 6 1. Hence there
exists an orthonormal basis (xi)16i6n of E such that ϕ?ϕxi = λixi (0 6 λi 6 1). Suppose that 0 6 λj < 1 for any j ∈ {1, . . . , k}
and that λj = 1 for any j ∈ {k+ 1, . . . , n}. Let B : E → E be the C-linear map such that B(xj) =

√
1− λjxj for j ∈ {1, . . . , k}

and that B(xj) = xj otherwise. Define S =
(
B ϕ?

0 IdF

)
: E ⊕ F → E ⊕ F . Since Ru = (P, ϕ) and since

(BP + ϕ?ϕ)(xi) =
√
1− λiBxi + λixi =

{
(1− λi)xi + λixi = xi, 1 6 i 6 k,
0Bxi + xi = xi, k < i 6 n,

the diagram

E ⊕ F

S

��

pr2

))SSSSSSSS

E

Ru 55kkkkkkkk

τ ))SSSSSSSS F

E ⊕ F
pr2

55kkkkkkkk

is commutative, where τ = (IdE, ϕ). We equip E ⊕ F with the Hermitian inner product 〈·, ·〉0 such that, for any (α, β) ∈
(E ⊕ F)2, we have 〈α, β〉0 =

〈
S−1α, S−1β

〉
, where 〈·, ·〉 is the orthogonal direct sum of Hermitian inner products on E and

on F . Then, for any x, y ∈ E, one has

〈τ(x), τ (y)〉0 = 〈SRu(x), SRu(y)〉0 = 〈Ru(x), Ru(y)〉 = 〈u(x), u(y)〉 = 〈x, y〉 .

Finally, the kernel of pr2 is stable by the action of S, so the projections of 〈·, ·〉0 and of 〈·, ·〉 by pr2 are the same. �

Remark 3.4. Similarly, Euclidean norms form a geometric structure on the category of all finite dimensional vector spaces
over R. The linear maps compatible with geometric structures are just those of norm 6 1.

3.2. Ultranormed space

Let k be a field equipped with a non-Archimedean absolute value | · | under which k is complete. We denote by Veck the
category of finite dimensional vector spaces over k, which is clearly an Abelian category. Let E be the class of short exact
sequences in Veck. For any finite dimensional vector space X over k, we denote by A(X) the set of all ultranorms (that is, a
norm ‖ · ‖which verifies ‖x+ y‖ 6 max(‖x‖, ‖y‖)) on X . Suppose that h is an ultranorm on X . If f : Y → Z is a subspace of
E, f ∗(h) denotes the induced norm on Y ; if g : X → Z is a quotient space of X , g∗(h) denotes the quotient norm on F . Then
(Veck, E, A) is a geometric exact category. In particular, axiom (A7) is justified by the following proposition.

Proposition 3.5. Let ϕ : E → F be a linear map of vector spaces over k. Suppose that E and F are equipped respectively with
the ultranorms hE and hF such that ‖ϕ‖ 6 1. If we equip E ⊕ F with the ultranorm h such that, for any (x, y) ∈ E ⊕ F ,

h(x, y) = max(hE(x), hF (y)), then in the decomposition E
(Id,ϕ) // E ⊕ F

pr2 // F of ϕ, we have (Id, ϕ)∗(h) = hE and
pr2∗(h) = hF .

Proof. In fact, for any element x ∈ E, h(x, ϕ(x)) = max(hE(x), hF (ϕ(x))) = hE(x) since hF (ϕ(x)) 6 ‖ϕ‖hE(x) 6 hE(x).
Furthermore, by definition, one has hF = pr2∗(h). Therefore the proposition is true. �

3.3. Filtrations in an Abelian category

Let C be an essentially small Abelian category and E be the class of all short exact sequences in C. For any object X in
C, denote by A(X) the set of isomorphism classes of R-filtrations of X . The maps in (2)–(3) of Definition 3.1 are respectively
chosen to be induced filtration map and quotient filtration map (see Section 2.1).
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We claim that (C, E, A) is a geometric exact category. In fact, axioms (A1)–(A5) are clearly satisfied.We now verify axiom
(A6). Consider the diagram (1) in Definition 3.1, which is the right sagittal square of the following diagram (2). Suppose given
an R-filtration (Yλ)λ∈R of Y . For any λ ∈ R, let bλ : Yλ → Y be the canonical morphism.

(2)

Let dλ : Wλ → W be the image of qbλ inW and qλ : Yλ → Wλ be the canonical epimorphism. Let (Zλ, cλ, vλ) be the fiber
product of v and dλ, and (Xλ, aλ, uλ) be the fiber product of u and bλ. Therefore, in diagram (2), the two coronal squares and
the right sagittal square are cartesian, the inferior square is commutative. As vpaλ = quaλ = qbλuλ = dλqλuλ, there exists
a unique morphism pλ : Xλ → Zλ such that cλpλ = paλ and vλpλ = qλuλ. It is then not hard to verify that the left sagittal
square is cartesian, therefore pλ is an epimorphism, so Zλ is the image of paλ. Axiom (A6) is therefore verified. Finally, the
verification of the axiom (A7) follows from the following proposition.

