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Introduction

(0.0) Let X be a smooth projective scheme over a number field F . For an integer i ≥ 0 one defines the
L-function L(Hi(X), s), associated to the cohomology of degree i of X, by the standard Euler product 1,
absolutely convergent1 (in particular, without zeroes or poles) in the region Re(s) > i/2 + 1.

This L-function is expected to have a meromorphic continuation to C, with the only possible pole at
i/2 + 1 (if i is even), and a functional equation of the form

(L∞ · L)(Hi(X), s) = a · bs · (L∞ · L)(Hi(X), i+ 1− s), (0.0.0)

where L∞(Hi(X), s) is a suitable product of Γ-functions.
The value L(Hi(X), n) at an integer n > (i + 1)/2 (which is finite and non-zero1, at least if we stay

away from the possible pole at n = i/2 + 1) conjecturally depends only on the “motive” M = Hi(X)(n) (a
“pure motive” of weight i− 2n < −1 over F ).

(0.1) According to Beilinson [Be 2], the structure morphism X −→ Spec(F ) should underlie a morphism of
“motivic sites” Xmot

π−→Spec(F )mot; mixed motives over F should be abelian sheaves on Spec(F )mot. The
fundamental object responsible for the L-value L(Hi(X), n) is believed to be not the motive M = Riπ∗Q(n)
itself, but rather the motivic cohomology group Hi+1(Xmot,Q(n)). The Leray spectral sequence for π∗

Ea,b
2 = Ha(Spec(F )mot, R

bπ∗Q(n)) =⇒ Ha+b(Xmot,Q(n)) (0.1.0)

should degenerate at E2 to yield isomorphisms (for n 6= (i+ 1)/2)

Hi+1(Xmot,Q(n)) ∼−→ H1(Spec(F )mot, R
iπ∗Q(n)) = H1(Spec(F )mot,M) (0.1.1)

(0.2) While this picture is purely conjectural and possibly too naive, it makes sense in various realizations
of motives. Consider first the Hodge realization. Let A be a noetherian subring of R such that A⊗Q is a

1 Strictly speaking, Euler factors at primes of F in which X has bad reduction pose a problem. We ignore
these difficulties.
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field. Denote by Spec(F ⊗Q R)A−Hodge the category of mixed A-Hodge structures over F ⊗Q R (cf. [Be 2],
Sect. 7).

The Hodge realization of (0.1.0) is the spectral sequence

Ea,b
2 = Ha(Spec(F ⊗Q R)A−Hodge,H

b((X ⊗Q R)(C), A(n))) =⇒ Hi+1
BD (X ⊗Q R, A(n)), (0.2.0)

which degenerates at E2 and converges to the Beilinson-Deligne cohomology of X ⊗Q R (called “absolute
Hodge cohomology” in [Be 2]). For n 6= (i+1)/2, the spectral sequence (0.2.0) boils down to an isomorphism

Hi+1
BD (X ⊗Q R, A(n)) ∼−→ H1(Spec(F ⊗Q R)A−Hodge,MA−Hodge), (0.2.1)

where

MA−Hodge = Hi((X ⊗Q R)(C), A(n)),

which is a pure A-Hodge structure of weight i− 2n over F ⊗Q R.

(0.3) Fix a prime number p and consider p-adic étale realizations. The Leray spectral sequence for
Xet

π−→Spec(F )et can be identified with the Hochschild-Serre spectral sequence

Ea,b
2 = Ha(F,Hb(Xet,Qp(n))) =⇒ Ha+b(Xet,Qp(n)), (0.3.0)

where X = X ⊗F F and we use continuous Galois and étale cohomology (in the sense of [Ja 1]). Denote by
F .H∗(Xet,Qp(n)) the induced filtration on H∗(Xet,Qp(n)). The spectral sequence (0.3.0) degenerates at
E2 ([De 1]) and Weil’s conjectures - proved by Deligne [De 3] - imply that E0,b

2 = 0 for b 6= 2n (cf. [Ja 2],
Lemma 3). For n 6= (i+ 1)/2 this gives edge homomorphisms

Hi+1(Xet,Qp(n)) = F 1Hi+1(Xet,Qp(n)) −→ H1(F,Mp), (0.3.1)

where

Mp = Hi(Xet,Qp(n)).

This is a continuous p-adic representation of the Galois group G(F/F ), pure of weight i − 2n at primes of
good reduction of X. In fact, all of this is true for proper (not necessarily projective) smooth schemes over
F (by [De 4] and [de J]).

