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Abstract. — We establish, for a generically big Hermitian line bundle, the conver-
gence of truncated Harder-Narasimhan polygons and the uniform continuity of the
limit. As applications, we prove a conjecture of Moriwaki asserting that the arith-
metic volume function is actually a limit instead of a sup-limit, and we show how to
compute the asymptotic polygon of a Hermitian line bundle, by using the arithmetic
volume function.
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1. Introduction

Let K be a number field and OK be its integer ring. Let X be a projective
arithmetic variety of total dimension d over SpecOK . For any Hermitian line bundle
ℒ on X , the arithmetic volume of ℒ introduced by Moriwaki (see [20]) is

(1) v̂ol(ℒ) = lim sup
n→∞

ℎ̂0(X ,ℒ⊗n)

nd/d!
,
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where ℎ̂0(X ,ℒ⊗n) := log #{s ∈ H0(X ,ℒ⊗n) ∣ ∀� : K → ℂ, ∥s∥�,sup ≤ 1}. The
Hermitian line bundle ℒ is said to be arithmetically big if v̂ol(ℒ) > 0. The notion of
arithmetic bigness had been firstly introduced by Moriwaki [19] §2 in a different form.
Recently he himself ([20] Theorem 4.5) and Yuan ([25] Corollary 2.4) have proved
that the arithmetic bigness in [19] is actually equivalent to the strict positivity of
the arithmetic volume function (1). In [20], Moriwaki has proved the continuity of
(1) with respect to ℒ and then deduced some comparisons to arithmetic intersection
numbers (loc. cit. Theorem 6.2).

Note that the volume function (1) is an arithmetic analogue of the classical volume
function for line bundles on a projective variety: if L is a line bundle on a projective
variety X of dimension d defined over a field k, the volume of L is

(2) vol(L) := lim sup
n→∞

rkkH
0(X,L⊗n)

nd/d!
.

Similarly, L is said to be big if vol(L) > 0. After Fujita’s approximation theorem (see
[13], and [23] for positive characteristic case), the sup-limit in (2) is in fact a limit
(see [18] 11.4.7).

During a presentation at Institut de Mathématiques de Jussieu, Moriwaki has
conjectured that, in arithmetic case, the sequence

(
ℎ̂0(X ,ℒ)/nd

)
n≥1 also converges.

In other words, one has actually

v̂ol(ℒ) = lim
n→∞

ℎ̂0(X ,ℒ⊗n)

nd/d!
.

The strategy proposed by him is to develop an analogue of Fujita’s approximation
theorem in arithmetic setting (see [20] Remark 5.7).

In this article, we prove Moriwaki’s conjecture by establishing a convergence result
of Harder-Narasimhan polygons (Theorem 4.2), which is a generalization of the au-
thor’s previous work [11] where the main tool was the Harder-Narasimhan filtration
(indexed by ℝ) of a Hermitian vector bundle on SpecOK and its associated Borel
measure. To apply the convergence of polygons, we shall compare ℎ̂0(E), defined as
the logarithm of the number of effective points in E, to the positive degree d̂eg+(E),
which is the maximal value of the Harder-Narasimhan polygon of E. Here E denotes
a Hermitian vector bundle on SpecOK . We show that the arithmetic volume func-
tion coincides with the limit of normalized positive degrees and therefore prove the
conjecture.

In [20] and [25], the important (analytical) technic used by both authors is the
estimation of the distortion function, which has already appeared in [1]. The approach
in the present work, which is similar to that in [21], relies on purely algebraic
arguments. We also establish an explicit link between the volume function and some
geometric invariants of ℒ such as asymptotic slopes, which permits us to prove that
ℒ is big if and only if the norm of the smallest non-zero section of ℒ⊗n decreases
exponentially when n tends to infinity. This result is analogous to Theorem 4.5 of
[20] or Corollary 2.4 (1)⇔(4) of [25] except that we avoid using analytical methods.
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In our approach, the arithmetic volume function can be interpreted as the limit of
maximal values of Harder-Narasimhan polygons. Inspired by Moriwaki’s work [20],
we shall establish the uniform continuity for limit of truncated Harder-Narasimhan
polygons (Theorem 6.4). This result refines loc. cit. Theorem 5.4. Furthermore, we
show that the asymptotic polygon can be calculated from the volume function of the
Hermitian line bundle twisted by pull-backs of Hermitian line bundles on SpecOK .

Our method works also in function field case. It establishes an explicit link between
the geometric volume function and some classical geometry such as semistability and
Harder-Narasimhan filtration. This generalizes for example a work of Wolfe [24] (see
also [12] Example 2.12) concerning volume function on ruled varieties over curves.
Moreover, recent results in [7, 8, 2] show that at least in function field case, the
asymptotic polygon is “differentiable” with respect to the line bundle, and there
may be a “measure-valued intersection product” from which we recover arithmetic
invariants by integration.

The rest of this article is organized as follows. We fist recall some notation in
Arakelov geometry in the second section. In the third section, we introduce the notion
of positive degree for a Hermitian vector bundle on SpecOK and we compare it to the
logarithm of the number of effective elements. The main tool is the Riemann-Roch
inequality on SpecOK due to Gillet and Soulé [15]. In the fourth section, we establish
the convergence of the measures associated to suitably filtered section algebra of a big
line bundle (Theorem 4.2). We show in the fifth section that the arithmetic bigness of
ℒ implies the classical one of ℒK . This gives an alternative proof for a result of Yuan
[25]. By the convergence result in the fourth section, we are able to prove that the
volume of ℒ coincides with the limit of normalized positive degrees, and therefore the
sup-limit in (1) is in fact a limit (Theorem 5.2). Here we also need the comparison
result in the third section. Finally, we prove that the arithmetic bigness is equivalent
to the positivity of asymptotic maximal slope (Theorem 5.4). In the sixth section,
we establish the continuity of the limit of truncated polygons. Then we show in the
seventh section how to compute the asymptotic polygon.
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Mathématiques de Jussieu. I am grateful to him for pointing out to me that his results
in [20] hold in continuous metric case as an easy consequence of Weierstrass-Stone
theorem. I would like to thank J.-B. Bost for a stimulating suggestion and helpful
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I am also grateful to R. Berman, S. Boucksom, A. Chambert-Loir, C. Mourougane
and C. Soulé for discussions. Most of results in the present article are obtained and
written during my visit at Institut des Hautes Études Scientifiques. I would like to
thank the institute for hospitalities.

2. Notation and reminders

Throughout this article, we fix a number field K and denote by OK its algebraic
integer ring, and by ΔK its discriminant. By (projective) arithmetic variety we mean
an integral projective flat OK-scheme.
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2.1. Hermitian vector bundles. — If X is an arithmetic variety, one calls Her-
mitian vector bundle on X any pair ℰ = (ℰ , (∥ ⋅ ∥�)�:K→ℂ) where ℰ is a locally free
OX -module, and for any embedding � : K → ℂ, ∥⋅∥� is a continuous Hermitian norm
on ℰ�,ℂ. One requires in addition that the metrics (∥ ⋅ ∥�)�:K→ℂ are invariant by the
action of complex conjugation. The rank of ℰ is just that of ℰ . If rk ℰ = 1, one says
that ℰ is a Hermitian line bundle. Note that SpecOK is itself an arithmetic vari-
ety. A Hermitian vector bundle on SpecOK is just a projective OK-module equipped
with Hermitian norms which are invariant under complex conjugation. For any real
number a, denote by L a the Hermitian line bundle

(3) L a := (OK , (∥ ⋅ ∥�,a)�:K→ℂ),

where ∥1∥�,a = e−a, 1 being the unit of OK .