Proposition 3.6. Let X and Y be two objects in C and let F = (Xλ)λ∈R (resp. G = (Yλ)λ∈R) be an R-filtration of X (resp. Y ). If
f : X → Y is a morphism which is compatible with the filtrations (F ,G), then the filtrationH = (Xλ⊕ Yλ)λ∈R of X ⊕ Y verifies
Γ ∗f H = F and pr2∗H = G, where Γf = (Id, f ) : X → X ⊕ Y is the graph of f and pr2 : X ⊕ Y → Y is the projection onto the
second factor.

Proof. By definition, one has pr2∗H = G. For any λ ∈ R, consider the square

Xλ
φλ //

(Id,fλ)

��

X

(Id,f )

��
Xλ ⊕ Yλ

Φλ

// X ⊕ Y

(3)

where φλ : Xλ → X and ψλ : Yλ → Y are canonical morphisms,Φλ = φλ ⊕ψλ, and fλ : Xλ → Yλ is the morphism through
which themorphism f φλ factorizes. The square (3) is commutative. Suppose thatα : Z → X andβ = (β1, β2) : Z → Xλ⊕Yλ
are two morphisms such that (Id, f )α = Φλβ .

Z

β1

##

α

""

β

##

Xλ
φλ //

(Id,fλ)

��

X

(Id,f )

��
Xλ ⊕ Yλ

Φλ

// X ⊕ Y

(4)

Then we have α = φλβ1 and f α = ψλβ2. So ψλβ2 = f α = f φλβ1 = ψλfλβ1. As ψλ is a monomorphism, we obtain
fλβ1 = β2. So β1 : Z → Xλ is the only morphism such that the diagram (4) commutes. Hence we get F = (Id, f )∗H . �

4. Harder–Narasimhan categories

4.1. Degree function and rank function on a geometric exact category

Let (C, E, A) be a geometric exact category. In the following, a geometrical object (X, h) in (C, E, A) will be simply
denoted by X if this notation does not lead to any ambiguity; and we use the expression hX to denote the underlying
geometric structure of X .
We say that a geometric object X is non-zero if its underlying object in C is non-zero. Since C is essentially small, the

isomorphism classes of objects in CA form a set.
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We denote by EA the class of diagrams of the form

0 // X ′
i // X

p // X ′′ // 0 , (5)

where the underlying C-diagram lies in E , X ′ is a geometric subobject of X and X ′′ is a geometric quotient of X .
Let K0(C, E, A) be the free Abelian group generated by isomorphism classes in CA, modulo the subgroup generated by

elements of the form [X] − [X ′] − [X ′′], where

0 // X ′
i // X

p // X ′′ // 0

is a diagram in EA. The group K0(C, E, A) is called the Grothendieck group of the geometric exact category (C, E, A). We have
a ‘‘forgetful’’ homomorphism from K0(C, E, A) to K0(C, E), the Grothendieck group of the exact category (C, E), which sends
[X] to the class of the underlying C-object of X .
In order to define the semistability of geometric objects and to establish the Harder–Narasimhan formalism, we need

two auxiliary homomorphisms of groups. The first one, from K0(C, E, A) to R, is called a degree function on (C, E, A); and
the second one, from K0(C, E) to Z, which takes strictly positive values on classes represented by non-zero objects in C, is
called a rank function on (C, E).
Now let deg : K0(C, E, A) → R be a degree function on (C, E, A) and rk : K0(C, E) → Z be a rank function on (C, E).

For any geometric object X in (C, E, A), we denote by deg(X) the value deg([X]), called the degree of X . Denote by rk(X) the
function rk evaluated on the class of the underlying C-object of X , called the rank of X . Note that rk(X) does not depend on
the geometric structure of X .
If X is non-zero, the quotientµ(X) = deg(X)/rk(X) is called the slope of X . We say that a non-zero geometric object X is

semistable if for any non-zero geometric subobject X ′ of X , we have µ(X ′) 6 µ(X).
The following proposition provides some basic properties of degrees and slopes.

Proposition 4.1. Let us keep the notation above.

(1) If 0 // X ′ // X // X ′′ // 0 is a diagram in EA, then

deg(X) = deg(X ′)+ deg(X ′′).

(2) If X is a geometric object of rank 1, then it is semistable.
(3) Any non-zero geometric object X is semistable if and only if for any non-trivial geometric quotient X ′′ (i.e., X ′′ does not reduce
to zero and is not canonically isomorphic to X), we have µ(X) 6 µ(X ′′).

Proof. Since deg is a homomorphism from K0(C, E, A) to R, (1) is clear.
(2) Assume that X ′ is a non-zero geometric subobject of X . It fits into a diagram

0 // X ′
f // X // X ′′ // 0

in CA. Since X ′ is non-zero, rk(X ′) > 1. Therefore rk(X ′′) = 0 and hence X ′′ = 0. In other words, f is an isomorphism. So we
have µ(X ′) = µ(X).
(3) For any diagram 0 // X ′ // X // X ′′ // 0 in EA, X ′′ is non-trivial if and only if X ′ is non-trivial. If X ′

and X ′′ are both non-trivial, we have the following equality

µ(X) =
rk(X ′)
rk(X)

µ(X ′)+
rk(X ′′)
rk(X)

µ(X ′′).