(0.4) In this motivic setting, regulator maps should arise as realizations (for n 6= (i+ 1)/2).
The Hodge realization r∞:

Hi+1(Xmot,Q(n)) r∞−→ Hi+1
BD (X ⊗Q R,R(n))yo yo

H1(Spec(F )mot,M) r∞−→ H1(Spec(F ⊗Q R)R−Hodge,MR−Hodge)

(0.4.0)

The p-adic étale realization rp:

Hi+1(Xmot,Q(n))
rp−→ Hi+1(Xet,Qp(n))yo y

H1(Spec(F )mot,M)
rp−→ H1(F,Mp)

(0.4.1)

There is a certain assymetry between r∞ and rp; the Beilinson-Deligne cohomology is a local object at
archimedean primes of F , while the Galois cohomology group H1(F,Mp) is a global invariant. The map rp
can be further localized at p, yielding a diagram
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Hi+1(Xmot,Q(n))
rp−→ Hi+1(Xet,Qp(n)) −→ Hi+1((X ⊗Q Qp)et,Qp(n))yo y y(?)

H1(Spec(F )mot,M)
rp−→ H1(F,Mp)

resp−→ H1(F ⊗Q Qp,Mp)

(0.4.2)

The third vertical arrow is defined only if a local version of E0,i+1
2 (over Qp) vanishes. This is known to be

true (for n 6= (i+ 1)/2) only in a special case when X ⊗Q Qp has a smooth projective model over OF ⊗ Zp

(see III.3.5 below).
According to a conjecture of Jannsen ([Ja 2], Conj. 1; see also Prop. II.1.7(1c) below), the restriction

map resp should be injective for n < 0, n > i+ 1. More generally, the composite map

H1(Spec(F )mot,M)
rp−→H1(F,Mp)

resp−−→H1(F ⊗Q Qp,Mp) (0.4.3)

is expected to be injective for all n 6= (i+ 1)/2. This explains why the localized map (0.4.3), not rp itself, is
usually called a p-adic regulator.

(0.5) Suppose that X admits a regular model X, proper and flat over the ring of integers OF ⊂ F . The
motivic sites are expected to extend to

Xmot −→ Xmot, j : Spec(F )mot −→ Spec(OF )mot,

giving a commutative diagram

Hi+1(Xmot,Q(n)) −→ Hi+1(Xmot,Q(n))y yo
H1(Spec(OF )mot, j∗M) ↪→ H1(Spec(F )mot,M)

(0.5.0)

Recall the conjectural description of L(Hi(X), n), up to a sign:

Conjecture. Suppose that n > (i + 1)/2 (and, if n = i/2 + 1, that L(Hi(X), s) does not have a pole at
s = n). Then
(1) (Beilinson [Be 1, 2], Deligne [De 5]) The regulator r∞ induces an isomorphism

r∞ ⊗ 1 : H1(Spec(OF )mot, j∗M)⊗Q R ∼−→ H1(Spec(F ⊗Q R)R−Hodge,MR−Hodge)

and L(Hi(X), n) is equal to “det(r∞ ⊗ 1)”, up to a factor in Q∗.
(2) (Bloch-Kato [BK]) For each prime number p, the p-adic regulator rp induces an isomorphism

rp ⊗ 1 : H1(Spec(OF )mot, j∗M)⊗Q Qp
∼−→ H1

f (F,Mp) ⊆ H1(F,Mp),

where the subspace H1
f (F,Mp) is the generalized Selmer group defined in [BK]. The p-adic valuation of the

undetermined rational factor from (1) can be recovered from the isomorphism rp ⊗ 1.

(0.6) Both parts of this conjecture were originally formulated in terms of a K-theoretic version of motivic
cohomology. In this context, the map

Hi+1(Xmot,Q(n)) −→ Hi+1(Xmot,Q(n))

is replaced by

K2n−i−1(X)(n)
Q −→ K2n−i−1(X)(n)

Q ,

where the superscript (n) refers to the subspace of K.(−)⊗Q on which all Adams operations ψk (k ≥ 1) act
by kn (cf. [So 2], [Tamme]).
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The role of H1(Spec(OF )mot, j∗M) is played by

Im
[
K2n−i−1(X)(n)