2.2. Arakelov degree, slope and Harder-Narasimhan polygon. — Several
invariants are naturally defined for Hermitian vector bundles on SpecOK , notably
the Arakelov degree, which leads to other arithmetic invariants (cf. [4]). If E is a
Hermitian vector bundle of rank r on SpecOK , the Arakelov degree of E is defined as
the real number

d̂eg(E) := log #
(
E/(OKs1 + ⋅ ⋅ ⋅+OKsr)

)
− 1

2

∑
�:K→ℂ

log det
(
⟨si, sj⟩�

)
1≤i,j≤r,

where (si)1≤i≤r is an element in Er which forms a basis of EK . This definition does
not depend on the choice of (si)1≤i≤r. If E is non-zero, the slope of E is defined to
be the quotient �̂(E) := d̂eg(E)/ rkE. The maximal slope of E is the maximal value
of slopes of all non-zero Hermitian subbundles of E. The minimal slope of E is the
minimal value of slopes of all non-zero Hermitian quotients of E. We say that E is
semistable if �̂(E) = �̂max(E).

Recall that the Harder-Narasimhan polygon PE is by definition the concave function
defined on [0, rkE] whose graph is the convex hull of points of the form (rkF, d̂eg(F )),
where F runs over all Hermitian subbundles of E. By works of Stuhler [22] and
Grayson [16], this polygon can be determined from the Harder-Narasimhan flag of E,
which is the only flag

(4) E = E0 ⊃ E1 ⊃ ⋅ ⋅ ⋅ ⊃ En = 0

such that the subquotients Ei/Ei+1 are all semistable, and verifies

(5) �̂(E0/E1) < �̂(E1/E2) < ⋅ ⋅ ⋅ < �̂(En−1/En).

In fact, the vertices of PE are just (rkEi, d̂eg(Ei)).
For details about Hermitian vector bundles on SpecOK , see [4, 5, 10].

2.3. Reminder on Borel measures. — Denote by Cc(ℝ) the space of all contin-
uous functions of compact support on ℝ. Recall that a Borel measure on ℝ is just a
positive linear functional on Cc(ℝ), where the word “positive” means that the linear
functional sends a positive function to a positive number. One says that a sequence
(�n)n≥1 of Borel measures on ℝ converges vaguely to the Borel measure � if, for any
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ℎ ∈ Cc(ℝ), the sequence of integrals
( ∫

ℎd�n
)
n≥1 converges to

∫
ℎd�. This is also

equivalent to the convergence of integrals for any ℎ in C∞0 (ℝ), the space of all smooth
functions of compact support on ℝ.

Let � be a Borel probability measure on ℝ. If a ∈ ℝ, we denote by �a� the Borel
measure such that

∫
ℎd�a� =

∫
ℎ(x+a)�(dx). If " > 0, let T"� be the Borel measure

such that
∫
ℎdT"� =

∫
ℎ("x)�(dx).

If � is a Borel probability measure on ℝ whose support is bounded from above,
we denote by P (�) the Legendre transformation (see [17] II §2.2) of the function
x 7→ −

∫ +∞
x

�(]y,+∞[) dy. It is a concave function on [0, 1[ which takes value 0 at
the origin. If � is a linear combination of Dirac measures, then P (�) is a polygon
(that is to say, concave and piecewise linear). An alternative definition of P (�) is, if
we denote by F ∗� (t) = sup{x ∣ �(]x,+∞[) > t}, then P (�)(t) =

∫ t
0
F ∗� (s) ds. One has

P (�a�)(t) = P (�)(t) + at and P (T"�) = "P (�). For details, see [11] §1.2.5.
If �1 and �2 are two Borel probability measures on ℝ, we use the symbol �1 ≻ �2

or �2 ≺ �1 to denote the following condition:
for any increasing and bounded function ℎ,

∫
ℎd�1 ≥

∫
ℎd�2.

It defines an order on the set of all Borel probability measures on ℝ. If in addition �1
and �2 are of support bounded from above, then P (�1) ≥ P (�2).

2.4. Filtered spaces. — Let k be a field and V be a vector space of finite rank
over k. We call filtration of V any family ℱ = (ℱaV )a∈ℝ of subspaces of V subject
to the following conditions
1) for all a, b ∈ ℝ such that a ≤ b, one has ℱaV ⊃ ℱbV ,
2) ℱaV = 0 for a sufficiently positive,
3) ℱaV = V for a sufficiently negative,
4) the function a 7→ rkk(ℱaV ) is left continuous.
Such filtration corresponds to a flag

V = V0 ⊋ V1 ⊋ V2 ⊋ ⋅ ⋅ ⋅ ⊋ Vn = 0

together with a strictly increasing real sequence (ai)0≤i≤n−1 describing the points
where the function a 7→ rkk(ℱaV ) is discontinuous.

We define a function � : V → ℝ ∪ {+∞} as follows:
�(x) = sup{a ∈ ℝ ∣x ∈ ℱaV }.

This function actually takes values in {a0, ⋅ ⋅ ⋅ , an−1,+∞}, and is finite on V ∖ {0}.
If V is non-zero, the filtered space (V,ℱ) defines a Borel probability measure �V

which is a linear combination of Dirac measures:

�V =

n−1∑
i=0

rkVi − rkVi+1

rkV
�ai .

Note that the support of �V is just {a0, ⋅ ⋅ ⋅ , an−1}. We define �min(V ) = a0 and
�max(V ) = an−1. Denote by PV the polygon P (�V ). If V = 0, by convention we
define �V as the zero measure.
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If 0 // V ′ // V // V ′′ // 0 is an exact sequence of filtered vector
spaces, where V ∕= 0, then the following equality holds (cf. [11] Proposition 1.2.5):

(6) �V =
rkV ′

rkV
�V ′ +

rkV ′′

rkV
�V ′′ .

If E is a non-zero Hermitian vector bundle on SpecOK , then the Harder-
Narasimhan flag (4) and the successive slope (5) defines a filtration of V = EK ,
called the Harder-Narasimhan filtration. We denote by �E the Borel measure associ-
ated to this filtration, called the measure associated to the Hermitian vector bundle
E. One has the following relations:

(7) �max(V ) = �̂max(E), �min(V ) = �̂min(E), PV = PE = P (�E).

For details about filtered spaces and their measures and polygons, see [11] §1.2.

2.5. Slope inequality and its measure form. — For any maximal ideal p of
OK , denote by Kp the completion of K with respect to the p-adic valuation vp on K,
and by ∣ ⋅ ∣p be the p-adic absolute value such that ∣a∣p = #(OK/p)−vp(a).

