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Abstract. — By using the method of function field arithmetic, we associate,
to each graded linear series which is birational and of sub-finite type, a convex
body whose Lebesgue measure identifies with the volume of the graded linear
series. This approach allows to remove the hypothesis on the existence of
a regular rational point, which appears for example in the construction of
Lazarsfeld and Mustaţǎ. Moreover, it requires less non-intrinsic parameters of
the projective variety.
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1. Introduction

The theory of Okounkov bodies, initialized by Okounkov [16, 17] and then
developed by Lazarsfeld and Mustaţǎ [15], and Kaveh and Khovanskii [11, 10]
respectively, is an efficient tool to study the asymptotic behaviour of graded
linear series on projective varieties. Let X be an integral projective scheme of
Krull dimension d over a field k and L be an invertibleOX -module. This theory
associates to each graded linear series of L a convex body (called Okounkov
body) of Rd whose Lebesgue measure is equal to the volume of the graded



2 HUAYI CHEN

linear series divided by d! (under mild conditions on the graded linear series).
The construction relies on the choice of a valuation of the rational function
field k(X) valued in the group Zd equipped with a monomial order, such that
the residue field of the valuation coincides with k. This valuation can be
constructed through the choice of a flag of smooth subschemes of X containing
a regular rational point (see [15]). From the point of view of birational
geometry, the dependence of the Okounkov body on the choice of the valuation
is a subtle problem. We refer the readers to [13] for a detailed discussion on
the convex bodies appearing as Okounkov bodies of divisors, see also [15, §5].
Moreover, the existence of a regular rational point actually implies that the k-
scheme is geometrically irreducible. Although interesting consequences of the
Okounkov convex body approach, such as Fujita approximation and the volume
as a limite, can still be obtained by using fine technics of local multiplicities
(see [9]), the construction of covex bodies becomes more complicated and relies
on even more non-intrinsic choices.

The purpose of this article is to introduce a new approach of relating graded
linear series to convex bodies in Euclidean spaces, which is based on function
field arithmetics. The construction only depends on the choice of a flag of
successive field extensions

k = K0 ⊂ K1 ⊂ . . . ⊂ Kd = k(X),

such that each extension Ki/Ki−1 is of transcendental degree 1 (the exten-
sions Ki/Ki−1 are necessarily finitely generated, see [4] Chapter V, §14, no.7
Corollary 3). Thus we can considerKi as the field of rational functions of a reg-
ular projective curve Ci over Spec(Ki−1). Given a graded linear series V• of a
Cartier divisor on X, we let V•,Ki be the graded sub-Ki-algebra of

⊕
n∈N k(X)

generated by V•. It generates a graded OCi-algebra of vector bundles Ei• on
the curve Ci. In the case where the graded linear series V• is birational (see
Definition 3.5), we show that the volume of V•,Ki is equal to the arithmetic
volume of the graded-OCi-algebra Ei• and we construct by induction a fam-
ily of convex bodies (∆i)di=0, where ∆i is a convex body in Ri, such that ∆i

is delimited by the graph of a non-negative concave function on ∆i−1 which
comes from the function field arithmetic of Ei• by using the method of Fujita
approximation for arithmetic graded linear series (see [6, 2]).

From the point of view of birational geometry, the above procedure holds
for the general setting of graded linear series of a finitely generated extension
K of the base field k and it is not necessary to fix a projective model of K.
For any d ∈ N, d > 1, we denote by Cd the set of d-uplets (∆i)di=0 where each
∆i is a convex body in Rd and such that the projection of ∆i on Ri−1 by the
i− 1 first coordinates is contained in ∆i−1.
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Theorem 1.1. — Let k be a field and K/k be a finitely generated extension
of transcendental degree d > 1. We fix a flag

(1) k = K0 ⊂ K1 ⊂ . . . ⊂ Kd = K

of field extensions such that Ki/Ki−1 is of transcendental degree 1. Let A(K/k)
be the set of all birational graded linear series of sub-finite type of K/k (see
Definition 3.5). There exists a map (∆i)di=0 from A(K/k) to Cd, only depending
on the flag (1), which verifies the following conditions:
(a) For all graded linear series V• and V ′• in A(K/k) such that Vn ⊂ V ′n for

sufficiently positif n, one has ∆i(V•) ⊂ ∆i(V ′• ) for any i ∈ {0, . . . , d}.
(b) For any graded linear series V• in A(K/k), any integer m > 1 and any

i ∈ {0, . . . , d}, one has ∆i(V (m)
• ) = m∆i(V•), where V (m)

• :=
⊕

n∈N Vmn.
(c) For all graded linear series V• and W• in A(K/k), one has

∆i(V•) + ∆i(W•) ⊂ ∆i(V• ·W•),
for any i ∈ {0, . . . , d}, where “+” denotes the Minkowski sum.

