Université Pierre et Marie Curie Master de Sciences et Technologies Mention *Mathématiques et Applications* Spécialité *Mathématiques fondamentales*, M2 Année 2016 - 2017

Introduction à la géométrie algébrique

Examen

Vendredi 4 novembre 2016

Durée: 3 heures

Dans tous les exercices ci-dessous (à l'exception de l'exercice 1(c)), on fixe un corps algébriquement clos \mathbf{k} de caractéristique 0, et on écrit \mathbb{A}^n (respectivement, \mathbb{P}^n) au lieu de $\mathbb{A}^n(\mathbf{k})$ (respectivement, $\mathbb{P}^n(\mathbf{k})$) pour tout entier strictement positif n.

Exercice 1 (a) Considérons le sous-ensemble $A = \{(-1,0),(1,0)\} \subset \mathbb{A}^2$. Montrer que $A \subset \mathbb{A}^2$ est un sous-ensemble algébrique et trouver l'idéal de A dans $\mathbf{k}[x,y]$. Le sous-ensemble A est-il une variété affine?

(b) Déterminer les composantes irréductibles du sous-ensemble algébrique

$$Z(x^2 - yz, xy - x) \subset \mathbb{A}^3$$
.

- (c) Le sous-ensemble $\{(t, e^t) \mid t \in \mathbb{C}\} \subset \mathbb{C}^2$ est-il algébrique?
- (d) Montrer que tout sous-ensemble fini de \mathbb{A}^2 est algébrique et son idéal dans $\mathbf{k}[x,y]$ peut être engendré par deux polynômes.
- (e) Formuler est démontrer le résultat similaire à celui de (d) dans le cas des sous-ensembles finis de \mathbb{P}^2 .

Exercice 2 Soit $C_1 \subset \mathbb{A}^2$ la courbe algébrique définie par le polynôme $y - x^2$, et soit $C_2 \subset \mathbb{A}^2$ la courbe algébrique définie par le polynôme xy - 1.

- (a) Justifier le fait que \mathbb{A}^1 , C_1 et C_2 sont des variétés affines.
- (b) Parmi ces trois variétés affines, déterminer les paires de variétés isomorphes.
- (c) Soit $U \subsetneq \mathbb{A}^1$ un ouvert non-vide. Montrer que la variété quasi-affine U n'est pas isomorphe à \mathbb{A}^1 .
- (d) Soit $C \subset \mathbb{P}^2$ une conique irréductible. Montrer que C est isomorphe à \mathbb{P}^1 .

Exercice 3 Soient X et Y des variétés quasi-projectives. Supposons qu'il existe des points $p \in X$ et $q \in Y$ tels que les anneaux locaux $\mathcal{O}_{p,X}$ et $\mathcal{O}_{q,Y}$ soient isomorphes comme \mathbf{k} -algèbres. Montrer qu'il existe des ouverts $p \in U \subset X$, $q \in V \subset Y$ et un isomorphisme $\varphi : U \to V$ tel que $\varphi(p) = q$.

Exercice 4 Soit $C \subset \mathbb{A}^2$ la courbe algébrique définie par le polynôme $y^2 - x^3$, et soit $\varphi : X \to \mathbb{A}^2$ l'éclatement de \mathbb{A}^2 en (0,0) (ici $X \subset \mathbb{A}^2 \times \mathbb{P}^1$). On note E le diviseur exceptionnel de l'éclatement, et on note \widetilde{C} l'adhérence (dans X) de $\varphi^{-1}(C \setminus \{0,0\})$.

- (a) Trouver des équations polynomiales de $\widetilde{C} \subset \mathbb{A}^2 \times \mathbb{P}^1$.
- (b) Montrer que E et \widetilde{C} ont exactement un point en commun.
- (c) Montrer que \widetilde{C} est une variété quasi-projective isomorphe à \mathbb{A}^1 .
- (d) Montrer que φ induit un homéomorphisme entre \widetilde{C} et C. Cet homéomorphisme est-il un isomorphisme (de variétés quasi-projectives)?