Let E and F be two Hermitian vector bundles on SpecOK . Let ' : EK → FK
be a non-zero K-linear homomorphism. For any maximal ideal p of OK , let ∥'∥p be
the norm of the linear mapping 'Kp

: EKp
→ FKp

. Similarly, for any embedding
� : K → ℂ, let ∥'∥� be the norm of '�,ℂ : E�,ℂ → F�,ℂ. The height of ' is then
defined as

(8) ℎ(') :=
∑
p

log ∥'∥p +
∑

�:K→ℂ
log ∥'∥�.

Recall the slope inequality as follows (cf. [4] Proposition 4.3):

Proposition 2.1. — If ' is injective, then �̂max(E) ≤ �̂max(F ) + ℎ(').

The following estimation generalizing [11] Corollary 2.2.6 is an application of the
slope inequality.

Proposition 2.2. — Assume ' is injective. Let � = rkE/ rkF . Then one has
�F ≻ ��ℎ(')�E + (1− �)��̂min(F ).

Proof. — We equip EK and FK with Harder-Narasimhan filtrations. The slope
inequality implies that �('(x)) ≥ �(x) − ℎ(') for any x ∈ EK (see [11] Proposition
2.2.4). Let V be the image of ', equipped with induced filtration. By [11] Corollary
2.2.6, �V ≻ �ℎ(')�E . By (6), �F ≻ ��V + (1 − �)��̂min(F ), so the proposition is
proved.

3. Positive degree and number of effective elements

Let E be a Hermitian vector bundle on SpecOK . Define

ℎ̂0(E) := log #{s ∈ E ∣ ∀� : K → ℂ, ∥s∥� ≤ 1},



POSITIVE DEGREE AND ARITHMETIC BIGNESS 7

which is the logarithm of the number of effective elements in E. Note that if
0 //

E
′ // E //

E
′′ // 0 is a short exact sequence of Hermitian vector

bundles, then ℎ̂0(E
′
) ≤ ℎ̂0(E). If in addition ℎ̂0(E

′′
) = 0, then ℎ̂0(E

′
) = ℎ̂0(E).

In this section, we define an invariant of E, suggested by J.-B. Bost, which is called
the positive degree:

d̂eg+(E) := max
t∈[0,1]

PE(t).

If E is non-zero, define the positive slope of E as �̂+(E) = d̂eg+(E)/ rkE. Using
the Riemann-Roch inequality established by Gillet and Soulé [15], we shall compare
ℎ̂0(E) to d̂eg+(E).

3.1. Reminder on dualizing bundle and Riemann-Roch inequality. —
Denote by !OK

the arithmetic dualizing bundle on SpecOK : it is a Hermitian line
bundle on SpecOK whose underlying OK-module is !OK

:= Homℤ(OK ,ℤ). This
OK-module is generated by the trace map trK/ℚ : K → ℚ up to torsion. We choose
Hermitian metrics on !OK

such that ∥trK/ℚ∥� = 1 for any embedding � : K → ℂ.
The arithmetic degree of !OK

is log ∣ΔK ∣, where ΔK is the discriminant of K over ℚ.
We recall below a result in [15], which should be considered as an arithmetic

analogue of classical Riemann-Roch formula for vector bundles on a smooth projective
curve.

Proposition 3.1 (Gillet and Soulé). — There exists an increasing function C0 :
ℕ∗ → ℝ+ satisfying C0(n)≪K n log n such that, for any Hermitian vector bundle E
on SpecOK , one has

(9)
∣∣ℎ̂0(E)− ℎ̂0(!OK

⊗ E∨)− d̂eg(E)
∣∣ ≤ C0(rkE).

3.2. Comparison of ℎ̂0 and d̂eg+. — Proposition 3.3 below is a comparison
between ℎ̂0 and d̂eg+. The following lemma, which is consequences of the Riemann-
Roch inequality (9), is needed for the proof.

Lemma 3.2. — Let E be a non-zero Hermitian vector bundle on SpecOK .
1) If �̂max(E) < 0, then ℎ̂0(E) = 0.

2) If �̂min(E) > log ∣ΔK ∣, then
∣∣ℎ̂0(E)− d̂eg(E)

∣∣ ≤ C0(rkE).

3) If �̂min(E) ≥ 0, then
∣∣ℎ̂0(E)− d̂eg(E)

∣∣ ≤ log ∣ΔK ∣ rkE + C0(rkE).

Proof. — 1) Assume that E has an effective section. There then exists a homomor-
phism ' : L 0 → E whose height is negative or zero. By slope inequality, we obtain
�̂max(E) ≥ 0.

2) Since �̂min(E) > log ∣ΔK ∣, we have �̂max(!OK
⊗E∨) < 0. By 1), ℎ̂0(!OK

⊗E∨) =
0. Thus the desired inequality results from (9).

3) Let a = log ∣ΔK ∣ + " with " > 0. Then �̂min(E ⊗ L a) > log ∣ΔK ∣. By 2),
ℎ̂0(E ⊗L a) ≤ d̂eg(E ⊗L a) + C0(rkE) = d̂eg(E) + a rkE + C0(rkE). Since a > 0,
ℎ̂0(E) ≤ ℎ̂0(E ⊗L a). So we obtain ℎ̂0(E)− d̂eg(E) ≤ a rkE + C0(rkE). Moreover,
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(9) implies ℎ̂0(E)− d̂eg(E) ≥ ℎ̂0(!OK
⊗E∨)−C0(rkE) ≥ −C0(rkE). Therefore, we

always have
∣∣ℎ̂0(E)− d̂eg(E)

∣∣ ≤ a rkE+C0(rkE). Since " is arbitrary, we obtain the
desired inequality.

Proposition 3.3. — The following inequality holds:

(10)
∣∣ℎ̂0(E)− d̂eg+(E)

∣∣ ≤ rkE log ∣ΔK ∣+ C0(rkE).

Proof. — Let the Harder-Narasimhan flag of E be as in (4). For any integer i such
that 0 ≤ i ≤ n−1, let �i = �̂(Ei/Ei+1). Let j be the first index in {0, ⋅ ⋅ ⋅ , n−1} such
that �j ≥ 0; if such index does not exist, let j = n. By definition, d̂eg+(E) = d̂eg(Ej).
Note that, if j > 0, then �̂max(E/Ej) = �j−1 < 0. Therefore we always have
ℎ0(E/Ej) = 0 and hence ℎ̂0(E) = ℎ̂0(Ej).

If j = n, then ℎ̂0(Ej) = 0 = d̂eg+(E). Otherwise �̂min(Ej) = �j ≥ 0 and by
Lemma 3.2 3), we obtain∣∣ℎ̂0(E)− d̂eg+(E)

∣∣ =
∣∣ℎ̂0(Ej)− d̂eg(Ej)

∣∣
≤ rkEj log ∣ΔK ∣+ C0(rkEj) ≤ rkE log ∣ΔK ∣+ C0(rkE).