Therefore µ(X ′) 6 µ(X)⇐⇒ µ(X ′′) > µ(X). �

4.2. Harder–Narasimhan category and Harder–Narasimhan sequence

We are now able to introduce a condition ensuring the existence of the Harder–Narasimhan ‘‘flag’’.

Definition 4.2. Let (C, E, A) be a geometric exact category, deg : K0(C, E, A) → R be a degree function and rk :
K0(C, E) → Z be a rank function. We say that (C, E, A, deg, rk) is a Harder–Narasimhan category if the following axiom
is verified:

(HN) For any non-zero geometric object X , there exists a geometric subobject Xdes of X such that

µ(Xdes) = sup{µ(Y ) | Y is a non-zero geometric subobject of X}.

Furthermore, any non-zero geometric subobject Z of X such that µ(Z) = µ(Xdes) is a geometric subobject of Xdes.

Note that if X is a non-zero geometric object, then Xdes is unique up to a unique isomorphism.Moreover, it is a semistable
geometric object. If X is not semistable, we say that Xdes destabilizes X .
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Theorem 4.3. Let (C, E, A, deg, rk) be a Harder–Narasimhan category. If X is a non-zero geometric object, then there exists a
sequence of admissible monomorphisms

0 = X0 // X1 // · · · // Xn−1 // Xn = X , (6)

such that
(1) for any integer j ∈ {1, . . . , n}, the geometric quotient Xj/Xj−1 is semistable;
(2) the inequalities µ(X1/X0) > µ(X2/X1) > · · · > µ(Xn/Xn−1) hold.
Proof. We prove the existence by induction on the rank r of X . The case where X is semistable is trivial, and a fortiori the
assertion is true for r = 1 (see Proposition 4.1 2). Now we consider the case where X is not semistable. Let X1 = Xdes. It is a
semistable geometric object, and X ′ = X/X1 is non-zero. The rank of X ′ being strictly smaller than r , we can therefore apply
the induction hypothesis on X ′. We then obtain a sequence of admissible monomorphisms

0 = X ′1
f ′1 // X ′2 // · · · // X ′n−1

f ′n−1 // X ′n = X
′

verifying the desired conditions.
Since the canonicalmorphism from X to X ′ is an admissible epimorphism, for any i ∈ {1, . . . , n}, if we note Xi = X ×X ′ X ′i ,

then by (Ex6), the projection πi : Xi → X ′i is an admissible epimorphism. For any integer i, 1 6 i < n, we have a canonical
morphism fi from Xi to Xi+1 and the square

Xi
fi //

πi
����

Xi+1

πi+1
����

X ′i f ′i

// X ′i+1

(7)

is cartesian. Since f ′i is an monomorphism, also is fi (cf. [11] V. 7). Moreover, since the square (7) is cartesian, fi is the

kernel of the composed morphism Xi+1
πi+1 // // X ′i+1

pi // // X ′i+1/X
′

i , where pi is the canonical morphism. Since πi+1 and
pi are admissible epimorphisms, also is piπi+1 (by (Ex4)). Therefore fi is an admissible monomorphism. Hence we obtain a
commutative diagram

0 = X0 // X1
f1 //

π1

��

X2 //

π2

��

· · · // Xn−1
fn−1 //

πn−1

��

Xn = X

πn

��
0 = X ′1 f ′1

// X ′2 // · · · // X ′n−1 f ′n−1

// X ′n = X
′

where the horizontalmorphisms are admissiblemonomorphisms and the verticalmorphisms are admissible epimorphisms.
Furthermore, for any integer i ∈ {1, . . . , n − 1}, we have a natural isomorphism ϕi from Xi+1/Xi to X ′i+1/X

′

i . We denote by
gi (resp. g ′i ) the canonical morphism from Xi (resp. X

′

i ) to X (resp. X
′). Let hi = g∗i (hX ) (resp. h

′

i = g
′

i
∗
(hX ′)) be the induced

geometric structure on Xi (resp. X ′i ). By (A6), one hasπi∗(hi) = πi∗f
∗

i (hX ) = f
′∗

i π∗(hX ) = h
′

i . Therefore ϕi∗ sends the quotient
geometric structure on Xi+1/Xi to that on X ′i+1/X

′

i . Hence the geometric object Xi+1/Xi is semistable andwe have the equality
µ(Xi+1/Xi) = µ(X ′i+1/X

′

i ). Finally, since X1 = Xdes, one has

µ(X2/X1) =
rk(X2)µ(X2)− rk(X1)µ(X1)

rk(X2)− rk(X1)
< µ(X1).

Therefore the sequence 0 = X0 // X1 // · · · // Xn−1 // Xn = X satisfies the desired conditions. �

Definition 4.4. In the proof of Theorem 4.3, we have actually constructed by induction a sequence

0 = X0 // X1 // · · · // Xn−1 // Xn = X

of geometric subobjects of X such that Xi/Xi−1 = (X/Xi−1)des for any i ∈ {1, . . . , n − 1}. This sequence satisfies the two
conditions in Theorem 4.3. We call it the Harder–Narasimhan sequence of X . The real numbers µ(X1) and µ(X/Xn−1) are
respectively called themaximal slope and theminimal slope of X , denoted by µmax(X) and µmin(X).