(d) For any graded linear series V• in A(K/k) and any i ∈ {0, . . . , d}, the
mass of ∆i(V•) with respect to the Lebesgue measure is equal to the volume
of the graded linear series V•,Kd−i

of K/Kd−i divided by i!.
Moreover, the graded linear series V• satisfies the Fujita approximation property
(see Definition 3.7).

As explained above, for any V• ∈ A(K/k), the family of convex bodies
∆i(V•) are constructed in a recursive way. More precisely, it can be shown
that the graded linear series V•,K1 belongs to A(K/K1) (see Remark 3.6).
We let (∆0(V•), . . . ,∆

d−1(V•)) be the family (∆0(V•,K1), . . . ,∆d−1(V•,K1)),
where by abuse of notation we use the expression (∆i)d−1i=0 to denote the map
A(K/K1) → Cd−1 predicted by the theorem as an induction hypothesis. Fi-
nally, the extension K1/k corresponds to a regular projective curve C over
Spec k whose rational function field is K1. The convex body ∆d(V•) is then
constructed as the arithmetic Okonkov body of the graded OC-algebra on vec-
tor bundles generated by V•.

Compared to the classic approach of Okounkov bodies, the above construc-
tion relies on fewer parameters, which are closely related to the birational geom-
etry of the extension K/k. Moreover, the convex bodies ∆i(V•), i ∈ {0, . . . , d}
are related by linear projections, which reflects interesting geometric informa-
tion about the graded linear series V•,Ki .

The rest of the article is organised as follows. In the second section, we
recall some classic results on function field arithmetic of vector bundles. In the
third section, we discuss several properties of graded linear series. Finally, in
the fourth section, we explain the construction of convex bodies associated to
graded linear series and prove the main theorem.
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2. Function field arithmetic of vector bundles

In this section, we let k be a field and C be a regular projective curve
over Spec k (namely an integral regular projective scheme of dimension 1 over
Spec k). By vector bundle over C, we mean a locally free OC-module E of
finite rank.

2.1. Degree function. — Recall that Riemann-Roch formula shows that,
for any vector bundle E on C, one has

(2) h0(E)− h1(E) = deg(E) + rk(E)(1− g(C/k)),

where h0(E) and h1(E) are respectively the ranks of H0(C,E) and H1(C,E),
deg(E) = deg(c1(E) ∩ [C]) is the degree of E, and g(C/k) is the genus of the
curve C relatively to k, which is equal to the dimension of H0(C,ωC/k) over
k, ωC/k being the relative dualizing sheaf. Note that by Serre duality one has
h1(E) = h0(E∨ ⊗ ωC/k).

Let K = k(C) be the field of rational functions on C. Recall that any closed
point x of C determines a discrete valuation ordx(.) on the field K. We denote
by |.|x the absolute value on K defined as |.|x := e− ordx(.). We denote by
Kx the completion of K with respect to |.|x, on which the absolute value |.|x
extends by continuity. If E is a vector bundle on C, the OC-module structure
on E determines, for each closed point x ∈ C, a norm ‖.‖x on EKx defined as

‖s‖x := inf{|a| : a ∈ K×x , a−1s ∈ E ⊗OC
ox},

where ox is the valuation ring of Kx. Recall that the degree of E can also be
computed as

(3) deg(E) = −
∑

closed point x∈C
[k(x) : k] log ‖s1 ∧ · · · ∧ sr‖x,det,

where (s1, . . . , sr) is an arbitrary basis of EK overK, k(x) is the residue field of
the closed point x, and ‖.‖x,det is the determinant norm on det(EKx) induced
by ‖.‖x. Similarly, for any non-zero vector s in EK , we define

(4) deg(s) = −
∑

closed point x∈C
[k(x) : k] log ‖s‖x.

Note that, if E is an invertible OC-module, then for any non-zero vector
s ∈ EK , one has deg(s) = deg(E).

Proposition 2.1. — Let C be a regular projective curve over a field k and E
be a vector bundle on C. For any non-zero section s ∈ H0(C,E) viewed as a
vector in EK , one has deg(s) > 0.
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Proof. — Since s is a global section of E, for any closed point x ∈ C, one has

− log ‖s‖x = ordx(s) > 0.

Hence we obtain from (4) the relation deg(s) > 0.

Proposition 2.2. — Let C be a regular projective curve over a field k and L
be an invertible OC-module. If deg(L) > 0, then h0(L) 6 deg(L) + 1.

Proof. — The inequality is trivial if h0(L) = 0. In the following, we assume
that L admits a non-zero global section s, which defines an injective homo-
morphism from L∨ to OC . Therefore one has

h0(L∨ ⊗ ωC/k) 6 h0(ωC/k) = g(C/k),

where g(C/k) is the genus of C. By Riemann-Roch formula (2) we obtain

h0(L) = h0(L∨ ⊗ ωC/k) + deg(L) + 1− g(C/k) 6 deg(L) + 1.

