Sorbonne Université Master de Sciences et Technologies Mention *Mathématiques et Applications* Spécialité *Mathématiques fondamentales*, M2 Année 2022 - 2023

Topologie algébrique des variétés II : classes caractéristiques Exercices, feuille 4

Exercice 1 Soit n un entier strictement positif, et soit γ^n le fibré tautologique de base $G_n(\mathbb{R}^{\infty})$.

- (1) Montrer que le fibré vectoriel réel $\gamma^n \oplus \gamma^n$ est orientable. On choisit une orientation de $\gamma^n \oplus \gamma^n$.
- (2) Montrer que $e(\gamma^n \oplus \gamma^n) \neq 0$.
- (3) Supposons que n est impair. Montrer que $2e(\gamma^n \oplus \gamma^n) = 0$.

Exercice 2 Soit M une variété lisse compacte (sans bord) de dimension 3. Montrer que tous les nombres de Stiefel-Whitney de M sont nuls.

Exercice 3 Soit n un entier strictement positif, et soit B un CW-complexe. Soit ξ un espace vectoriel réel de rang n et de base B. Montrer que ξ est orientable si et seulement si $w_1(\xi) = 0$.

Exercice 4 Soit n un entier strictement positif, et soit γ_n^1 le fibré complexe tautologique de base \mathbb{CP}^n .

- (1) Montrer que γ_n^1 n'a pas de section holomorphe différente de la section nulle.
- (2) Montrer que le fibré dual $\operatorname{Hom}_{\mathbb{C}}(\gamma_n^1,\mathbb{C})$ a au moins n+1 sections holomorphes linéairement indépendantes sur \mathbb{C} (bien sûr, on n'affirme pas que ces sections sont linéairement indépendantes en chaque point).

Exercice 5 Soit n un entier strictement positif, et soit ω un fibré vectoriel complexe de rang n et de base B. On note $\omega_{\mathbb{R}}$ le fibré vectoriel réel correspondant de rang 2n.

- (1) Montrer que, pour tout entier $k \geq 1$, la classe de Stiefel-Whitney $w_{2k-1}(\omega_{\mathbb{R}})$ de $\omega_{\mathbb{R}}$ est nulle.
- (2) Montrer que, pour tout entier $k \geq 0$, l'image de la classe de Chern $c_k(\omega)$ de ω par le morphisme de changement des coefficients $H^{2k}(B;\mathbb{Z}) \to H^{2k}(B;\mathbb{Z}/2\mathbb{Z})$ est la classe de Stiefel-Whitney $w_{2k}(\omega_{\mathbb{R}})$ de $\omega_{\mathbb{R}}$.

Exercice 6 Pour tout entier $n \geq 1$, construire une décomposition cellulaire de la grassmannienne complexe $G_n(\mathbb{C}^{\infty})$ telle que toutes les cellules de cette décomposition soient de dimension paire et, pour tout entier $k \geq 0$, le nombre de cellules de dimension 2k soit égal au nombre de partitions de k en au plus n termes.