TSVP

Exercice 5 On considère l'application $\nu: \mathbb{P}^1 \to \mathbb{P}^3$ définie par

$$(x_0:x_1) \mapsto (x_0^3:x_0^2x_1:x_0x_1^2:x_1^3) = (z_0:z_1:z_2:z_3),$$

en on note C la cubique tordue qui est l'image $\nu(\mathbb{P}^1)$ de \mathbb{P}^1 par l'application ν . On pose

$$F_0(z_0, z_1, z_2, z_3) = z_0 z_2 - z_1^2, \ F_1(z_0, z_1, z_2, z_3) = z_0 z_3 - z_1 z_2, \ F_2(z_0, z_1, z_2, z_3) = z_1 z_3 - z_2^2,$$

et on considère les quadriques $Q_0 = Z(F_0)$, $Q_1 = Z(F_1)$ et $Q_2 = Z(F_2)$ dans \mathbb{P}^3 (pour tout entier n > 0, une quadrique dans \mathbb{P}^n est un sous-ensemble $X \subset \mathbb{P}^n$ qui peut être défini par un polynôme homogène $F \in \mathbf{k}[x_0, \ldots, x_n]$ de degré 2).

- (a) Montrer que C est l'intersection de Q_0 , Q_1 et Q_2 .
- (b) Montrer que l'intersection de deux quadriques quelconques parmi Q_0 , Q_1 et Q_2 peut être représentée comme réunion de C et d'une droite.
- (c) Plus généralement, pour tout point $\lambda = (\lambda_0 : \lambda_1 : \lambda_2) \in \mathbb{P}^2$, on pose $F_{\lambda} = \lambda_0 F_0 + \lambda_1 F_1 + \lambda_2 F_2$, et on considère la quadrique $Q_{\lambda} = Z(F_{\lambda})$. Montrer que, pour deux points distincts quelconques λ et μ de \mathbb{P}^2 , l'intersection des quadriques Q_{λ} et Q_{μ} peut être représentée comme réunion de C et d'une droite.
- (d) Montrer que, inversement, pour toute droite $L \subset \mathbb{P}^3$ qui coupe C en deux points, il existe deux points distincts λ et μ de \mathbb{P}^2 tels que l'intersection des quadriques Q_{λ} et Q_{μ} soit la réunion $C \cup L$.
- (e) Soit m un entier strictement positif. On dit que les points d'un sous-ensemble fini de \mathbb{P}^m sont linéairement indépendants si les droites de \mathbf{k}^{m+1} qu'ils représentent sont en somme directe. On dit que les points d'un sous-ensemble fini de \mathbb{P}^m sont en position générale si k quelconques d'entre eux sont linéairement indépendants pour tout entier strictement positif $k \leq m+1$. Montrer que tout ensemble d'au plus 2m points en position générale dans \mathbb{P}^m peut être représenté comme intersection de quadriques.
- (f) Montrer que les points d'un sous-ensemble fini quelconque de C sont en position générale dans \mathbb{P}^3 .
- (g) Considérons 7 points deux à deux distincts de C. Montrer que C est l'intersection de toutes les quadriques dans \mathbb{P}^3 qui contiennent ces 7 points. En particulier, l'ensemble formé par ces 7 points ne peut pas être représenté comme intersection de quadriques dans \mathbb{P}^3 .
- (h) Une cubique tordue généralisée est l'image $\tilde{\nu}(\mathbb{P}^1)$ de \mathbb{P}^1 par l'application $\tilde{\nu}: \mathbb{P}^1 \to \mathbb{P}^3$ définie par

$$(x_0:x_1) \mapsto (P_0(x_0,x_1):P_1(x_0,x_1):P_2(x_0,x_1):P_3(x_0,x_1)),$$

où P_0 , P_1 , P_2 et P_3 forment une base de l'espace vectoriel des polynômes homogènes de degré 3 à deux variables. Montrer que toute cubique tordue généralisée est l'image de la cubique tordue C par une transformation projective de \mathbb{P}^3 (c'est-à-dire, par une application $T: \mathbb{P}^3 \to \mathbb{P}^3$ induite par un automorphisme linéaire de \mathbf{k}^4).

(i) Considérons 6 points en position générale dans \mathbb{P}^3 . Montrer qu'il existe une unique cubique tordue généralisée qui contient ces 6 points.