2.2. Successive minima. — Let k be a field, C be a regular projective
curve over Spec k and E be a vector bundle on C. For any i ∈ {1, . . . , rk(E)},
let λi(E) be the supremum of λ ∈ R such that the K-vector subspace of EK
generated by the vectors s ∈ EK \ {0} verifying deg(s) > λ has rank > i. By
definition one has

λ1(E) > . . . > λr(E), with r = rk(E).

These invariants are similar to (the minus logarithmic version of) successive
minima in geometry of numbers.

Proposition 2.3. — Let C be a regular projective curve over a field k and
E be a vector bundle on C. If E is generated by global sections, then for any
i ∈ {1, . . . , rk(E)} one has λi(E) > 0.

Proof. — Let K = k(C) be the field of rational functions on C. Since E is
generated by global sections, there exist non-zero global sections s1, . . . , sr of
E which form a basis of EK over K. By Proposition 2.1, one has deg(si) > 0
for any i ∈ {1, . . . , n}, which implies the assertion of the proposition.

By Hadamard’s inequality, if (s1, . . . , sr) is a basis of EK over K, then for
any closed point x ∈ C one has

log ‖s1 ∧ · · · ∧ sr‖x,det 6
r∑
i=1

log ‖si‖x.

Thus we obtain

(5) λ1(E) + · · ·+ λr(E) 6 deg(E).
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Roy and Thunder have proved the following converse inequality (see [18,
Theorem 2.1]):

(6) λ1(E) + · · ·+ λr(E) > deg(E)− rk(E)`C(g(C/k)),

where `C is a non-negative function on R+ depending only on the curve C.
The successive minima are related to the R-filtration by minima. Let E

be a vector bundle on C. For any t ∈ R, let F t(EK) be the K-vector
subspace of EK generated by non-zero vectors s ∈ EK such that deg(s) > t.
Then (F t(EK))t∈R is a decreasing R-filtration of EK . Note that the function
(t ∈ R) 7→ dimK(F t(EK)) is left continuous, and one has

rk(E)∑
i=1

δλi(E) = − d

dt
dimK(F t(EK)),

where δλi(E) denotes the Dirac measure on λi(E).

2.3. Positive degree. — Let k be a field, C be a regular projective curve
and E be a vector bundle on C. We denote by deg+(E) the suprmum of the
degrees of all vector subbundles of E, called the positive degree of E. Recall
that one has (see [8, Theorem 2.4])

(7)
∣∣h0(E)− deg+(E)

∣∣ 6 rk(E) max(g(C/k)− 1, 1),

where h0(E) is the rank of H0(C,E) over k. Moreover, by Hadamard’s in-
equality, one has

(8)
rk(E)∑
i=1

max(λi(E), 0) 6 deg+(E),

which is similar to (5). Also we can deduce from (6) the following inequality
(we refer the readers to [8, Proposition 8.1] for a proof)

(9) deg+(E) 6
rk(E)∑
i=1

max(λi(E), 0) + rk(E)`C(g(C/k)).

Combining the inequalities (7)–(9), we obtain the following result.

Proposition 2.4. — Let C be a regular projective curve over a field k and E
be a vector bundle on C. One has

(10)
∣∣∣∣h0(E)−

rk(E)∑
i=1

max(λi(E), 0)

∣∣∣∣ 6 rk(E)˜̀C(g(C/k)),

where ˜̀C(x) = `C(x) + max(x− 1, 1) for any x ∈ R+.
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3. Graded linear series

3.1. Graded linear series of a divisor. — Let k be a field and π : X →
Spec k be an integral projective k-scheme. Let K be the field of rational
functions on X. For any Cartier divisor D on X, we denote by H0(D) the
k-vector space

H0(D) = {f ∈ K : D + div(f) > 0} ∪ {0}.
Denote by OX(D) the sub-OX -module of the constant sheaf π∗(K) generated
by −D. It is an invertible OX -module. For any finite dimensional k-vector
subspace V of K which is contained in H0(D), the canonical homomorphism
π∗(V )→ π∗(K) factors through OX(D). The locus where the homomorphism
π∗(V ) → OX(D) is not surjective is called the base locus of V with respect
to the Cartier divisor D, denoted by BD(V ). It is a Zariski closed subset of
X. If V is non-zero, then one has BD(V ) ( X. Moreover, the homomorphism
π∗(V ) → OX(D) induces a k-morphism jV,D : X \ BD(V ) → P(V ) such that
j∗V,D(OV (1)) ∼= OX(D)|X\BD(V ), where OV (1) denotes the universal invertible
sheaf of P(V ). Note that the rational morphism X 99K P(V ) determined
by jV,D does not depend on the choice of the Cartier divisor D (such that
H0(D) ⊃ V ). We denote by jV this rational morphism.

Definition 3.1. — Let V be a finite dimensional k-vector subspace of K.
We say that V is birational if the rational morphism jV : X 99K P(V ) maps
X birationally to its image. Note that this condition is equivalent to the
condition K = k(V ), where k(V ) denotes the sub-extension of K/k generated
by elements of the form a/b in K, a and b being elements in V , b 6= 0.
By definition, if V is birational and if f is a non-zero element of K, then
fV := {fg | g ∈ V } is also birational.

