Sorbonne Université Master de Sciences et Technologies Mention *Mathématiques*, M1 Année 2025 - 2026 Cours UM4MA201

GÉOMÉTRIE AFFINE ET PROJECTIVE

Partiel

Jeudi 23 octobre 2025

Durée 2 heures

Téléphones portables sont interdits. L'usage du polycopié du cours et des feuilles d'exercices est autorisé.

Dans tous les exercices, les réponses doivent être justifiées.

Exercice 1

Pour chacun des énoncés suivants, déterminer s'il est vrai ou faux.

- (a) Dans un espace affine de dimension 3, un plan et une droite ont toujours au moins un point commun.
- (b) Dans un espace affine de dimension 3, trois plans ont toujours au moins un point commun.
- (c) Tout repère affine d'un espace affine de dimension 3 a exactement quatre points.

Exercice 2

Soit \mathcal{E} un plan affine défini sur \mathbb{R} . Soient A_1 , A_2 et A_3 trois points non alignés de \mathcal{E} . Notons

- G le centre de gravité du triangle $A_1A_2A_3$ (c'est-à-dire, l'isobarycentre des points A_1 , A_2 , A_3),
- B_1 le milieu du segment $[A_2A_3]$,
- B_2 le milieu du segment $[A_1A_3]$,
- B_3 le milieu du segment $[A_1A_2]$,
- C_1 l'isobarycentre des points G, B_1 , A_2 ,
- D_1 l'isobarycentre des points $G, B_1, A_3,$
- C_2 l'isobarycentre des points G, B_2 , A_3 ,
- D₂ l'isobarycentre des points G, B₂, A₁,
 C₃ l'isobarycentre des points G, B₃, A₁,
- D_3 l'isobarycentre des points G, B_3, A_2 .
- (a) Justifier le fait que les points C_1 et D_1 sont distincts. Montrer que les droites (A_2A_3)
- et (C_1D_1) sont parallèles. Trouver le nombre réel λ tel que $\overrightarrow{C_1D_1} = \lambda \overrightarrow{A_2A_3}$. (b) Justifier le fait que les points C_3 et D_2 sont distincts. Montrer que les droites (A_2A_3) et (C_3D_2) sont parallèlles. Trouver le nombre réel μ tel que $\overrightarrow{C_3D_2} = \mu \overrightarrow{A_2A_3}$.
- (c) Montrer que le vecteur $\overrightarrow{C_1D_1} + \overrightarrow{C_2D_2} + \overrightarrow{C_3D_3}$ est nul.
- (d) Montrer que l'isobarycentre des points C_1 , C_2 , C_3 coïncide avec l'isobarycentre des points D_1 , D_2 , D_3 . Montrer que ces isobarycentres coïncident avec G.

Exercice 3

Soient \mathcal{E} et \mathcal{F} deux espaces affines définis sur \mathbb{R} , et soit $\varphi : \mathcal{E} \to \mathcal{F}$ une application affine. Soit $n \geq 1$ un entier, et soient A_1, \ldots, A_n des points de \mathcal{E} . On note $\mathcal{P}(A_1, \ldots, A_n)$ l'enveloppe convexe des points A_1, \ldots, A_n dans \mathcal{E} , et on note $\mathcal{P}(\varphi(A_1), \ldots, \varphi(A_n))$ l'enveloppe convexe des points $\varphi(A_1), \ldots, \varphi(A_n)$ dans \mathcal{F} .

- (a) Montrer l'inclusion $\mathcal{P}(\varphi(A_1),\ldots,\varphi(A_n))\subset\varphi(\mathcal{P}(A_1,\ldots,A_n)).$
- (b) Montrer l'inclusion $\varphi(\mathcal{P}(A_1,\ldots,A_n))\subset \mathcal{P}(\varphi(A_1),\ldots,\varphi(A_n))$.

Exercice 4

Soit \mathcal{E} un espace affine. Dans \mathcal{E} , on considère trois hyperplans parallèles et deux à deux distincts \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 , ainsi que deux droites distinctes \mathcal{D} et \mathcal{D}' dont aucune n'est contenue dans un hyperplan parallèle à \mathcal{H} .

- (a) Pour chaque indice i = 1, 2, 3, justifier le fait que \mathcal{H}_i et \mathcal{D} (respectivement, \mathcal{H}_i et \mathcal{D}') se coupent en exactement un point. Pour chaque indice i = 1, 2, 3, notons A_i (respectivement, A'_i) le point d'intersection de \mathcal{H}_i et \mathcal{D} (respectivement, \mathcal{D}').
- (b) Justifier le fait que les expressions $\frac{\overline{A_1 A_3}}{A_1 A_2}$ et $\frac{\overline{A_1' A_3'}}{A_1' A_2'}$ ont un sens et montrer que

$$\frac{\overrightarrow{A_1 A_3}}{\overrightarrow{A_1 A_2}} = \frac{\overrightarrow{A_1' A_3'}}{\overrightarrow{A_1' A_2'}}.$$

(c) Soit M un point de la droite \mathcal{D} . Supposons que

$$\frac{\overrightarrow{A_1M'}}{\overrightarrow{A_1A_2}} = \frac{\overrightarrow{A_1'A_3'}}{\overrightarrow{A_1'A_2'}}.$$

Montrer que M coïncide avec A_3 .

(d) Supposons maintenant, en plus, que les droites \mathcal{D} et \mathcal{D}' soient sécantes et que leur point d'intersection A n'appartienne pas à $\mathcal{H}_1 \cup \mathcal{H}_2$. Justifier le fait que les expressions $\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}}$, $\frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}}$ et $\frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}}$ ont un sens et montrer que

$$\frac{\overrightarrow{AA_1}}{\overrightarrow{AA_2}} = \frac{\overrightarrow{AA_1'}}{\overrightarrow{AA_2'}} = \frac{\overrightarrow{A_1A_1'}}{\overrightarrow{A_2A_2'}} .$$