Sorbonne Université Master de Sciences et Technologies Mention *Mathématiques*, M1 Année 2025 - 2026 Cours UM4MA201

GÉOMÉTRIE AFFINE ET PROJECTIVE

Corrigé du partiel

Exercice 1

Pour chacun des énoncés suivants, déterminer s'il est vrai ou faux.

- (a) Dans un espace affine de dimension 3, un plan et une droite ont toujours au moins un point commun.
- (b) Dans un espace affine de dimension 3, trois plans ont toujours au moins un point commun.
- (c) Tout repère affine d'un espace affine de dimension 3 a exactement quatre points.

Solution.

(a) L'énoncé est faux : une droite peut être disjointe d'un plan. Par exemple, dans \mathbb{R}^3 muni de sa structure affine naturelle, on peut considérer la droite affine

$$\{(x, y, z) \in \mathbb{R}^3 \mid y = 0, z = 1\}$$

et le plan affine

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}.$$

(b) L'énoncé est faux. Par exemple, dans \mathbb{R}^3 muni de sa structure affine naturelle, on peut considérer trois plans affines deux à deux parallèles et deux à deux distincts :

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 0\},\$$
$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 1\},\$$
$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 2\}.$$

(c) L'énoncé est vrai : pour tout entier $n \geq 0$ et tout espace affine \mathcal{E} de dimension n, le nombre de points dans tout repère affine de \mathcal{E} est égal à n+1.

Exercice 2

Soit \mathcal{E} un plan affine défini sur \mathbb{R} . Soient A_1 , A_2 et A_3 trois points non alignés de \mathcal{E} . Notons

- G le centre de gravité du triangle $A_1A_2A_3$ (c'est-à-dire, l'isobarycentre des points A_1 , A_2 , A_3),
- B_1 le milieu du segment $[A_2A_3]$,
- B_2 le milieu du segment $[A_1A_3]$,
- B_3 le milieu du segment $[A_1A_2]$,
- C_1 l'isobarycentre des points $G, B_1, A_2,$
- D_1 l'isobarycentre des points $G, B_1, A_3,$
- C_2 l'isobarycentre des points $G, B_2, A_3,$
- D_2 l'isobarycentre des points $G, B_2, A_1,$
- C_3 l'isobarycentre des points $G, B_3, A_1,$
- D_3 l'isobarycentre des points G, B_3 , A_2 .

- (a) Justifier le fait que les points C_1 et D_1 sont distincts. Montrer que les droites (A_2A_3) et (C_1D_1) sont parallèles. Trouver le nombre réel λ tel que $\overrightarrow{C_1D_1} = \lambda \overrightarrow{A_2A_3}$.
- (b) Justifier le fait que les points C_3 et D_2 sont distincts. Montrer que les droites (A_2A_3) et (C_3D_2) sont parallèlles. Trouver le nombre réel μ tel que $C_3D_2' = \mu A_2A_3'$
- (c) Montrer que le vecteur $\overrightarrow{C_1D_1} + \overrightarrow{C_2D_2} + \overrightarrow{C_3D_3}$ est nul.
- (d) Montrer que l'isobarycentre des points C_1 , C_2 , C_3 coïncide avec l'isobarycentre des points D_1 , D_2 , D_3 . Montrer que ces isobarycentres coïncident avec G.

Solution.

(a) Soit $O \in \mathcal{E}$ un point. On a

$$\overrightarrow{OC_1} = \frac{1}{3}\overrightarrow{OG} + \frac{1}{3}\overrightarrow{OB_1} + \frac{1}{3}\overrightarrow{OA_2},$$

$$\overrightarrow{OD_1} = \frac{1}{3}\overrightarrow{OG} + \frac{1}{3}\overrightarrow{OB_1} + \frac{1}{3}\overrightarrow{OA_3},$$

d'où

$$\overrightarrow{C_1D_1} = \overrightarrow{OD_1} - \overrightarrow{OC_1} = \frac{1}{3}(\overrightarrow{OA_3} - \overrightarrow{OA_2}) = \frac{1}{3}\overrightarrow{A_2A_3}.$$

Les points A_2 et A_3 sont distincts, donc le vecteur A_2 est non nul. Par conséquent, le vecteur $\overrightarrow{C_1D_1}$ est non nul et les points C_1 et D_1 sont distincts. De plus, les droites (A_2A_3) et (C_1D_1) sont parallèlles et

$$\overrightarrow{C_1D_1} = \lambda \overrightarrow{A_2A_3}$$
 avec $\lambda = \frac{1}{3}$.