The following proposition shows that in the Abelian category case, condition (HN) is automatically satisfied.

Proposition 4.5. Let (C, E, A) be a geometric exact category, deg and rk are respectively a degree function and a rank function
on it. If (C, E) is an Abelian category, then (C, E, A, deg, rk) is a Harder–Narasimhan category.
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Proof. We check condition (HN) by induction on rk(X). The condition is fulfilled when X is semistable, and in particular
when X is of rank 1 (see Proposition 4.1 2). Assume that X is a geometric object of rank> 1 and which is not semistable. Let
X ′ be a non-zero geometric subobject of X such that µ(X ′) > µ(X) and rk(X ′) is maximal among the non-zero geometric
subobjects Y of X verifying µ(Y ) > µ(X). By induction hypothesis there exists a geometric subobject X ′des verifying (HN)
for X ′. We shall show that Xdes := X ′des actually verifies (HN) for X . Let Y be a non-zero geometric subobject of X . If it is a
geometric subobject of X ′, then one has µ(Y ) 6 µ(X ′). Otherwise the rank of Y + X ′ will be strictly greater than rk(X ′) and
by definition µ(Y + X ′) 6 µ(X) < µ(X ′). Furthermore, one has the following exact sequence

0 // Y ∩ X ′ // Y ⊕ X ′ // Y + X ′ // 0.

By the additivity of the degree function we obtain

deg(Y ) = deg(Y ∩ X ′)+ deg(Y + X ′)− deg(X ′)
< µ(X ′des)rk(Y ∩ X

′)+ µ(X ′)
(
rk(Y + X ′)− rk(X ′)

)
6 µ(X ′des)

(
rk(Y ∩ X ′)+ rk(Y + X ′)− rk(X ′)

)
= µ(X ′des)rk(Y ), (8)

where in the first inequality we have used the estimations µ(Y ∩ X ′) 6 µ(X ′des) and µ(Y + X
′) < µ(X ′). Moreover, from

the strict inequality (8), we obtain that, if Y is a non-zero geometric subobject of X such that µ(Y ) = µ(X ′des), then Y must
be a geometric subobject of X ′, and therefore is a geometric subobject of X ′des by induction hypothesis. Thus condition (HN)
holds for X . �

Example 1 (Filtrations in an Abelian Category). Let C be an Abelian category and E be the class of all short exact sequences
in C. Given a rank function rk : K0(C)→ Z. For any object X in C, let A(X) be the set of isomorphism classes of filtrations of
X . We have shown in Section 3.3 that (C, E, A) is a geometric exact category. Any geometric object can be considered, after
choosing a representative in h, as an object X in C equipped with an R-filtration F = (Xλ)λ∈R. We define (by convention
sup∅ = 0)

deg(F ) =
∑
λ∈R

λ
(
rk(Xλ)− sup

s>λ
rk(Xs)

)
= −

∫
R
λ drk(Xλ). (9)

The summation above is actually finite. We now show that the function deg defined above extends naturally to a

homomorphism from K0(C, E, A) to R. Let 0 // F ′
u // F

p // F ′′ // 0 be a diagram CA, where F ′ =

(X ′λ)λ∈I , F = (Xλ)λ∈I , F ′′ = (X ′′λ )λ∈I are respectively R-filtrations of X ′, X and X ′′. Then, for any real number λ ∈ I , we
have an exact sequence 0 // X ′λ // Xλ // X ′′λ // 0 . Therefore, deg(F ) = deg(F ′) + deg(F ′′). Note that a
filtration F = (Xλ)λ∈R is semistable if and only if its jump set J(F ) reduces to a one-point set.
Proposition 4.5 shows that (C, E, A, deg, rk) is a Harder–Narasimhan category. Suppose that F = (Xλ)λ∈R is a filtration

of a non-zero object X in C. Let J(F ) = {λ1 > λ2 > · · · > λn} be the jump set of F . Then

0 // Xλ1 // Xλ2 // · · · // Xλn = X

is the Harder–Narasimhan sequence of X . Furthermore, µ(Xλ1) = λ1, and for any i ∈ {2, . . . , n}, µ(Xλi/Xλi−1) = λi.

Example 2 (Vector Spaces with Two Norms). Let (VecC, E) be the Abelian category of finite dimensional vector spaces over
C. For any vector space X ∈ obj(VecC), let A(X) be the set of all pairs (‖ · ‖1, ‖ · ‖2) of Hermitian norms on X . By the results
in Section 3.1, A is a geometric structure on (VecC, E). For any X , let rk(X) be the rank of X . Then rk is a rank function. If
(X, ‖ · ‖1, ‖ · ‖2) is a geometric object, denote by deg(X, ‖ · ‖1, ‖ · ‖2) the logarithm of the ratio between the two metrics on
det(X) induced by ‖ · ‖1 and ‖ · ‖2 respectively. Namely, if (ei)ri=1 is a basis of X , one has