Q −→ K2n−i−1(X)(n)
Q

]
This group does not depend on the choice of X, provided at least one X exists ([Be 1], 2.4.2). The maps r∞
(resp. rp) are given by the Chern character defined on higher K-theory, with values in the Beilinson-Deligne
(resp. p-adic étale) cohomology

r∞ : K2n−i−1(X)(n)
Q −→ Hi+1

BD (X ⊗Q R,R(n))

rp : K2n−i−1(X)(n)
Q −→ Hi+1(Xet,Qp(n))

(0.6.0)

See [Gi], [Sc 1] for a general discussion of characteristic classes.
The conjecture of Beilinson (resp. of Bloch-Kato) then predicts that r∞ (resp. rp) induces an isomor-

phism

r∞ :
(

Im
[
K2n−i−1(X)(n)

Q −→ K2n−i−1(X)(n)
Q

])
⊗Q R ∼−→ Hi+1

BD (X ⊗Q R,R(n)) (0.6.1)

resp.

rp :
(

Im
[
K2n−i−1(X)(n)

Q −→ K2n−i−1(X)(n)
Q

])
⊗Q Qp

∼−→ H1
f (F,Mp) (0.6.2)

(with a slight modification if n = i/2 + 1 and L(Hi(X), s) has a pole at n).

(0.7) The situation at the central point n = (i + 1)/2 of the conjectural functional equation (0.0.0) is
slightly different. Let CHn(X) be the Chow group of algebraic cycles of codimension n on X, modulo
rational equivalence. Let

CHn(X)0 = Ker
[
CHn(X) −→ H2n(Xet,Qp(n))

]
=

= Ker
[
CHn(X) −→ H2n(X(C),Q(n))

]
be its subgroup represented by cycles which are homologically trivial (modulo torsion).

The p-adic regulator rp is replaced by the p-adic Abel-Jacobi map (see [Ja 3, (9.4.1)])

rp : CHn(X)0 ⊗Q −→ F 1H2n(Xet,Qp(n)) −→ H1(F,Mp)

The conjecture of Bloch-Kato predicts that rp induces an isomorphism

rp ⊗ 1 : CHn(X)0 ⊗Qp
∼−→ H1

f (F,Mp) (0.7.0)

For n = i = 1, this is equivalent to the finiteness of the p-primary part of the Tate-Šafarevič group of the
abelian variety A = Pic0(X/F ) (over F ). Indeed, in this case, Mp = Vp(A), rp is the usual descent map

A(F )⊗Q ↪→ H1(F, Vp(A))

and H1
f (F, Vp(A)) is a Qp-version of the standard Selmer group.

(0.8) The conjectures (0.6.2) and (0.7.0) consist of three statements, arranged in an increasing order of
difficulty:

Im (rp) ⊆H1
f (F,Mp) (0.8.0)

Coker (rp ⊗ 1) = 0 (0.8.1)
Ker(rp ⊗ 1) = 0 (0.8.2)

Indeed, (0.8.0) is merely a consistency of the conjectures. (0.8.1) is equivalent to the finiteness of the
p-primary part of a suitably generalized Tate-Šafarevič group (see [BK]); this has been verified in certain
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cases. By contrast, (0.8.2) seems to be beyond reach at present. The only exception is the case n = i = 1 in
(0.7), when we are dealing with rational points on the abelian variety A = Pic0(X/F ).

(0.9) Let V be an arbitrary p-adic representation of G(F/F ) (of finite dimension). The Selmer group
H1

f (F, V ) ⊆ H1(F, V ) is defined by local conditions, namely by a cartesian diagram

H1
f (F, V ) ↪→ H1(F, V )y y∏

v H
1
f (Fv, V ) ↪→

∏
v H

1(Fv, V )

, (0.9.0)

in which

H1
f (Fv, V ) =

{
H1

ur(Fv, V ), if v 6 | p

Ker
[
H1(Fv, V ) −→ H1(Fv, V ⊗Qp Bcris)

]
, if v|p

(H1(Fv, V ) vanishes for an archimedean prime v).

(0.10) One of the aims of the present article is to prove a version of (0.8.0), under some mild restrictions
on p. In view of (0.9.0), one is naturally led to corresponding local statements over various completions of
F .

Changing perspective, we fix a (non-archimedean) prime v of F and consider a proper smooth scheme
Xv over Spec(Fv). Let Xv −→ Spec(Ov) be a proper model of Xv over the ring of integers of Fv.