(b) On a

$$\overrightarrow{OC_3} = \frac{1}{3}\overrightarrow{OG} + \frac{1}{3}\overrightarrow{OB_3} + \frac{1}{3}\overrightarrow{OA_1},$$

$$\overrightarrow{OD_2} = \frac{1}{3}\overrightarrow{OG} + \frac{1}{3}\overrightarrow{OB_2} + \frac{1}{3}\overrightarrow{OA_1},$$

d'où

$$\overrightarrow{C_3D_2} = \overrightarrow{OD_2} - \overrightarrow{OC_3} = \frac{1}{3}(\overrightarrow{OB_2} - \overrightarrow{OB_3}) = \frac{1}{3}\overrightarrow{B_3B_2}.$$

Les points B_2 et B_3 sont distincts, car

$$\overrightarrow{OB_2} = \frac{1}{2}\overrightarrow{OA_1} + \frac{1}{2}\overrightarrow{OA_3},$$
$$\overrightarrow{OB_3} = \frac{1}{2}\overrightarrow{OA_1} + \frac{1}{2}\overrightarrow{OA_2},$$

d'où

$$\overrightarrow{B_3B_2} = \frac{1}{2}\overrightarrow{A_2A_3}$$

(et les points A_2 et A_3 sont distincts). Donc, le vecteur $\overrightarrow{B_3B_2}$ est non nul. Par conséquent, le vecteur $\overrightarrow{C_3D_2}$ est non nul et les points $\overrightarrow{C_3}$ et $\overrightarrow{D_2}$ sont distincts. De plus, les droites (A_2A_3) et (C_3D_2) sont parallèlles et $\overrightarrow{C_3D_2} = \mu \overrightarrow{A_2A_3}$ avec $\mu = \frac{1}{6}$. (c) Nous avons montré que $\overrightarrow{C_1D_1} = \frac{1}{3}\overrightarrow{A_2A_3}$. De façon similaire, $\overrightarrow{C_2D_2} = \frac{1}{3}\overrightarrow{A_3A_1}$ et $\overrightarrow{C_3D_3} = \frac{1}{3}\overrightarrow{A_3A_1}$

 $\frac{1}{3}\overrightarrow{A_1}\overrightarrow{A_2}$. Donc

$$\overrightarrow{C_1D_1} + \overrightarrow{C_2D_2} + \overrightarrow{C_3D_3} = \frac{1}{3}(\overrightarrow{A_2A_3} + \overrightarrow{A_3A_1} + \overrightarrow{A_1A_2}) = \overrightarrow{0}.$$

(d) L'isobarycentre des points C_1 , C_2 , C_3 coïncide avec le barycentre du système de points pondérés

$$(A_1, 1), (A_2, 1), (A_3, 1), (B_1, 1), (B_2, 1), (B_3, 1), (G, 3).$$

D'autre part, l'isobarycentre des points D_1 , D_2 , D_3 coïncide aussi avec le barycentre du système de points pondérés

$$(A_1, 1), (A_2, 1), (A_3, 1), (B_1, 1), (B_2, 1), (B_3, 1), (G, 3).$$

De plus, le barycentre du système de points pondérés

$$(A_1, 1), (A_2, 1), (A_3, 1), (B_1, 1), (B_2, 1), (B_3, 1), (G, 3)$$

coïncide avec le barycentre du système de points pondérés (G,3), (G,3), (G,3), c'està-dire, coïncide avec G.

Exercice 3

Soient \mathcal{E} et \mathcal{F} deux espaces affines définis sur \mathbb{R} , et soit $\varphi : \mathcal{E} \to \mathcal{F}$ une application affine. Soit $n \geq 1$ un entier, et soient A_1, \ldots, A_n des points de \mathcal{E} . On note $\mathcal{P}(A_1, \ldots, A_n)$ l'enveloppe convexe des points A_1, \ldots, A_n dans \mathcal{E} , et on note $\mathcal{P}(\varphi(A_1), \ldots, \varphi(A_n))$ l'enveloppe convexe des points $\varphi(A_1), \ldots, \varphi(A_n)$ dans \mathcal{F} .