deg(X, ‖ · ‖1, ‖ · ‖2) = log
det(〈ei, ej〉2)16i,j6r
det(〈ei, ej〉1)16i,j6r

,

where 〈 , 〉1 and 〈 , 〉2 are respectively the Hermitian inner products associated to ‖·‖1 and to ‖·‖2. Note that this definition
does not depend on the choice of the basis (ei)ri=1. If 0 // X ′ // X // X ′′ // 0 is a short exact sequence
of Hermitian spaces, then det(X) is canonically isometric to det(X ′)⊗ det(X ′′). Therefore, the function deg is additive with
respect to sequences in EA, and hence defines a degree function on (VecC, E, A). By Proposition 4.5, (VecC, E, A, deg, rk) is
a Harder–Narasimhan category.
Given a finite dimensional C-vector space X equipped with a Hermitian norm ‖ · ‖1 (and corresponding inner product

〈 , 〉1). The set of all Hermitian norms on X is in bijection with the set of all positive definite and self-adjoint (with respect
to 〈 , 〉1) operators on X . Assume that ‖ · ‖2 is a Hermitian norm on X which corresponds to the operator S (that is,
∀ x ∈ X , ‖x‖22 = 〈x, S(x)〉1). Let λ1 > · · · > λn be eigenvalues of S and E1, . . . , En be the corresponding eigenspaces.
Then (X, ‖ · ‖1, ‖ · ‖2)des is just E1 equipped with induced metrics. The Harder–Narasimhan sequence

0 = X0 // X1 // · · · // Xn = X
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of (X, ‖ · ‖1, ‖ · ‖2) satisfies Xi = E1 + · · · + Ei (i ∈ {1, . . . , n}), and the successive slopes are just log λi. In particular, a
geometric object (X, ‖ · ‖1, ‖ · ‖2) is semistable if and only if the norms ‖ · ‖1 and ‖ · ‖2 are proportional.2
We show that the sequence (6) in Theorem 4.3 need not be unique for this example. Let (X, ‖ · ‖1, ‖ · ‖2) be a geometric

object such that rk(X) = 2. Assume that ‖ · ‖2 corresponds to a positive definite self-adjoint operator S (with respect
to ‖ · ‖1) whose eigenvalues are λ1 and λ2, where λ1 > λ2. Let v1 and v2 be corresponding eigenvectors such that
‖v1‖1 = ‖v2‖1 = 1. Let ε ∈ [0, 1] and Yε be the subspace of X generated by

√
εv1 +

√
1− εv2, equipped with induced

metrics. One has deg(Yε) = 1
2 log(ελ

2
1 + (1− ε)λ

2
2). Moreover, one has deg(X) = log λ1 + log λ2. Therefore, the sequence

0 // Yε // X satisfies the two conditions in Theorem 4.3 as soon as ε > λ2/(λ1 + λ2) since in this case we have
deg(Yε) > deg(X/Yε).

Example 3 (Filtered (ϕ,N)-Modules). Let K be a field of characteristic 0, equipped with a discrete valuation v such that K is
complete for the topology defined by v. Suppose that the residue field k of K is of characteristic p > 0. Let K0 be the fraction
field of Witt vector ringW (k) and σ : K0 → K0 be the absolute Frobenius endomorphism. We call (ϕ,N)-module any finite
dimensional vector space D over K0, equipped with

(1) a bijective σ -linear endomorphism ϕ : D→ D,
(2) a K0-linear endomorphism N : D→ D such that Nϕ = pϕN .

Let (C, E) be the category of all (ϕ,N)-modules. It is an Abelian category. There exists a natural rank function rk on the
category C defined by the rank of the vector space over K0. Consider the geometric structure A on (C, E) such that, for any
(ϕ,N)-module D, A(D) is the set of isomorphism classes of Z-filtrations (i.e. an R-filtration whose jump set is contained in
Z) of D⊗K0 K in the category of vector spaces over K . Then (C, E, A) becomes a geometric exact category. The objects in CA
are called filtered (ϕ,N)-modules.
To each filtered (ϕ,N)-module (D,F = (DK ,λ)λ∈R)we associate an integer

deg(D,F ) = −v(detϕ)−
∫

R
λ drkK (DK ,λ).

Then (C, E, A, deg, rk) becomes a Harder–Narasimhan category.
Note that semistable filtered (ϕ,N)-modules having slope 0 are nothing but admissible filtered (ϕ,N)-modules. In the

classical literature, such filtered (ϕ,N)-modules were said to be weakly admissible. In fact, Colmez and Fontaine [13] have
proved that all weakly admissible (ϕ,N)-modules are admissible, which had been a conjecture of Fontaine.

Example 4 (Torsion Free Sheaves). Let X be a geometrically normal projective variety of dimension d > 1 over a field K and
L be an ample invertible OX -module. We denote by TF(X) the category of torsion free coherent sheaves on X . Notice that
if 0 // E ′ // E // E ′′ // 0 is an exact sequence of coherent OX -modules such that E ′ and E ′′ are torsion
free, then also is E. Therefore, TF(X) is an exact subcategory of the Abelian category of all coherent OX -modules on X . Let E
be the class of all exact sequences in TF(X) and let A be the trivial geometric structure on it. If E is a torsion free coherent
OX -module, we denote by rk(E) its rank and by deg(E) the intersection number c1(L)d−1c1(E). The mapping deg (resp.
rk) extends naturally to a homomorphism from K0(TF(X)) to R (resp. Z). A classical result [14] (see also [15]) shows that
(TF(X), E, A, deg, rk) is in fact a Harder–Narasimhan category.