Remark 3.2. — Let V be a finite dimensional k-vector subspace of K. If
there exists a very ample Cartier divisor A on X such that H0(A) ⊂ V , then
the rational morphisme jV : X 99K P(V ) maps X birationally to its image,
namely V is birational. More generally, if V is a finite dimensional k-vector
subspace of K which is birational and if W is another finite dimensional k-
vector subspace of K containing V , then W is also birational.

Let D be a Cartier divisor on X. We denote by V•(D) :=
⊕

n∈NH
0(nD).

This is a graded k-algebra. We call graded linear series of D any graded sub-
k-algebra of V•. If V• is a graded linear series of D, its volume is defined
as

vol(V•) := lim sup
n→∞

dimk(Vn)

nd/d!
,

where d is the Krull dimension of X. In particular, if V• is the total graded
linear series V•(D), its volume is also called the volume of D, denoted by
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vol(D). The divisor D is said to be big if vol(D) > 0. Note that if D is an
ample divisor, then its volume is positive, and can be written in terms of the
self-intersection number (Dd) (see [14, §2.2.C] for more details).

Definition 3.3. — Let D be a Cartier divisor on X and V• be a graded
linear series of D. Following [15, Definition 2.5], we say that the graded linear
series V• is birational if for sufficiently positive integer n, the rational map
jVn : X 99K P(Vn) maps X birationally to its image.

Remark 3.4. — (i) Let D be a Cartier divisor on X and V• be a birational
graded linear series of D. If ν : X ′ → X is a birational projective k-
morphism from an integral projective k-scheme X ′ to X, then V• is also
a birational graded linear series of ν∗(D).

(ii) Let D be a Cartier divisor on X and V• be a graded linear series. We
assume that V• contains an ample divisor, namely Vn 6= {0} for suffi-
ciently positive integer n, and there exist an ample Cartier divisor A on
X and an integer p > 1 such that Vn(A) ⊂ Vnp for n ∈ N>1. Then V• is
a birational graded linear series of D.

3.2. Graded linear series of a finitely generated extension. — Let k
be a field and K be a field extension of k which is finitely generated over k.

Definition 3.5. — By linear series of K/k we mean any finite dimensional
k-vector subspace V of K. We say that a linear series V of K/k is birational
if K = k(V ).

We call graded linear series of K/k any graded sub-k-algebra V• of
⊕

n∈NK
(equipped with the polynomial graded ring structure) such that each homoge-
neous component Vn is a linear series of K/k for any n ∈ N. If V• is a graded
linear series of K, its volume is defined as

vol(V•) := lim sup
n→∞

dimk(Vn)

nd/d!
∈ [0,+∞],

where d is the transcendental degree of K over k.
Let V• be a graded linear series of K/k. We say that V• is of finite type if it

is finitely generated as a k-algebra. We say that V• is of sub-finite type if it is
contained in a graded linear series of finite type. We say that V• birational if
k(Vn) = K for sufficiently positive n.

We denote by A(K/k) the set of all birational graded linear series of sub-
finite type of K/k.

Remark 3.6. — (i) Let V• and V ′• be two graded linear series of K/k.
Denote by V• · V ′• the graded linear series

⊕
n∈N(Vn · V ′n) of K/k, where

Vn ·V ′n is the k-vector space generated by {ff ′ | f ∈ Vn, f ′ ∈ V ′n}. If both
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graded linear series V• and V ′• are of finite type (resp. of sub-finite type,
birational), then also is V• · V ′• .

(ii) Let V• be a graded linear series of K/k. If k′/k is a field extension such
that k′ ⊂ K, we denote by V•,k′ the graded linear series

⊕
n∈N Vn,k′ of

K/k′, where Vn,k′ is the k′-vector subspace of K generated by Vn. If V•
is of finite type (resp. of sub-finite type, birational), then also is V•,k′ .

(iii) Let V• be a graded linear series of K/k which is of sub-finite type. There
then exists a birational graded linear series of finite type W• of K/k
such that Vn ⊂ Wn for any n ∈ N. Without loss of generality we may
assume that 1 ∈ W1 and that W• is generated as W0-algebra by W1.
Then the scheme X = Proj(W•) is a projective model of the field K
over k (namely an integral projective k-scheme such that k(X) = K).
Moreover, the element 1 ∈ W1 defines an ample Cartier divisor A on X
such that H0(nA) = Wn for sufficiently positive integer n. Therefore, in
the asymptotic study of the behaviour of Vn when n→∞, we may assume
without loss of generality that V• is a graded linear series of a Cartier
divisor on an integral projective scheme over k which is a projective model
of K over k.

Definition 3.7. — Let V• be a graded linear series of K/k. We say that V•
satisfies the Fujita approximation property if the relation

sup
W•⊂V•

vol(W•) = V•

holds, where W• runs over the set of graded sub-k-algebra of finite type of V•.