- (a) Montrer l'inclusion $\mathcal{P}(\varphi(A_1), \dots, \varphi(A_n)) \subset \varphi(\mathcal{P}(A_1, \dots, A_n))$.
- (b) Montrer l'inclusion $\varphi(\mathcal{P}(A_1,\ldots,A_n)) \subset \mathcal{P}(\varphi(A_1),\ldots,\varphi(A_n))$.

Solution.

- (a) Le sous-ensemble $\mathcal{P}(A_1, \ldots, A_n) \subset \mathcal{E}$ est convexe, et l'application $\varphi : \mathcal{E} \to \mathcal{F}$ est affine. Donc, le sous-ensemble $\varphi(\mathcal{P}(A_1, \ldots, A_n)) \subset \mathcal{F}$, qui est l'image d'un sous-ensemble convexe par une application affine, est aussi convexe. De plus, $\varphi(A_i) \in \varphi(\mathcal{P}(A_1, \ldots, A_n))$ pour tout entier $i = 1, \ldots, n$. Puisque $\mathcal{P}(\varphi(A_1), \ldots, \varphi(A_n))$ est l'intersection de tous les sous-ensembles convexes de \mathcal{F} qui contiennent les points $\varphi(A_1), \ldots, \varphi(A_n)$, on obtient l'inclusion $\mathcal{P}(\varphi(A_1), \ldots, \varphi(A_n)) \subset \varphi(\mathcal{P}(A_1, \ldots, A_n))$.
- (b) Soit B un point de $\varphi(\mathcal{P}(A_1,\ldots,A_n))$. Il existe un point $A \in \mathcal{P}(A_1,\ldots,A_n)$ tel que $\varphi(A) = B$. Puisque le point A appartient à l'enveloppe convexe des points A_1,\ldots,A_n , il existe des nombres réels positifs ou nuls $\lambda_1,\ldots,\lambda_n$ (qui ne sont pas tous nuls) tels que A soit le barycentre du système de points pondérés

$$(A_1, \lambda_1), \ldots, (A_n, \lambda_n).$$

Les applications affines préservent les barycentres. Donc, le point B (qui coïncide avec $\varphi(A)$) est le barycentre du système de points pondérés

$$(\varphi(A_1),\lambda_1),\ldots,(\varphi(A_n),\lambda_n).$$

Par conséquent, $B \in \mathcal{P}(\varphi(A_1), \dots, \varphi(A_n))$, ce qui montre l'implication $\varphi(\mathcal{P}(A_1, \dots, A_n)) \subset \mathcal{P}(\varphi(A_1), \dots, \varphi(A_n))$.

Exercice 4

Soit \mathcal{E} un espace affine. Dans \mathcal{E} , on considère trois hyperplans parallèles et deux à deux distincts \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 , ainsi que deux droites distinctes \mathcal{D} et \mathcal{D}' dont aucune n'est contenue dans un hyperplan parallèle à \mathcal{H} .

- (a) Pour chaque indice i = 1, 2, 3, justifier le fait que \mathcal{H}_i et \mathcal{D} (respectivement, \mathcal{H}_i et \mathcal{D}') se coupent en exactement un point. Pour chaque indice i = 1, 2, 3, notons A_i (respectivement, A'_i) le point d'intersection de \mathcal{H}_i et \mathcal{D} (respectivement, \mathcal{D}').
- (b) Justifier le fait que les expressions $\frac{\overrightarrow{A_1A_3}}{\overrightarrow{A_1A_2}}$ et $\frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}$ ont un sens et montrer que

$$\frac{\overrightarrow{A_1 A_3}}{\overrightarrow{A_1 A_2}} = \frac{\overrightarrow{A_1' A_3'}}{\overrightarrow{A_1' A_2'}}.$$

(c) Soit M un point de la droite \mathcal{D} . Supposons que

$$\frac{\overrightarrow{A_1M}}{\overrightarrow{A_1A_2}} = \frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}.$$

Montrer que M coïncide avec A_3 .

(d) Supposons maintenant, en plus, que les droites \mathcal{D} et \mathcal{D}' soient sécantes et que leur point d'intersection A n'appartienne pas à $\mathcal{H}_1 \cup \mathcal{H}_2$. Justifier le fait que les expressions $\frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}}$, $\frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}}$ et $\frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}}$ ont un sens et montrer que

$$\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}} = \frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}} = \frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}}.$$

Solution.