4. Asymptotic polygon of a big line bundle

Let k be a field and B =
⊕

n≥0Bn be an integral graded k-algebra such that, for
n sufficiently positive, Bn is non-zero and has finite rank. Let f : ℕ∗ → ℝ+ be a
mapping such that lim

n→∞
f(n)/n = 0. Assume that each vector space Bn is equipped

with an ℝ-filtration ℱ (n) such that B is f -quasi-filtered (cf. [11] §3.2.1). In other
words, we assume that there exists n0 ∈ ℕ∗ such that, for any integer r ≥ 2 and all
homogeneous elements x1, ⋅ ⋅ ⋅ , xr in B respectively of degree n1, ⋅ ⋅ ⋅ , nr in ℕ≥n0

, one
has

�(x1 ⋅ ⋅ ⋅xr) ≥
r∑
i=1

(
�(xi)− f(ni)

)
.

We suppose in addition that supn≥1 �max(Bn)/n < +∞. Recall below some results
in [11] (Proposition 3.2.4 and Theorem 3.4.3).

Proposition 4.1. — 1) The sequence (�max(Bn)/n)n≥1 converges in ℝ.

2) If B is finitely generated, then the sequence of measures (T 1
n
�Bn)n≥1 converges

vaguely to a Borel probability measure on ℝ.

In this section, we shall generalize the second assertion of Proposition 4.1 to the
case where the algebra B is given by global sections of tensor power of a big line
bundle on a projective variety.
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4.1. Convergence of measures. — Let X be an integral projective scheme of
dimension d defined over k and L be a big invertible OX -module: recall that an
invertible OX -module L is said to be big if its volume, defined as

vol(L) := lim sup
n→∞

rkkH
0(X,L⊗n)

nd/d!
,

is strictly positive.

Theorem 4.2. — With the above notation, if B =
⊕

n≥0H
0(X,L⊗n), then the

sequence of measures (T 1
n
�Bn

)n≥1 converges vaguely to a probability measure on ℝ.

Proof. — For any integer n ≥ 1, denote by �n the measure T 1
n
�Bn

. Since L is big,
for sufficiently positive n, H0(X,L⊗n) ∕= 0, and hence �n is a probability measure. In
addition, Proposition 4.1 1) implies that the supports of the measures �n are uniformly
bounded from above. After Fujita’s approximation theorem (cf. [13, 23], see also
[18] Ch. 11), the volume function vol(L) is in fact a limit:

vol(L) = lim
n→∞

rkkH
0(X,L⊗n)

nd/d!
.

Furthermore, for any real number ", 0 < " < 1, there exists an integer p ≥ 1 together
with a finitely generated sub-k-algebra A" of B(p) =

⊕
n≥0Bnp which is generated

by elements in Bp and such that

lim
n→∞

rk(Bnp)− rk(A"n)

rk(Bnp)
≤ ".

The graded k-algebra A", equipped with induced filtrations, is f -quasi-filtered. There-
fore Proposition 4.1 2) is valid for A". In other words, If we denote by �"n the Borel
measure T 1

np
�A"

n
= T 1

p
(T 1

n
�A"

n
), then the sequence of measures (�"n)n≥1 converges

vaguely to a Borel probability measure �" on ℝ. In particular, for any function
ℎ ∈ Cc(ℝ), the sequence of integrals

( ∫
ℎd�"n

)
n≥1 is a Cauchy sequence. This as-

sertion is also true when ℎ is a continuous function on ℝ whose support is bounded
from below: the supports of the measures �"n are uniformly bounded from above. The
exact sequence 0 // A"n // Bnp // Bnp/A"n // 0 implies that

�Bnp
=

rkA"n
rkBnp

�A"
n

+
rkBnp − rkA"n

rkBnp
�Bnp/A"

n
.

Therefore, for any bounded Borel function ℎ, one has

(11)
∣∣∣ ∫ ℎd�np −

rkA"n
rkBnp

∫
ℎd�"n

∣∣∣ ≤ ∥ℎ∥sup rkBnp − rkA"n
rkBnp

.

Hence, for any bounded continuous function ℎ satisfying inf(supp(ℎ)) > −∞, there
exists Nℎ," ∈ ℕ such that, for any n,m ≥ Nℎ,",

(12)
∣∣∣ ∫ ℎd�np −

∫
ℎd�mp

∣∣∣ ≤ 2"∥ℎ∥sup + ".

Let ℎ be a smooth function on ℝ whose support is compact. We choose two
increasing continuous functions ℎ1 and ℎ2 such that ℎ = ℎ1−ℎ2 and that the supports
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of them are bounded from below. Let n0 ∈ ℕ∗ be sufficiently large such that, for any
r ∈ {n0p+1, ⋅ ⋅ ⋅ , n0p+p−1}, one has H0(X,L⊗r) ∕= 0. We choose, for such r, a non-
zero element er ∈ H0(X,L⊗r). For any n ∈ ℕ and any r ∈ {n0p+1, ⋅ ⋅ ⋅ , n0p+p−1},
let Mn,r = erBnp ⊂ Bnp+r, M ′n,r = e2n0p+p−rMn,r ⊂ B(n+2n0+1)p and denote by
�n,r = T 1

np
�Mn,r

, �′n,r = T 1
np
�M ′n,r

, where Mn,r and M ′n,r are equipped with the
induced filtrations. As the algebra B is f -quasi-filtered, we obtain, by [11] Lemma
1.2.6, �′n,r ≻ �an,r�n,r ≻ �bn,r�np, where

an,r =
�(e2n0p+p−r)− f(np+ r)− f(2n0p+ p− r)

np
, bn,r = an,r+

�(er)− f(np)− f(r)

np
.

This implies

(13)
∫
ℎi d�′n,r ≥

∫
ℎi d�an,r

�n,r ≥
∫
ℎi d�bn,r

�np, i = 1, 2.

In particular,

(14)
∣∣∣ ∫ ℎi d�an,r

�n,r −
∫
ℎi d�bn,r

�np

∣∣∣ ≤ ∣∣∣ ∫ ℎi d�′n,r −
∫
ℎi d�bn,r

�np

∣∣∣
As lim

n→∞

rkB(n+2n0+1)p − rkBnp

rkB(n+2n0+1)p
= 0,

(15) lim
n→∞

∣∣∣ ∫ ℎi d�′n,r −
∫
ℎi d�(n+2n0+1)p

∣∣∣ = 0.

Moreover, lim
n→∞

bn,r = 0. By [11] Lemma 1.2.10, we obtain

(16) lim
n→∞

∣∣∣ ∫ ℎi d�bn,r
�np −

∫
ℎi d�np

∣∣∣ = 0.

We deduce, from (12), (15) and (16),

lim sup
n→∞

∣∣∣ ∫ ℎi d�′n,r −
∫
ℎi d�bn,r

�np

∣∣∣
= lim sup

n→∞

∣∣∣ ∫ ℎi d�(n+2n0+1)p −
∫
ℎi d�np

∣∣∣ ≤ 2"∥ℎi∥sup + ".

(17)

By (14),

(18) lim sup
n→∞

∣∣∣ ∫ ℎi d�an,r
�n,r −

∫
ℎi d�bn,r

�np

∣∣∣ ≤ 2"∥ℎi∥sup + ".