Remark 3.8. — If a graded linear series V• verifies the Fujita approximation
property, then the “limsup” in the definition of its volume is actually a limit,
provided that Vn 6= {0} for sufficiently positive n. Let W• be a graded sub-k-
algebra of finite type of V•. For sufficiently divisible integer m > 1, the graded
k-algebra

W (m)
• := k ⊕

⊕
n∈N, n>1

Wnm

is generated by Wm (see [3, III.§1, no.3, Lemma 2]) and, by the classic theory
of Hilbert-Samuel functions (see [5, VIII.§4]), the sequence

(d! dimk(Wnm)/(nm)d)n>1

converges to the volume of W• (even though d may differ from the Krull
dimension of the algebra W•, the sequence still converges in [0,+∞]). By
the assumption that Vn 6= {0} for sufficiently positive n, we obtain that

lim inf
n→∞

dimk(Vn)

nd/d!
> vol(W•),
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which implies the convergence of the sequence (d! dimk(Vn)/nd)n>1 if V• satis-
fies the Fujita approximation property.

3.3. Construction of vector bundles from linear series. — Let C be a
regular projective curve over a field k and k(C) be the field of rational functions
on C. Denote by η the generic point of C.

Definition 3.9. — Let M be a vector space over k(C) and V be a finite
dimensional k-vector subspace of M . For any affine open subset U of C, we
let E(U) be the sub-OC(U)-module of M generated by V . These modules
defines a torsion-free coherent sheaf E on C which is a vector bundle since C
is a regular curve. We say that E is the vector bundle on C generated by the
couple (M,V ).

Remark 3.10. — By definition any element s ∈ V defines a global section of
E over C, which is non-zero when s 6= 0. Hence we can consider V as a k-vector
subspace of H0(C,E). Moreover, the vector bundle E is generated by global
sections, and hence λi(E) > 0 for any i ∈ {1, . . . , rk(E)} (see Proposition 2.3).

We now consider the particular case where V is a linear series. Let K/k be
a finitely generated extension of fields such that K contains k(C). Suppose
given a projective modelX of the fieldK (namelyX is an integral projective k-
scheme such that k(X) ∼= K) equipped with a projective surjective k-morphism
π : X → C and a Cartier divisor D on X. Let V be a finite dimensional k-
vector subspace of H0(D). Note that the vector bundle E generated by (K,V )
identifies with the vector subbundle of π∗(OX(D)) generated by V . Moreover,
the generic fibre Eη of E is the k(C)-vector subspace of K generated by V
(with the notation of Remark 3.6 (ii), Eη = Vk(C)). In particular, if V is a
birational linear series of K/k, then Eη is a birational linear series of K/k(C).

4. Construction of convex bodies

In this section, we prove the main theorem (Theorem 1.1) of the article.
Throughout the section, we fix a field k and a finitely generated extension
K/k and we let d be the transcendental degree of K over k. In the case where
d = 0, we assume that K = k, and the Lebesgue measure on R0 = {0} is
assumed to be the Dirac measure on 0 by convention. We fix also a flag

(11) k = K0 ( K1 ( . . . ( Kd = K

of sub-extensions ofK/k such that each extensionKi/Ki−1 is of transcendental
degree 1. We denote by A(K/k) the set of graded linear series V• of K/k which
are of sub-finite type and birational (see Definition 3.5). In the following, we
will construct by induction a map ∆d from A(K/k) to the set of convex bodies
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in Rd which only depends on the choice of the flag (11), which satisfies the
following properties:
(a) if V• and V ′• are two elements of A(K/k) such that Vn ⊂ V ′n for sufficiently

positive n, then one has ∆d(V•) ⊂ ∆d(V ′• );
(b) for any V• ∈ A(K/k) and any m ∈ N, m > 1, one has

∆d(V (m)
• ) = m∆d(V•);

(c) if V• and V ′• are elements in A(K/k), one has

∆d(V• · V ′• ) ⊃ ∆d(V•) + ∆d(V ′• ).

(d) for any graded linear series V• ∈ A(K/k), the Lebesgue measure of ∆d(V•)
is equal to vol(V•)/d!.

We also prove the following assertion by induction on d.

Proposition 4.1. — Any graded linear series V• ∈ A(K/k) satisfies the Fu-
jita approximation property (see Definition 3.7). In particular, the sequence

dimk(Vn)

nd/d!
, n ∈ N, n > 1

converges to vol(V•) when n tends to the infinity.

4.1. Case of d = 0. — In the case where d = 0, one has Vn = k for
sufficiently positive n since K is assumed to be k. Moreover, the graded linear
series V• is of finite type and one has vol(V•) = 1. Clearly V• satisfies the Fujita
approximation property. We let ∆0(V•) be {0} = R0. Its mass with respect to
the Lebesgue measure (which is the Dirac measure on 0 by convention) is 1,
which is equal to vol(V•)/0!.