- (a) Soit i = 1, 2 ou 3. Notons H la direction commune des hyperplans $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$, et notons D la direction de la droite \mathcal{D} . Puisque $D \not\subset H$, on a $D \cap H = \{\overline{0}\}$. De plus, dim D = 1 et dim H = n 1, où n est la dimension de la direction E de \mathcal{E} . Donc, $E = H \oplus D$. Par conséquent, \mathcal{H}_i et \mathcal{D} se coupent en exactement un point. De façon complètement similaire, on montre que \mathcal{H}_i et \mathcal{D}' se coupent en exactement un point.
- (b) Les points A_1 , A_2 et A_3 sont alignés et deux à deux distincts (en particulier, le vecteur $\overrightarrow{A_1A_2}$ est non nul). Donc, l'expression $\frac{\overrightarrow{A_1A_3}}{\overrightarrow{A_1A_2}}$ a un sens. De façon similaire, on montre que l'expression $\frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}$ a un sens.

Considérons la projection π de \mathcal{E} sur \mathcal{D}' parallèlement à H. On a $\pi(A_1) = A_1'$, $\pi(A_2) = A_2'$ et $\pi(A_3) = A_3'$. Donc, $\overrightarrow{A_1'A_3'} = \overrightarrow{\pi}(\overrightarrow{A_1A_3})$ et $\overrightarrow{A_1'A_2'} = \overrightarrow{\pi}(\overrightarrow{A_1A_2})$, où $\overrightarrow{\pi}$ est la partie linéaire de la projection affine π . Si on pose $\lambda = \frac{\overrightarrow{A_1A_3}}{\overrightarrow{A_1A_2}}$, on a $\overrightarrow{A_1A_3} = \lambda \overrightarrow{A_1A_2}$, d'où $\overrightarrow{\pi}(\overrightarrow{A_1A_3}) = \lambda \overrightarrow{\pi}(\overrightarrow{A_1A_2})$, c'est-à-dire, $\overrightarrow{A_1'A_3'} = \lambda \overrightarrow{A_1'A_2'}$. Par conséquent, $\lambda = \frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}$, d'où

$$\frac{\overrightarrow{A_1 A_3}}{\overrightarrow{A_1 A_2}} = \frac{\overrightarrow{A_1' A_3'}}{\overrightarrow{A_1' A_2'}}.$$

- (c) D'après (b), on a $\frac{\overrightarrow{A_1A_3}}{\overrightarrow{A_1A_2}} = \lambda = \frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}$. Donc, $\frac{\overrightarrow{A_1M}}{\overrightarrow{A_1A_2}} = \lambda$, d'où $\overrightarrow{A_1M} = \lambda \overrightarrow{A_1A_2}$. De plus, $\overrightarrow{A_1A_3} = \lambda \overrightarrow{A_1A_2}$. Donc, $\overrightarrow{A_1M} = \overrightarrow{A_1A_3}$, d'où M coïncide avec A_3 .
- (d) Les points A, A_1 et A_2 sont alignés et deux à deux distincts (en particulier, le vecteur $\overrightarrow{AA_2}$ est non nul). Donc, l'expression $\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}}$ a un sens. De façon similaire, on montre que l'expression $\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}}$ a un sens.

On note $\mathcal{P} \subset \mathcal{E}$ le plan affine qui contient les droites sécantes \mathcal{D} et \mathcal{D}' . Le plan \mathcal{P} n'est pas contenu dans \mathcal{H}_1 ou \mathcal{H}_2 . Donc, $\mathcal{P} \cap \mathcal{H}_1$ et $\mathcal{P} \cap \mathcal{H}_2$ sont des droites affines parallèles (leur direction commune est $H \cap P$, où P est la direction de \mathcal{P}). Donc, les vecteurs $\overrightarrow{A_1A_1'}$ et $\overrightarrow{A_2A_2'}$ sont colinéaires. De plus, le vecteur $\overrightarrow{A_2A_2'}$ est non nul. Par conséquent, l'expression $\frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}}$ a un sens.

En utilisant, dans le plan \mathcal{P} , le corollaire du théorème de Thalès, on obtient

$$\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}} = \frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}} = \frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}}.$$