Note that
lim
n→∞

rkBnp+r − rkBnp
rkBnp+r

= lim
n→∞

an,r = 0.

So

lim
n→∞

∣∣∣ ∫ ℎi d�n,r −
∫
ℎi d�np+r

∣∣∣ = lim
n→∞

∣∣∣ ∫ ℎi d�n,r −
∫
ℎi d�an,r�n,r

∣∣∣ = 0.

Hence, by (16) and (18), we have

lim sup
n→∞

∣∣∣ ∫ ℎd�np+r −
∫
ℎd�np

∣∣∣ ≤ 2"(∥ℎ1∥sup + ∥ℎ2∥sup) + 2".
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According to (12), we obtain that there exists N ′ℎ," ∈ ℕ∗ such that, for all integers l
and l′ such that l ≥ N ′ℎ,", l′ ≥ N ′ℎ,", one has∣∣∣ ∫ ℎd�l −

∫
ℎd�l′

∣∣∣ ≤ 4"(∥ℎ1∥sup + ∥ℎ2∥sup) + 2"∥ℎ∥sup + 6",

which implies that the sequence (
∫
ℎd�n)n≥1 converges in ℝ.

Let I : C∞0 (ℝ) → ℝ be the linear functional defined by I(ℎ) = lim
n→∞

∫
ℎd�n. It

extends in a unique way to a continuous linear functional on Cc(ℝ). Furthermore,
it is positive, and so defines a Borel measure � on ℝ. Finally, by (11), ∣�(ℝ) − (1 −
")�"(ℝ)∣ ≤ ". Since " is arbitrary, � is a probability measure.

4.2. Convergence of maximal values of polygons. — If � is a Borel probability
measure on ℝ and � ∈ ℝ, denote by �(�) the Borel probability measure on ℝ such
that, for any ℎ ∈ Cc(ℝ),∫

ℎd�(�) =

∫
ℎ(x)11[�,+∞[(x)�(dx) + ℎ(�)�(]−∞, �[).

The measure �(�) is called the truncation of � at �. The truncation operator preserves
the order “≻”.

Assume that the support of � is bounded from above. The truncation of � at �
modifies the “polygon” P (�) only on the part with derivative < �. More precisely,
one has

P (�) = P (�(�)) on {t ∈ [0, 1[
∣∣F ∗� (t) ≥ �}.

In particular, if � ≤ 0, then

(19) max
t∈[0,1[

P (�)(t) = max
t∈[0,1[

P (�(�))(t).

The following proposition shows that given a vague convergence sequence of Borel
probability measures, almost all truncations preserve vague limit.

Proposition 4.3. — Let (�n)n≥1 be a sequence of Borel probability measures which
converges vaguely to a Borel probability measure �. Then, for any � ∈ ℝ, the sequence
(�

(�)
n )n≥1 converges vaguely to �(�).

Proof. — For any x ∈ ℝ and � ∈ ℝ, write x∨� := max{x, �}. Assume that ℎ ∈ Cc(ℝ)
and � is a Borel probability measure. Then∫

ℎ(x)�(�)(dx) =

∫
ℎ(x ∨ �)�(dx).

By [9] IV §5 n∘12 Proposition 22, for any � ∈ ℝ,

lim
n→∞

∫
ℎ(x)�(�)n (dx) = lim

n→∞

∫
ℎ(x∨�)�n(dx) =

∫
ℎ(x∨�)�(dx) =

∫
ℎ(x)�(�)(dx).

Therefore, the proposition is proved.
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Corollary 4.4. — Under the assumption of Theorem 4.2, the sequence(
max
t∈[0,1]

PBn(t)/n
)
n≥1

converges in ℝ.

Proof. — For n ∈ ℕ∗, denote by �n = T 1
n
�Bn

. By Theorem 4.2, the sequence (�n)n≥1
converges vaguely to a Borel probability measure �. Let � < 0 be a number such that
(�

(�)
n )n≥1 converges vaguely to �(�). Note that the supports of ��n are uniformly

bounded. So P (�
(�)
n ) converges uniformly to P (�(�)) (see [11] Proposition 1.2.9). By

(19),
(

max
t∈[0,1]

PBn(t)/n
)
n≥1 converges to max

t∈[0,1]
P (�)(t).

If V is a finite dimensional filtered vector space over k, we shall use the expression
�+(V ) to denote max

t∈[0,1]
PV (t). With this notation, the assertion of Corollary 4.4

becomes: lim
n→∞

�+(Bn)/n exists in ℝ.

Lemma 4.5. — Assume that �1 and �2 are two Borel probability measures whose
supports are bounded from above. Let " ∈]0, 1[ and � = "�1 + (1− ")�2. Then

(20) max
t∈[0,1]

P (�)(t) ≥ " max
t∈[0,1]

P (�1)(t).

Proof. — After truncation at 0 we may assume that the supports of �1 and �2
are contained in [0,+∞[. In this case � ≻ "�1 + (1 − ")�0 and hence P (�) ≥
P ("�1 + (1− ")�0). Since

P ("�1 + (1− ")�0)(t) =

{
"P (�1)(t/"), t ∈ [0, "],

"P (�1)(1), t ∈ [", 1[,

we obtain (20).

Theorem 4.6. — Under the assumption of Theorem 4.2, one has

lim
n→∞

�+(Bn)/n > 0 if and only if lim
n→∞

�max(Bn)/n > 0.

Furthermore, in this case, the inequality lim
n→∞

�+(Bn)/n ≤ lim
n→∞

�max(Bn)/n holds.

Proof. — For any filtered vector space V , �max(V ) > 0 if and only if �+(V ) > 0, and
in this case one always has �max(V ) ≥ �+(V ). Therefore the second assertion is true.
Furthermore, this also implies

lim
n→∞

1

n
�+(Bn) > 0 =⇒ lim

n→∞

1

n
�max(Bn) > 0.

It suffices then to prove the converse implication. Assume that � > 0 is a real
number such that lim

n→∞
�max(Bn)/n > 4�. Choose sufficiently large n0 ∈ ℕ such that

f(n) < �n for any n ≥ n0 and such that there exists a non-zero x0 ∈ Bn0
satisfying

�(x0) ≥ 4�n0. Since the algebra B is f -quasi-filtered, �(xm0 ) ≥ 4�n0m −mf(n) ≥
3�mn0. By Fujita’s approximation theorem, there exists an integer p divisible by n0
and a subalgebra A of B(p) =

⊕
n≥0Bnp generated by a finite number of elements

in Bp and such that lim inf
n→∞

rkAn/ rkBnp > 0. By possible enlargement of A we
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may assume that A contains xp/n0

0 . By Lemma 4.5, lim
n→∞

�+(An)/n > 0 implies
lim
n→∞

�+(Bnp)/np = lim
n→∞

�+(Bn)/n > 0. Therefore, we reduce our problem to the
case where

1) B is an algebra of finite type generated by B1,

2) there exists x1 ∈ B1, x1 ∕= 0 such that �(x1) ≥ 3� with � > 0,

3) f(n) < �n.