4.2. Induction hypothesis. — We assume that d > 1 and that the con-
struction of convex bodies associated to birational graded linear series of finite
type has been defined and that Proposition 4.1 has been established for field
extensions of transcendental degree d−1. In particular, we assume that a map
∆d−1 from A(K/K1) to the set of convex bodies in Rd−1 has been constructed,
which satisfies the conditions (a)–(d) above.

4.3. Construction of convex bodies. — Since the extension K1/k (which
is of finite type) is of transcendental degree 1, there exists a regular projective
curve C over Spec k such that k(C) = K1. We denote by η the generic point of
the curve C. In the following, we consider a graded linear series V• in A(K/k).
Note that V•,K1 is a graded linear series in A(K/K1) (see Remark 3.6 (ii)).
For any n ∈ N, we let En be the vector bundle on C generated by (K,Vn) (see
Definition 3.9). Note that one has En,η = Vn,K1 . Moreover, the direct sum
E• =

⊕
n∈NEn forms a graded OC-algebra, and one has V•,K1

∼= E• ⊗OC
K1
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as graded-K1-algebras. We call E• the graded system of vector bundles on C
generated by V•.

By Remark 3.6 (iii), there exists a birational projective model X of the
field K over k and and ample Cartier divisor D on X such that V• identifies
with a graded linear series of D. The inclusion K1 → K defines a rational
k-morphism from X to C. By replacing X by a birational modification of
X, we may assume that the rational k-morphism X 99K C extends to a flat
projective k-morphism π : X → C. In particular, we can consider E• as a
graded OC-sub-algebra of

⊕
n∈N π∗(O(nD)), see §3.3 for more details.

For each integer n ∈ N, the vector space Vn,K1 is equipped with the R-
filtration by minima as follows

∀ t ∈ R, F t(Vn,K1) = VectK1({s ∈ Vn,K1 | s 6= 0, deg(s) > t}),

where in the computation of degree, we consider the vector bundle structure
of En. In particular, the filtration is multiplicative. In other words, for all
(n,m) ∈ N2 and (t1, t2) ∈ R2, one has

(12) F t1(Vn,K1)F t2(Vm,K1) ⊂ F t1+t2(Vn+m,K1).

For any t ∈ R, let V t
•,K1

be the graded sub-K1-algebra of V•,K1 defined as⊕
n∈N
Fnt(Vn,K1).

Clearly, the graded linear series V t
•,K1

is of sub-finite type. Let

λasymax(E•) := sup
n∈N, n>1

λ1(En)

n
= lim

n→+∞

λ1(En)

n
,

where the second equality comes from the fact that the sequence (λ1(En))n>1

is super-additive. Since En is a vector subbundle of π∗(O(D)), we obtain that

λ1(En) 6 µmax(π∗(O(nD))),

where for any vector bundle F on C, µmax(F ) denote the maximal slope of F ,
defined as

sup
F ′⊂F

deg(F ′)/ rk(F ′),

with F ′ running over the set of all non-zero vector subbundles of F . By [7,
Theorem 4.3.6], we obtain that λasymax(E•) is finite. The following lemma is
similar to [1, Lemma 1.6].

Lemma 4.2. — For any real number t < λasymax(E•), the graded linear series
V t
•,K1

belongs to A(K/K1).
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Proof. — Since V t
•,K1

is a graded sub-K1-algebra of V•,K1 , it is of sub-finite type
(see Remark 3.6 (ii) for the fact that V•,K1 is of sub-finite type). It remains
to verify that V t

•,K1
is birational. By Remark 3.6 (ii), the graded linear series

V•,K1 is birational. Let N0 ∈ N such that the linear series VN0,K1 is birational.
Let ε > 0 such that t+ ε < λasymax(E•). for sufficiently positive integer n, there
exists an element sn ∈ Vn,K1 \{0} such that deg(sn) > (t+ε)n. For any section
s ∈ VN0,K1 such that deg(s) > 0, one has

(13) deg(ssn) > deg(s) + deg(sn) > (t+ ε)n

which is bounded from below by t(n + N0) when n > tN0ε
−1, where the first

inequality (13) comes from the fact that (since E• is a graded OC-algebra)
∀ closed point x ∈ C, ‖ssn‖x 6 ‖s‖x · ‖sn‖x.

We then deduce that the linear series V t
n,K1

is birational for sufficiently positive
n, namely the graded linear series V t

• is birational.

By the induction hypothesis, for any real number t < λasymax(E•) the convex
body ∆d−1(V t

•,K1
) is well defined. Since En is generated by global sections, one

has V t
•,K1

= V•,K1 for t 6 0. Moreover, for any couple (t1, t2) of real numbers
such that t1 6 t2 6 λasymax(E•) one has ∆d−1(V t1

•,K1
) ⊃ ∆d−1(V t2

•,K1
). We define

a function GE• : ∆d−1(V•,K1)→ [0, λasymax(E•)] such that

GE•(x) = sup{t |x ∈ ∆d−1(V t
•,K1

)}.