Example 5 (Hermitian Adelic Bundles). Let K be a number field. Denote byΣ the set of all places of K . For any v ∈ Σ , denote
by Kv the completion of K with respect to v and by Cv the completion of an algebraic closure of Kv . Let | · |v be the canonical
absolute value on Cv , nv be the degree of the residue field of v if v is finite, nv = 1 if v is real and nv = 2 if v is complex. The
product formula asserts

∑
v nv log |a|v = 0 for any a ∈ K

×.
By Hermitian adelic bundlewemean a finite dimensional vector space E over K equipped with a family (‖ · ‖v)v∈Σ , where

‖ · ‖v is a norm on E⊗K Cv , invariant under the action of Gal(Cv/Kv), such that

(1) ‖ · ‖v is a ultranorm if v is finite, a Hermitian norm if v is infinite,
(2) for all but finite number of places, the norms ‖ · ‖v have a common orthonormal basis.

Let (VecK , E) be the Abelian category of finite dimensional vector spaces over K . For each vector space X in VecK , let A(X) be
the set of families (‖ · ‖v)v∈Σ such that (X, (‖ · ‖v)v∈Σ ) becomes a Hermitian adelic bundle. Then (VecK , E, A) is a geometric
exact category. We have an evident rank function on it, which is the rank of the vector space over K .
In the following, we consider a degree function, which is fundamental in Arakelov geometry. For any Hermitian adelic

bundle (X, (‖ · ‖v)v∈Σ ), we define deg(X) = −
∑

v nv log ‖s1 ∧ · · · ∧ sr‖v , where (s1, . . . , sr) is a basis of X over K . By
the product formula, this definition does not depend on the choice of the basis (s1, . . . , sr) (for more details, see [16–18]).
Furthermore, it defines a degree function on (VecK , E, A). Thus (VecK , E, A, deg, rk) is a Harder–Narasimhan category. This
was a result of Stuhler [2] and Grayson [3] in the Hermitian vector bundle case, and of Gaudron [18] in the general case.

2 Recently, André [12] proposed another formalism of slope filtrations in the protoabelian category framework. However, the definition of semistability
in his setting requires the comparison of slopes for non-necessarily strict subobjects and hence his formalism does not contain this example.
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5. Slope inequalities and functoriality

Throughout this section, we fix a Harder–Narasimhan category (C, E, A, deg, rk). We assume, in the case where A is
non-trivial, that the exact category (C, E) verifies one of the following equivalent conditions:

(i) If X
f // Y

g // Z are morphisms in C such that g and gf are admissible monomorphisms, then f is also an
admissible monomorphism.

(ii) If X
f // Y

g // Z aremorphisms inC such that f and gf are admissible epimorphisms, then g is also an admissible
epimorphism.

Note that these conditions are consequences of ‘‘weakly split idempotent’’ condition introduced in [19, A.5.1]. So they are
satisfied for all examples in this article. Assuming these conditions, one has the following lemmas which are dual to each
other.

Lemma 5.1. Let X and Z be two geometric objects, π : X → Y be a geometric quotient of X, and f : Y → Z be a morphism in
C. If fπ is compatible with geometric structures, also is f .

Proof. WhenA is trivial, allmorphisms inC are compatiblewith geometric structures. So the result is trivial. In the following,
we suppose that A is non-trivial and condition (ii) holds. By definition there exists a geometric objectW and a decomposition

X // i // W
p // // Z of fπ such that X is a geometric subobject of W and Z is a geometric quotient of W . Let T be the

pushout of i and π (in C) and let j : Y → T and q : W → T be canonical morphisms. By Axiom (Ex5), j is an admissible
monomorphism. Let τ : U � X be the kernel of π . Note that any exact category can be embedded as a full subcategory
of an Abelian category which is closed under extensions, by diagram chasing we obtain that q = Coker(iτ). Hence q is an
admissible epimorphism. The morphisms p : W � Z and f : Y → Z induce a morphism g : T → Z:

X // i //

π

����

W

q
����

p

�� ��@@
@@

@@
@@

Y //
j

// T g
// Z

which is an admissible epimorphism by condition (ii). If we equip T with the quotient geometric structure fromW , we have
g∗(hT ) = p∗(hW ) = hZ and j∗(hT ) = π∗(i∗hW ) = π∗(hX ) = hY . Therefore f is compatible with geometric structures. �

Lemma 5.2. Let X and Z be two geometric objects, u : Y → Z be a geometric subobject of Z , and f : X → Y be a morphism in
C. If uf is compatible with geometric structures, also is f .