Furthermore, by Noether’s normalization theorem, we may assume that B =
k[x1, ⋅ ⋅ ⋅ , xq] is an algebra of polynomials, where x1 coincides with the element in
condition 2). Note that

(21) �(xa11 ⋅ ⋅ ⋅xaqq ) ≥
q∑
i=1

ai
(
�(xi)− �

)
≥ 2�a1 +

q∑
i=2

ai
(
�(xi)− �

)
.

Let � > 0 such that −� ≤ �(xi)−� for any i ∈ {2, ⋅ ⋅ ⋅ , q}. We obtain from (21) that
�(xa11 ⋅ ⋅ ⋅x

aq
q ) ≥ �a1 as soon as a1 ≥ �

�

∑q
i=2 ai. For n ∈ ℕ∗, let

un = #
{

(a1, ⋅ ⋅ ⋅ , aq) ∈ ℕq
∣∣∣ a1 + ⋅ ⋅ ⋅+ aq = n, a1 ≥

�

�
(a2 + ⋅ ⋅ ⋅+ aq)

}
= #

{
(a1, ⋅ ⋅ ⋅ , aq) ∈ ℕq

∣∣∣ a1 + ⋅ ⋅ ⋅+ aq = n, a1 ≥
�

�+ �
n
}

=

(
n− ⌊ �

�+�n⌋+ q − 1

q − 1

)
,

and

vn = #
{

(a1, ⋅ ⋅ ⋅ , aq) ∈ ℕq
∣∣ a1 + ⋅ ⋅ ⋅+ aq = n

}
=

(
n+ q − 1

q − 1

)
.

Thus lim
n→∞

un/vn =
( �

�+ �

)q−1
> 0, which implies lim

n→∞

1

n
�+(Bn) > 0 by Lemma

4.5.

5. Volume function as a limit and arithmetic bigness

Let X be an arithmetic variety of dimension d and ℒ be a Hermitian line bundle
on X . Denote by X = XK and L = ℒK . Using the convergence result established
in the previous section, we shall prove that the volume function is in fact a limit of
normalized positive degrees. We also give a criterion of arithmetic bigness by the
positivity of asymptotic maximal slope.

5.1. Volume function and asymptotic positive degree. — For any n ∈ ℕ,
we choose a Hermitian vector bundle �∗(ℒ

⊗n
) = (�∗(ℒ⊗n), (∥ ⋅ ∥�)�:K→ℂ) whose

underlying OK-module is �∗(ℒ⊗n) and such that

(22) max
0∕=s∈�∗(ℒ⊗n)

∣∣∣ log ∥s∥sup − log ∥s∥�
∣∣∣≪ log n, n > 1.
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Denote by rn the rank of �∗(ℒ⊗n). One has rn ≪ nd−1. For any n ∈ ℕ, define

ℎ̂0(X ,ℒ⊗n) := log #{s ∈ H0(X ,ℒ⊗n) ∣ ∀� : K → ℂ, ∥s∥�,sup ≤ 1}.

Recall that the arithmetic volume function of ℒ defined by Moriwaki (cf. [20]) is

v̂ol(ℒ) := lim sup
n→∞

ℎ̂0(X ,ℒ⊗n)

nd/d!
,

and ℒ is said to be big if and only if v̂ol(ℒ) > 0 (cf. [20] Theorem 4.5 and [25]
Corollary 2.4). We emphasize that this definition does not depend on the Hermitian
metrics on �∗(ℒ⊗n) satisfying the condition (22).

In the following, we give an alternative proof of a result of Morkwaki and Yuan.

Proposition 5.1. — If ℒ is big, then L is big on X in usual sense.

Proof. — For any integer n ≥ 1, we choose two Hermitian vector bundles E
(1)

n =

(�∗(ℒ⊗n), (∥ ⋅ ∥(1)� )�:K→ℂ) and E
(2)

n = (�∗(ℒ⊗n), (∥ ⋅ ∥(2)� )�:K→ℂ) such that

∥s∥(1)� ≤ ∥s∥�,sup ≤ ∥s∥(2)� ≤ rn∥s∥(1)� ,

where rn is the rank of �∗(ℒ⊗n). This is always possible due to an argument of John
and Löwner ellipsoid, see [14] definition-theorem 2.4. Thus

ℎ̂0(E
(2)

n ) ≤ ℎ̂0(X ,ℒ⊗n) ≤ ℎ̂0(E
(1)

n ).

Furthermore, by [11] Corollary 2.2.9,
∣∣d̂eg+(E

(1)

n )− d̂eg+(E
(2)

n )
∣∣ ≤ rn log rn. By (10),

we obtain ∣∣ℎ̂0(X ,ℒ⊗n)− ℎ̂0(E
(1)

n )
∣∣ ≤ 2rn log ∣ΔK ∣+ 2C0(rn) + rn log rn.

Furthermore,
∣∣d̂eg+(E

(1)

n )− d̂eg+(�∗(ℒ
⊗n

))
∣∣ = O(rn log rn). Hence∣∣ℎ̂0(X ,ℒ⊗n)− ℎ̂0(�∗(ℒ
⊗n

))
∣∣ = O(rn log rn).

Since rn ≪ nd−1, we obtain

(23) lim
n→∞

∣∣∣∣ ℎ̂0(X ,ℒ⊗n)

nd/d!
−

d̂eg+(�∗(ℒ
⊗n

))

nd/d!

∣∣∣∣ = 0,

and therefore v̂ol(ℒ) = lim sup
n→∞

d̂eg+(�∗(ℒ
⊗n

))

nd/d!
. If ℒ is big, then v̂ol(ℒ) > 0, and

hence �∗(ℒ⊗n) ∕= 0 for n sufficiently positive. Combining with the fact that

lim sup
n→+∞

d̂eg+(�∗(ℒ⊗n))

nrn
≤ lim
n→+∞

�̂max(�∗(ℒ
⊗n

))

n
< +∞,

we obtain lim sup
n→+∞

rn
nd−1

> 0.
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Theorem 5.2. — The following equalities hold:
(24)

v̂ol(ℒ) = lim
n→∞

ℎ̂0(X ,ℒ⊗n)

nd/d!
= lim
n→∞

d̂eg+(�∗(ℒ
⊗n

))

nd/d!
= vol(L) lim

n→∞

�̂+(�∗(ℒ
⊗n

))

n/d
,

where the positive slope �̂+ was defined in §3.

Proof. — We first consider the case where L is big. The graded algebra B =⊕
n≥0H

0(X,L⊗n) equipped with Harder-Narasimhan filtrations is quasi-filtered for
a function of logarithmic increasing speed at infinity (see [11] §4.1.3). Therefore
Corollary 4.4 shows that the sequence (�+(Bn)/n)n≥1 converges in ℝ. Note that
�+(Bn) = �̂+(�∗(ℒ

⊗n
)). So the last limit in (24) exists. Furthermore, L is big on X,

so

vol(L) = lim
n→∞

rk(�∗(ℒ
⊗n

))

nd−1/(d− 1)!
,

which implies the existence of the third limit in (24) and the last equality. Thus the
existence of the first limit and the second equality follow from (23).