By convention, if {t |x ∈ ∆d−1(V t
•,K1

)} is empty, then GE•(x) is defined as
λasymax(E•). By definition, for any t ∈ [0, λasymax(E•)], one has

{x ∈ ∆d−1(V•,K1) |GE•(x) > t} =
⋂
ε>0

∆d−1(V t
•,K1

).

Therefore, the function GE• is upper semicontinuous. Moreover, by the con-
dition (12) and the induction hypothesis (notably the conditions (b) and (c)),
we obtain that, for any rational number λ ∈ [0, 1] and all real numbers t1 and
t2 bounded from above by λasymax(E•), one has

∆(V
λt1+(1−λ)t2
•,K1

) ⊃ λ∆(V t1
•,K1

) + (1− λ)∆(V t2
•,K1

).

By Sierpiński’s theorem (see for example [12, Theorem 9.4.2]), we obtain that
the function GE• is concave and is continuous on the interior of ∆(V•,K1).

Definition 4.3. — We let ∆d(V•) be the convex body in Rd delimited by the
concave function GE• , namely ∆d(V•) is by definition the closure of the set

{(x, t) |x ∈ ∆d−1(V•,K1), 0 6 t 6 GE•(x)}.
By the same method of [2, Theorem 1.11 and Corollary 1.13], we deduce from
the induction hypothesis (notably the limit property predicted in Proposition
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4.1, which replaces the condition of containing an ample series in loc. cit.) on
V t
•,K1

(t < λasymax(E•)) that

vol(∆d(V•)) =

∫
t∈[0,λasymax(E•)[

vol(∆d−1(V t
•,K1

)) dt

= lim
n→+∞

1

nd

∑
16i6dimK1

(Vn,K1
)

λi(En)>0

λi(En) = vol(E•),
(14)

where by definition

vol(E•) := lim
n→+∞

dimkH
0(C,En)

nd
,

and the last inequality of (14) comes from (10) and the fact that (which is also
a consequence of the induction hypothesis) and the sub-finiteness condition

dimK1(Vn,K1) = O(nd−1), n→ +∞.

Remark 4.4. — Similarly to [2, Theorem 1.14], the graded system E• of
vector bundles on C satisfies the “arithmetic Fujita approximation property”,
namely

(15) sup
p>1

vol(E[p]
• )

pd
= vol(E•),

where E[p]
• is the graded sub-OC-algebra of E(p)

• generated by Ep.

4.4. Verification of the properties. — In the previous subsection, we
have constructed a map ∆d from A(K/k) to the set of convex bodies in Rd.
It remains to verify that the map ∆d satisfies the properties (a)–(d) described
in the beginning of the section and that any graded linear series in A(K/k)
satisfies the Fujita approximation property.

Let V• and V ′• be two graded linear series in A(K/k). Let E• and E′• be
graded systems of vector bundles on C generated by V• and V ′• respectively.
Assume that, for sufficiently positive integer n, one has Vn ⊂ V ′n, which implies
that En is a vector subbundle of E′n. In particular, for any t ∈ R, one
has V t

n ⊂ V ′n
t for sufficiently positive t. Thus by the induction hypothesis

one has ∆d−1(V t
• ) ⊂ ∆d−1(V ′•

t) for any t < λasymax(E•), which implies that
∆d(V•) ⊂ ∆d(V ′• ). Therefore, the map ∆d satisfies the condition (a).

Let V• be a graded linear series in A(K/k) and E• be the graded system of
vector bundles on C generated by V•. For any m ∈ N, m > 1, let E(m)

• :=⊕
n∈NEmn, which is the graded system of vector bundles on C generated by

V (m)
• . By definition one has λasymax(E(m)

• ) = mλasymax(E•). Moreover, for any t <
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λasymax(E•), one has V
(m),mt
•,K1

= V
t,(m)
•,K1

. Therefore one has ∆d(V (m)
• ) = m∆d(V•).

In other words, the map ∆d satisfies the condition (b).
Let V• and V ′• be two graded linear series in A(K/k), and E• and E′• be

graded system of vector bundles on C generated by V• and V ′• , respectively.
Let F• be the graded system of vector bundles on C generated by V• · V ′• .
For any n ∈ N, one has a homomorphisme of OC-modules En ⊗OC

E′n → Fn
induced by the canonical k-linear map Vn ⊗k V ′n → Vn · V ′n. In particular, for
any (t, t′) ∈ R2 one has

F t(Vn,K1) · F t′(V ′n,K1
) ⊂ F t+t′(Vn,K1 · Vn,K1).

This implies that, for any (x, y) ∈ ∆d−1(V•)×∆d−1(V ′• ), one has

GF•(x+ y) > GE•(x) +GE′•(y).

Hence ∆d(V• · V ′• ) ⊃ ∆d(V•) + ∆d(V ′• ). Namely the map ∆d satisfies the
condition (c).

The condition (d) and the Fujita approximation property of V• follow from
(14) and the following lemma, which concludes the proof of Theorem 1.1.