5.1. Slope inequality condition

In the previous section, we have shown that to each non-zero geometric object X we can associate a sequence

0 = X0 // X1 // · · · // Xn = X

such that Xi/Xi−1 = (X/Xi−1)des for any i ∈ {1, . . . , n−1}. All subquotients Xi/Xi−1 are semistable. Furthermore, if we write
µi = µ(Xi/Xi−1), then the inequalitiesµ1 > µ2 > · · · > µn hold. These data define naturally anR-filtrationF = (FλX)λ∈R
of X as follows:

FλX :=

{0, λ > µ1,
Xi, λ ∈ (µi, µi−1], i ∈ {1, . . . , n− 1},
Xn, λ 6 µn.

We call it the Harder–Narasimhan filtration of X . One has, forM < µn,

deg(X) = −
∫

R
λ drk(FλX) = Mrk(X)+

∫
+∞

M
rk(FλX) dλ. (10)

Note thatwehave actually defined amap from obj(CA) to obj(Fil(C)). It is quite natural to ask if this construction is functorial,
or in other words, if morphisms compatible with geometric structures are compatible with the Harder–Narasimhan
filtrations.
Assume that X and Y are two semistable geometric objects such that µ(X) > µ(Y ). Note that the Harder–Narasimhan

filtration of X (resp. Y ) has only a jump point at µ(X) (resp. µ(Y )). Hence the zero morphism is the only morphism from
X to Y which is compatible with the Harder–Narasimhan filtrations. Therefore, the functoriality of the Harder–Narasimhan
filtration requires the following condition:
(SI) If X1 and X2 are two semistable geometric objects such that µ(X1) > µ(X2), there is no non-zero morphism from X1 to

X2 which is compatible with geometric structures.
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Wecall it the slope inequality condition. This condition is satisfied for all exampleswe have discussed in the previous section
except the second one. We shall see that it is the source of many slope inequalities which are similar to the classical ones for
vector bundles on curves. Let us begin by a result which claim that, under condition (SI), the Harder–Narasimhan sequence
is the only sequence verifying the conditions in Theorem 4.3.

Proposition 5.3. Assume that the Harder–Narasimhan category (C, E, A, deg, rk) satisfies condition (SI). Suppose that X is a
non-zero geometric object and 0 = X0 // X1 // · · · // Xn−1 // Xn = X is a sequencewhich verifies conditions
(1) and (2) of Theorem 4.3, then it is canonically isomorphic to the Harder–Narasimhan sequence of X.
Proof. By induction we only need to prove that X1 is isomorphic to Xdes. Let i be the first index such that the canonical
morphism Xdes → X factorizes through Xi+1. The composed morphism Xdes → Xi+1 → Xi+1/Xi is then non-zero and
compatible with geometric structures (by Lemma 5.2). Since Xdes and Xi+1/Xi are semistable, we haveµ(Xdes) 6 µ(Xi+1/Xi).
This implies i = 0 andµ(Xdes) = µ(X1). By (HN), the morphism X1 → X factorizes through Xdes. So we have Xdes ∼= X1. �

Corollary 5.4. Assume that (C, E, A, deg, rk) satisfies (SI). Let X be a non-zero geometric object.
(1) For any non-zero geometric subobject Y of X, one has µmax(Y ) 6 µmax(X).
(2) For any non-zero geometric quotient Z of X, one has µmin(Z) > µmin(X).
(3) The inequalities µmin(X) 6 µ(X) 6 µmax(X) hold.
Proof. Let 0 = X0 −→ X1 −→ · · · −→ Xn−1 −→ Xn = X be the Harder–Narasimhan sequence of X .
(1) After replacing Y by Ydeswemay suppose that Y is semistable. Let i be the first index such that the canonicalmorphism

Y → X factorizes through Xi+1. The composed morphism Y → Xi+1 → Xi+1/Xi is non-zero and compatible with geometric
structures (by Lemma 5.2). Therefore µ(Y ) 6 µ(Xi+1/Xi) 6 µmax(X).
(2) After replacing Z by a semistable quotient we may suppose that Z itself is semistable. Let f : X → Z be the canonical

morphism. It is an admissible epimorphism. Let i be the smallest index such that the composed morphism Xi+1 → X
f
→ Z

is non-zero. Since the composed morphism Xi → X
f
→ Z is zero, we obtain a non-zero morphism from Xi+1/Xi to Z which

is compatible with geometric structures (by Lemma 5.1). Therefore µ(Z) > µ(Xi+1/Xi) > µmin(X).
(3) We have deg(X) =

∑n
i=1 deg(Xi/Xi−1). Therefore

µ(X) =
n∑
i=1

rk(Xi/Xi−1)
rk(X)

µ(Xi/Xi−1) ∈
[
µmin(X), µmax(X)

]
. �

Proposition 5.5. Suppose that (C, E, A, deg, rk) satisfies condition (SI). If X and Y are two geometric objects and if f : X → Y
is a non-zero morphism compatible with geometric structures, then µmin(X) 6 µmax(Y ).