When L is not big, since

lim
n→∞

�̂+(�∗(ℒ
⊗n

))

n/d
≤ lim
n→∞

�̂max(�∗(ℒ
⊗n

))

n/d
< +∞

the last term in (24) vanishes. This implies the vanishing of the second limit in (24).
Also by (23), we obtain the vanishing of the first limit.

Corollary 5.3. — The following relations hold:

(25) v̂ol(ℒ) ≥ lim sup
n→∞

d̂eg(�∗(ℒ
⊗n

))

nd/d!
= lim sup

n→∞

�(�∗(ℒ
⊗n

))

nd/d!
.

Proof. — The inequality is a consequence of Theorem 5.2 and the comparison
d̂eg+(E) ≥ d̂eg(E). Here E is an arbitrary Hermitian vector bundle on SpecOK .
The equality follows from a classical result which compares Arakelov degree and
Euler-Poincaré characteristic.

5.2. A criterion of arithmetic bigness. — We shall prove that the bigness of ℒ
is equivalent to the positivity of the asymptotic maximal slope of ℒ. This result is
strongly analogous to Theorem 4.5 of [20]. In fact, by a result of Borek [3] (see also [6]
Proposition 3.3.1), which reformulate Minkowski’s First Theorem, the maximal slope
of a Hermitian vector bundle on SpecOK is “close” to the opposite of the logarithm
of its first minimum. So the positivity of the asymptotic maximal slope is equivalent
to the existence of (exponentially) small section when n goes to infinity.
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Theorem 5.4. — ℒ is big if and only if lim
n→∞

�̂max(�∗(ℒ
⊗n

))/n > 0. Furthermore,
the following inequality holds:

v̂ol(ℒ)

dvol(L)
≤ lim
n→∞

�̂max(�∗(ℒ
⊗n

))

n
.

Proof. — Since both conditions imply the bigness of L, we may assume that L is big.
Let B =

⊕
n≥0H

0(X,L⊗n) equipped with Harder-Narasimhan filtrations. One has

�̂+(�∗(ℒ
⊗n

)) = �+(Bn), �̂max(�∗(ℒ
⊗n

) = �max(Bn).

Therefore, the assertion follows from Theorems 4.6 and 5.2.

Remark 5.5. — After [6] Proposition 3.3.1, for any non-zero Hermitian vector bun-
dle E on SpecOK , one has

(26)
∣∣∣�̂max(E) +

1

2
log inf

0 ∕=s∈E

∑
�:K→ℂ

∥s∥2�
∣∣∣ ≤ 1

2
log[K : ℚ] +

1

2
log rkE +

log ∣ΔK ∣
2[K : ℚ]

.

Therefore, by (26), the bigness of ℒ is equivalent to each of the following conditions:

1) L is big, and there exists " > 0 such that, when n is sufficiently large, ℒ⊗n has a
global section sn satisfying ∥sn∥�,sup ≤ e−"n for any � : K → ℂ.

2) L is big, and there exists an integer n ≥ 1 such that ℒ⊗n has a global section sn
satisfying ∥sn∥�,sup < 1 for any � : K → ℂ.

Thus we recover a result of Moriwaki ([20] Theorem 4.5 (1)⇐⇒(2)).

Corollary 5.6. — Assume L is big. Then there exists a Hermitian line bundle M
on SpecOK such that ℒ ⊗ �∗M is arithmetically big.

6. Continuity of truncated asymptotic polygon

Let us keep the notation of §5 and assume that L is big on X. For any integer
n ≥ 1, denote by �n the dilated measure T 1

n
�
�∗(ℒ

⊗n
)
. Recall that in §4 we have

actually established the following result:

Proposition 6.1. — 1) the sequence of Borel measures (�n)n≥1 converges vaguely
to a Borel probability measure �;

2) there exists a countable subset Z of ℝ such that, for any � ∈ ℝ∖Z, the sequence of
polygons (P (�

(�)
n ))n≥1 converges uniformly to P (�(�)), which implies in particular

that P (�(�)) is Lipschitz.

Let Z be as in the proposition above. For any � ∈ ℝ ∖ Z, denote by P
(�)

ℒ the

concave function P (�(�)) on [0, 1]. The following property of P (�)

ℒ results from the
definition:

Proposition 6.2. — For any integer p ≥ 1, on has P (p�)

ℒ⊗p = pP
(�)

ℒ .
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Proof. — By definition T 1
n
�
�∗(ℒ

⊗pn
)

= Tp�n. Using (Tp�n)(p�) = Tp�
(�)
n , we obtain

the desired equality.

Remark 6.3. — We deduce from the previous proposition the equality v̂ol(ℒ⊗p) =

pdv̂ol(ℒ), which has been proved by Moriwaki ([20] Proposition 4.7).

The main purpose of this section is to establish the following continuity result,
which is a generalization of the continuity of the arithmetic volume function proved
by Moriwaki (cf. [20] Theorem 5.4).

Theorem 6.4. — Assume L is a Hermitian line bundle on X . Then, for any � ∈ ℝ,
the sequence of functions

(
1
pP

(p�)

ℒ⊗p⊗L

)
p≥1

converges uniformly to P (�)

ℒ .

Corollary 6.5 ([20] Theorem 5.4). — With the assumption of Theorem 6.4, one
has

lim
p→∞

1

pd
v̂ol(ℒ⊗p ⊗L ) = v̂ol(ℒ).

In order to prove Theorem 6.4, we need the following lemma.

Lemma 6.6. — Let L be an arbitrary Hermitian line bundle on SpecOK . If ℒ is
arithmetically big, then there exists an integer q ≥ 1 such that ℒ⊗q ⊗ L is arith-
metically big and has at least one non-zero effective global section, that is, a non-zero
section s ∈ H0(X ,ℒ⊗q ⊗L ) such that ∥s∥�,sup ≤ 1 for any embedding � : K → ℂ.

Proof. — As ℒ is arithmetically big, we obtain that L is big on X. Therefore, there
exists an integer m0 ≥ 1 such that L⊗m0 ⊗LK is big on X and �∗(ℒ⊗m0 ⊗L ) ∕= 0.
Pick an arbitrary non-zero section s ∈ H0(X ,ℒ⊗m0⊗L ) and letM = sup

�:K→ℂ
∥s∥�,sup.

After Theorem 5.4 (see also Remark 5.5), there exists m1 ∈ ℕ such that ℒ⊗m1 has a
section s′ such that ∥s′∥�,sup ≤ (2M)−1 for any � : K → ℂ. Let q = m0 +m1. Then
s ⊗ s′ is a non-zero strictly effective section of ℒ⊗q ⊗L . Furthermore, ℒ⊗q ⊗L is
arithmetically big since it is generically big and has a strictly effective section.

Proof of Theorem 6.4. — After Corollary 5.6, we may assume that ℒ is arithmetically
big. Let q ≥ 1 be an integer such that ℒ⊗q ⊗L is arithmetically big and has a non-
zero effective section s1 (cf. Lemma 6.6). For any integers p and n such that p > q,
n ≥ 1, let 'p,n : �∗(ℒ⊗(p−q)n)→ �∗(ℒ⊗pn ⊗L ⊗n) be the homomorphism defined by
the multiplication by s⊗n1 . Since s1 is effective, ℎ('p,n) ≤ 0. Let

�p,n = rk(�∗(ℒ⊗(p−q)n))/ rk(�∗(ℒ⊗pn ⊗L ⊗n)).