(0.11) Assume first that v 6 | p. Étale Chern classes then define a commutative diagram of p-adic regulators

K2n−i−1(Xv)Q −→ K2n−i−1(Xv)(n)
Qy y

Hi+1((Xv)et,Qp(n)) −→ Hi+1((Xv)et,Qp(n))

(0.11.0)

resp. cycle classes (assuming Xv regular)

CHn(Xv)⊗Q −→ CHn(Xv)⊗Qy y
H2n((Xv)et,Qp(n)) −→ H2n((Xv)et,Qp(n))

(0.11.1)

The following statement is well known. It is a straightforward consequence of Deligne’s fundamental result
in Weil II ([De 4], Thm. 1) and the commutative diagrams (0.11.0-1).

Theorem A. If Xv is proper over Spec(Ov) and v 6 | p, then
(1) For n > (i+ 1)/2, K2n−i−1(Xv)⊗Q maps to F 1Hi+1((Xv)et,Qp(n)) and

Im
[
rp : K2n−i−1(Xv)⊗Q −→ H1(Fv,H

i((Xv)et,Qp(n)))
]

= 0.

(2) For n = (i+ 1)/2 and Xv regular,

Im
[
rp : CHn(Xv)0 ⊗Q −→ H1(Fv,H

2n−1((Xv)et,Qp(n)))
]

= 0.

Here CHn(Xv)0 = Ker
[
CHn(Xv) −→ H2n((Xv ⊗Ov

k(v))et,Qp(n))
]
.

Remark. If n = (i+ 1)/2 and H2n−1(Xet,Qp) satisfies the purity conjecture for the monodromy filtration
at v (e.g. if X has a potentially good reduction at v), then H1(Fv,H

2n−1((Xv)et,Qp(n))) = 0.
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(0.12) For v|p, diagrams (0.11.0-1) no longer exist. Assume that Xv is proper and smooth over Spec(Ov).
Instead of p-adic étale cohomology of Xv, consider the syntomic cohomology of Fontaine-Messing [FM]. For
p > 2 and n ≥ 0, Fontaine and Messing defined maps 1

H∗((Xv)syn, sQp
(n)) −→ H∗((Xv)et,Qp(n))

Chern classes with values in syntomic cohomology give rise to commutative diagrams of p-adic regulators

K2n−i−1(Xv)(n)
Q −→ K2n−i−1(Xv)(n)

Qy y
Hi+1((Xv)syn, sQp

(n)) −→ Hi+1((Xv)et,Qp(n))

(0.12.0)

resp. cycle classes

CHn(Xv) −→ CHn(Xv)y y
H2n((Xv)syn, sQp

(n)) −→ H2n((Xv)et,Qp(n))

(0.12.1)

Our main local result 2 (proved in a more general context, when Ov is replaced by an arbitrary complete
discrete valuation ring of mixed characteristic (0, p), with a perfect residue field) states that there is a
canonical isomorphism - compatible with the Hochschild-Serre spectral sequence (0.3.0) for Xv -

Ker
[
Hi+1((Xv)syn, sQp

(n)) −→ Hi+1((Xv)et,Qp(n))
] ∼−→ H1

f (Fv,H
i((Xv)et,Qp(n))) (0.12.2)

and that
Ker

[
Hi+1((Xv)syn, sQp

(n)) −→ Hi+1((Xv)et,Qp(n))
]

= 0. (0.12.3)
This implies that syntomic cohomology of a proper and smooth scheme over Spec(Ov) displays all signs of
behaviour of a “p-adic Beilinson-Deligne cohomology”, which should be the abutment of a spectral sequence

Ea,b
2 = Ha

f (Fv,H
b((Xv)et,Qp(n))) =⇒ Ha+b

BD (Xv,Qp(n)) (0.12.4)
As a corollary, we obtain

Theorem B. If Xv is proper and smooth over Spec(Ov) and v|p, then
(1) For n > (i+ 1)/2,

Im
[
rp : (K2n−i−1(Xv)⊗Q)0 −→ H1(Fv,H

i((Xv)et,Qp(n)))
]
⊆ H1

f (Fv,H
i((Xv)et,Qp(n))).

(2) For n = (i+ 1)/2,

Im
[
rp : CHn(Xv)0 ⊗Q −→ H1(Fv,H

2n−1((Xv)et,Qp(n)))
]
⊆ H1

f (Fv,H
2n−1((Xv)et,Qp(n))).