Proof. Let 0 = X0 // X1 // · · · // Xn−1 // Xn = X be the Harder–Narasimhan sequence of X . For any
integer i ∈ {0, . . . n}, let ϕi : Xi → X be the canonical monomorphism. Let j ∈ {1, . . . , n} be the first index such that
f ϕj is non-zero. Since f ϕj−1 = 0, the morphism f ϕj factorizes through Xj/Xj−1, so we get a non-zero morphism g from
Xj/Xj−1 to Y . By Lemma 5.1, g is compatible with geometric structures. Let

0 = Y0 // Y1 // · · · // Ym−1 // Ym

be the Harder–Narasimhan sequence of Y . Let k ∈ {1, . . . n} be the first index such that g factorizes through Yk. If
π : Yk → Yk/Yk−1 is the canonical morphism, then πg is non-zero since g does not factorize through Yk−1. Furthermore, it
is compatible with geometric structures. Therefore, we have

µmin(X) 6 µ(Xj/Xj−1) 6 µ(Yk/Yk−1) 6 µmax(Y ). �

Corollary 5.6. Keep the notation and the hypothesis of Proposition 5.5.
(1) If in addition f is monomorphic, then µmax(X) 6 µmax(Y ).
(2) If in addition f is epimorphic, then µmin(X) 6 µmin(Y ).
Proof. Suppose that f is monomorphic. Let i : Xdes → X be the canonical morphism. Then the composed morphism
fi : Xdes → Y is non-zero and compatible with geometric structures. Therefore µmax(X) = µmin(Xdes) 6 µmax(Y ). The
proof of the second assertion is similar. �

5.2. Functoriality

Theorem 5.7. Assume that (C, E, A, deg, rk) satisfies condition (SI). Then any morphism in CA is compatible with the
Harder–Narasimhan filtrations.
Proof. Let f : X → Y be a morphism which is compatible with geometric structures. Let (FλX)λ∈R and (FλY )λ∈R be
respectively the Harder–Narasimhan filtrations of X and Y . We shall prove that, for any λ ∈ R, the morphism fλ := fiλ :
FλX → Y factorizes through FλY , where iλ : FλX → X denotes the canonical morphism. The case where fλ = 0



H. Chen / Journal of Pure and Applied Algebra 214 (2010) 187–200 199

is trivial. We suppose in the following that fλ 6= 0. Let 0 = Y0 // Y1 // · · · // Yn−1 // Yn = Y be the
Harder–Narasimhan sequence of Y . Let i ∈ {1, . . . , n} be the smallest index such that fλ factorizes through Yi. Thus the
composed morphism FλX // Yi // Yi/Yi−1 is non-zero, and compatible with geometric structures. Moreover,
from the definition of FλX we obtain µmin(FλX) > λ. Therefore the slope inequality in Proposition 5.5 implies that
λ 6 µmax(Yi/Yi−1) = µ(Yi/Yi−1). Thus Yi is a geometric subobject of FλY and hence fλ factorizes through FλY . �

As an application, the following proposition compares the degree of two geometric objects provided an isomorphism
compatible with geometric structures.

Corollary 5.8. Under the conditions of the above theorem, if f : X → Y is an isomorphism compatible with geometric structures,
then deg(X) 6 deg(Y ).

Proof. Let (Xλ)λ∈R and (Yλ)λ∈R be respectively the Harder–Narasimhan filtrations of X and of Y . Theorem 5.7 implies that f
is compatible with filtrations. Hence rk(Xλ) 6 rk(Yλ) for any λ. Moreover, rk(X) = rk(Y ). By (10),

deg(X) = Mrk(X)+
∫
+∞

M
rk(Xλ) dλ 6 Mrk(Y )+

∫
+∞

M
rk(Yλ) dλ = deg(Y ),

whereM is a sufficiently negative real number. �

Proposition 5.9. Let (C, E, A, deg, rk) be a Harder–Narasimhan category. If (C, E) is an Abelian category, then condition (SI)
is equivalent to the following condition:

(SI’) For any object X in C and for all geometric structures hX and h′X on X, if IdX : (X, hX ) → (X, h′X ) is compatible with
geometric structures, then deg(X, hX ) 6 deg(X, h′X ).

Proof. ‘‘(SI) H⇒ (SI’)’’ is a consequence of Corollary 5.8. In the following, we prove the converse implication. Let X and
Y be two semistable geometric objects. Suppose that there exists a non-zero morphism f : X → Y which is compatible
with geometric structures. Let Z be the image of f in Y , u : Z → Y be the inclusion morphism and π : X → Z
be the projection morphism. The fact that f is compatible with geometric structures implies that the identity morphism
IdZ : (Z, π∗hX )→ (Z, u∗hY ) is compatible with geometric structures (see Lemmas 5.1 and 5.2). Therefore, the semistability
of X and Y , combined with condition (SI’), implies µ(X) 6 µ(Z, π∗hX ) 6 µ(Z, u∗hY ) 6 µ(Y ). �

Remark 5.10. The functoriality of the Harder–Narasimhan filtration is not necessarily verified without condition (SI).
Consider Example 2. In that setting, the Harder–Narasimhan filtration for a geometric object (X, ‖ · ‖1, ‖ · ‖2) is just
Xλ = {x ∈ X | ‖x‖2 > eλ‖x‖1}. Hence, with the notation introduced in the last paragraph of Example 2, the inclusion
morphism Yε → X is not compatible with the Harder–Narasimhan filtrations if ε > 0, the quotient morphism X → X/Yε
is not compatible with the Harder–Narasimhan filtrations if ε < 1.
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