Note that
lim
n→∞

�p,n = vol(L⊗(p−q))/vol(L⊗p ⊗LK).

Denote by �p this limit. Let �p,n be the measure associated to �∗(ℒ
⊗pn ⊗ L

⊗n
).

Let ap,n = �̂min(�∗(ℒ
⊗pn ⊗ L

⊗n
)). After Proposition 2.2, one has �p,n ≻
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�p,nT(p−q)n�(p−q)n + (1− �p,n)�ap,n , or equivalently

(27) T 1
np
�p,n ≻ �p,nT(p−q)/p�(p−q)n + (1− �p,n)�ap,n/np.

As L⊗p ⊗LK is big, the sequence of measures (T 1
n
�p,n)n≥1 converges vaguely to a

Borel probability measure �p. By truncation and then by passing n→∞, we obtain
from (27) that, for any � ∈ ℝ,

(28) (T 1
p
�p)

(�) ≻ �p(T(p−q)/p�)(�) + (1− �p)��,

where we have used the trivial estimation �(�)a ≻ ��.
Now we apply Lemma 6.6 on the dual Hermitian line bundle L

∨
and obtain that

there exists an integer r ≥ 1 and an effective section s2 of ℒ⊗r ⊗L
∨
. Consider the

homomorphism  p,n : �∗(ℒ⊗pn⊗L ⊗n)→ �∗(ℒ⊗(p+r)n) induced by multiplication by
s⊗n2 . Its height is negative. Let

#p,n = rk(�∗(ℒ⊗pn ⊗L ⊗n))/ rk(�∗(ℒ⊗(p+r)n)).

When n tends to infinity, #p,n converges to

#p := vol(L⊗p ⊗LK)/vol(L⊗(p+r)).

By a similar argument as above, we obtain that, for any � ∈ ℝ,

(29) (T(p+r)/p�)(�) ≻ #p(T 1
p
�p)

(�) + (1− #p)��.

We obtain from (28) and (29) the following estimations of polygons

#−1p P ((T(p+r)/p�)(�))(#pt) ≥ P ((T 1
p
�p)

(�))(t)(30)

P ((T 1
p
�p)

(�))(t) ≥

{
�pP ((T(p−q)/p�)(�))(t/�p), 0 ≤ t ≤ �p,
�pP ((T(p−q)/p�)(�))(1) + �(t− �p), �p ≤ t ≤ 1.

.(31)

Finally, since lim
p→∞

�p = lim
p→∞

#p = 1 (which is a consequence of the continuity of

the geometric volume function), combined with the fact that both T(p−q)/p� and
T(p+r)/p� converge vaguely to � when p→∞, we obtain, for any � ∈ ℝ, the uniform
convergence of P ((T 1

p
�p)

(�)) to P (�(�)).

7. Computation of asymptotic polygon by volume function

In this section we shall show how to compute the asymptotic polygon of a Hermitian
line bundle by using arithmetic volume function. Our main method is the Legendre
transformation of concave functions. Let us begin with a lemma concerning Borel
measures.

Lemma 7.1. — Let � be a Borel measure on ℝ whose support is bounded from below.
Then

(32) max
t∈[0,1[

P (�)(t) =

∫
ℝ
x+�(dx),

where x+ stands for max{x, 0}.
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Proof. — The function F ∗� defined in §2.3 is essentially the inverse of the distribution
function of �. In fact, one has F ∗� (F�(x)) = x �-a.e.. Therefore, if � is a Borel
measure of compact support, then

P (�)(1) :=

∫ 1

0

F�(t) dt =

∫
ℝ
x�(dx).

Applying this equality on � = �(0), we obtain

max
t∈[0,1[

P (�)(t) = P (�(0))(1) =

∫
ℝ
x�(0)(dx) =

∫
ℝ
x+�

(0)(dx) =

∫
ℝ
x+�(dx).

Now let X be an arithmetic variety of total dimension d. For any Hermitian line
bundle ℒ on X whose generic fibre is big, we denote by �ℒ the vague limite of the
sequence of measures (T 1

n
�
�∗(ℒ

⊗n
)
)n≥1. The existence of �ℒ has been established in

Theorem 4.2.

Proposition 7.2. — Let L = ℒK . For any real number a, one has∫
ℝ

(x− a)+�ℒ(dx) =
v̂ol(ℒ ⊗ �∗L −a)

dvol(L)
,

where L −a is the Hermitian line bundle on SpecOK defined in (3).

Proof. — If M is a Hermitian line bundle on SpecOK , one has the equality

�ℒ⊗�∗M = �
d̂eg(M)

�ℒ.

Applying this equality on M = L −a, one obtains

v̂ol(ℒ ⊗ �∗L −a)

dvol(L)
=

∫
ℝ
x+�−a�ℒ(dx) =

∫
ℝ

(x− a)+�ℒ(dx).

Remark 7.3. — Proposition 7.2 calculates actually the polygon P (�ℒ). In fact, one
has

−
∫ +∞

a

�ℒ(]y,+∞[)dy = −
∫
ℝ

(s− a)+�ℒ(ds).

Applying the Legendre transformation, we obtain the polygon P (�ℒ).

As an application, we prove that the asymptotic maximal slope of ℒ is in fact the
derivative at the origin of the concave curve P (�ℒ), which is however not a formal
consequence of the vague convergence of measures T 1

n
�
�∗(ℒ

⊗n
)
.

Proposition 7.4. — Denote by �̂�max(ℒ) the limite of (�̂max(ℒ⊗n)/n)n≥1. Then one
has

P (�ℒ)′(0) = �̂�max(ℒ).
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Proof. — For any integer n ≥ 1, let �n = T 1
n
�
�∗(ℒ

⊗n
)
. Since P (�n) is a concave curve

on [0, 1], for any t ∈]0, 1], one has

�̂max(�∗(ℒ
⊗n

))

n
= P (�n)′(0) ≥ P (�n)(t)

t
.

As the sequence of polygons P (�n) converges uniformly to P (�), we obtain

�̂�max(ℒ) ≥ P (�)(t)/t, ∀t ∈]0, 1].

Therefore �̂�max(ℒ) ≥ P (�)′(0).
Let " > 0 be an arbitrary positive real number. Let a = �̂�max(L) − ". Then

�̂�max(ℒ⊗ �∗L −a) = " > 0. Therefore, Lemma 7.1, Proposition 7.2 and the first part
of Theorem 5.4 implies that

max
t∈[0,1]

(
P (�)(t)− at

)
=

∫
ℝ

(x− a)+�ℒ(dx) > 0.

Hence

P (�)′(0) = max
t∈]0,1]

P (�)(t)

t
≥ max
t∈[0,1]

(
P (�)(t)− at

)
+ a > a.

Since " is arbitrary, we obtain P (�)′(0) ≥ �̂�max(ℒ).
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