Lemma 4.5. — Let V• be a graded linear series in A(K/k) and E• be the
graded system of vector bundles on C generated by V•. One has

(16) vol(V•) = vol(E•) := lim
n→+∞

dimkH
0(C,En)

nd/d!
.

Moreover, the graded linear series V• satisfies the Fujita approximation prop-
erty.

Proof. — For any n ∈ N, one has (see Remark 3.10)

dimk(Vn) 6 dimkH
0(C,En).

Therefore vol(V•) 6 vol(E•).
In the following, we prove the converse inequality. By Remark 3.6 (iii), we

may assume without loss of generality that K is the rational function field of a
normal projective k-scheme X and that V• is a birational graded linear series
of a very ample Cartier divisor D on X. Moreover, the inclusion k(C) ⊂ X
defines a rational k-morphism from X to C. By replacing X by its blowing-up
along the locus where the rational k-morphism is not defined, we may suppose
that the rational morphism X 99K C extends to a flat projective k-morphism
π : X → C. We can thus identify each vector bundle En with the vector
subbundle of π∗(OX(D)) generated by Vn.

We denote by ϕ : C → Spec k the structural morphism. Let p > 1 be an
integer such that the rational morphism jp : X 99K P(Vp) defined by the linear



16 HUAYI CHEN

series Vp maps X birationally to its image. Let up : Xp → X be the blowing-up
of X along the base locus of jp, namely

Xp := Proj

(⊕
m>0

(ϕπ)∗(Symm(Vp)) −→ OX(pmD)

)
.

Then the rational morphism jp : X 99K P(Vp) gives rise to a projective k-
morphism fp : Xp → P(Vp) which maps Xp birationally to its image. Let Lp
be the pull-back of the tautological invertible sheaf OVp(1) by jp. Hence one
has

vol(Lp) = vol(OVp(1)|fp(Xp))

since fp maps birationally Xp to its image. Therefore the volume of Lp is equal
to that of the graded linear series

V [p]
• :=

⊕
n>0

Im(Symn
k(Vp) −→ Vnp).

Let
E[p]
• =

⊕
n>0

Im(Symn
OC

(Ep) −→ Enp).

For sufficiently positive integer n, one has E[p]
n ⊂ (πup)∗(L

⊗n
p ). Hence

(17) vol(V•) >
vol(V [p]

• )

pd
=

vol(Lp)

pd
>

vol(E[p]
• )

pd
.

By (15) we obtain vol(V•) > vol(E•). The equality (16) is thus proved.
Moreover, the inequality (17) and the equality (16) also imply that

sup
p>1

vol(V [p]
• )

pd
= vol(V•).

Hence the graded linear series V• satisfies the Fujita approximation property.

5. General graded linear series of sub-finite type

In this section, we consider graded linear series of sub-finite type, which are
not necessarily birational. We still fix a field extension K/k which is finitely
generated and we let d be the transcendental degree of the extension.

Definition 5.1. — Let V• be a graded linear series of K/k. We call Iitaka
dimension of V• the transcendental degree of k(V•) over k, where k(V•) denotes
the smallest sub-extension of K/k containing all k(Vn), (n ∈ N, n > 1). We
denote by κ(V•) the Iitaka dimension of V• over k.
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Proposition 5.2. — Let V• be a graded linear series of K/k. We assume
that Vn does not reduce to {0} for sufficiently positive integer n. Then for
sufficiently positive integer n, one has k(Vn) = k(V•).

Proof. — Since k(V•)/k is a sub-extension of a finitely generated extension,
it is also finitely generated (see [4] Chapter V, §14, no.7 Corollary 3). In
particular, there exists m ∈ N, m > 1, such that k(V•) is generated by
k(V1), . . . , k(Vm). Now let N0 be an integer, N0 > 1 such that Vn 6= {0} for
n > N0. Let n be an integer such that n > N0 + m. For any i ∈ {1, . . . ,m},
we pick an element fi ∈ Vn−i. Then Vn contains

⋃m
i=1 fiVi. Therefore k(Vn)

contains k(fiVi) = k(Vi) for any i ∈ {1, . . . , n}, which implies that k(Vn) =
k(V•).

Remark 5.3. — Let V• be a graded linear series of K/k such that Vn 6= {0}
for sufficiently positive n. We assume that 1 ∈ V1 (and hence 1 ∈ Vn for any
n > 1). Then we can consider V• as a graded linear series of k(V•)/k. As a
graded linear series of k(V•)/k, V• is birational by definition. Therefore, if it is
of sub-finite type (as a graded linear series of k(V•)/k), then the construction
in the previous section allows to define a convex body ∆(V•) in Rκ, where κ is
the Iitaka dimension of V•, such that

lim
n→+∞

rkk(Vn)

nκ/κ!
.

However, suppose that V• is of sub-finite type as graded linear series of K/k,
I do not know if it is of sub-finite type as graded linear series of k(V•)/k.

Acknowledgement: I would like to thank Hideaki Ikoma for his valuable
comments.
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