Here (K2n−i−1(Xv)⊗Q)0 = Ker
[
K2n−i−1(Xv)⊗Q −→ Hi+1((Xv)et,Qp(n))

]
.

In fact, Theorem B holds under a weaker assumption, namely that Xv has a potentially good reduction.
Moreover, it follows from crystalline Weil conjectures for Hi+1

cris(Xv) ([KM], [CLeS]) that (K2n−i−1(Xv) ⊗
Q)0 = K2n−i−1(Xv) ⊗Q. The statement (2) of Theorem B is crucial for the construction of p-adic height
pairings – see [Ne 2], [Ne 3].

(0.13) For Xv smooth and projective over Spec(Ov), P. Schneider ([Sc 2], Sect. 7) defined (for n ≥ 0) a
cohomology theory H∗((Xv)et, SQp(n)) mapping to H∗(Xet,Qp(n)). He conjectured that, for i 6= 2n, 2n−1,
the Hochschild-Serre spectral sequence induces an isomorphism

Hi+1((Xv)et, SQp
(n)) ∼−→ H1

f (Fv,H
i((Xv)et,Qp(n))) (0.13.0)

It is explained in [Sc 2] that (0.12.2) combined with a result of Kurihara [Ku] implies the following result.

1 The case of p = 2 is treated the work of Tsuji [Ts].
2 For technical reasons, we use the syntomic-étale site of the p-adic completion of Xv. The cohomology

of sQp(n) is the same for both sites.
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Theorem C. For i 6= 2n− 1 and 0 ≤ n < p− 1 Schneider’s conjecture (0.13.0) holds.

(0.14) Our methods also shed some light on the relation between the image of the cycle class map

clXv
: CHn(Xv)⊗Q −→ H2n((Xv)et,Qp(n))

and the filtration F .H2n((Xv)et,Qp(n)) on the target (again the case of v 6 | p is well known).

Theorem D. Let Xv be proper and smooth over Spec(Fv).
(1) If v 6 | p and either r = 1, or r = dim(X), or Xv has a potentially good reduction, then Im(clXv

) ∩
F 1H2n((Xv)et,Qp(n)) = 0.
(2) Suppose that v 6 | p and that Xv satisfies the condition

(∗n) There is a finite extension L/Fv such that XL := Xv ⊗Fv
L admits a regular model XL, proper over

Spec(OL), such that the restriction map (CHn(XL)⊗Q)0 −→ (CHn(XL)⊗Q)0 is surjective.
Then Im(clXv ) ∩ F 1H2n((Xv)et,Qp(n)) = 0.
(3) If v|p and if Xv has a potentially good reduction, then Im(clXv

) ∩ F 2H2n((Xv)et,Qp(n)) = 0.

The condition (∗n) is known to be satisfied - provided XL exists - if Xv is equidimensional and n = dim(Xv).

(0.15) Returning to the global setting, consider the cycle class map

clX : CHn(X)⊗Q −→ H2n(Xet,Qp(n))

for a smooth and projective scheme X over a number field F . The conjectural injectivity of the Abel-Jacobi
map rp from (0.7) predicts that

Im(clX) ∩ F 2H2n(Xet,Qp(n)) = 0

Our local results imply

Theorem E. If X is proper and smooth over a number field F and has a potentially good reduction at all
primes dividing p, then Im(clX) ∩ F 2H2n(Xet,Qp(n)) is a subquotient (as a Qp-vector space) of

Ker

[
αS,Σ : H2(GF,S ,H

2n−2(Xet,Qp(n))) −→
⊕
v∈Σ

H2(Fv,H
2n−2(Xet,Qp(n)))

]
.

HereGF,S is the Galois group of the maximal extension of F , unramified outside of S = {v|p}∪{primes of bad
reduction of X}, and Σ = {v|p} ∪ {v ∈ S | v 6 | p, (∗n) holds for X ⊗F Fv}.

Remarks. (i) It is believed that Σ = S.
(ii) Conjecturally, Ker(αS,S) = 0. A function field analogue was proved in ([Ja 2], Thm. 4) and ([Ra], Thm.
4.1).

(0.16) There are only a handful of cases in which the vanishing of Ker(αS,S) has been established. Combining
Theorem E with results of [Fl], [La 1], [Wi], we obtain

Theorem F. Let E be a modular elliptic curve over Q, without complex multiplication (over Q), p > 2 a
prime number at which E has good reduction. Then, for every d ≥ 1, the cycle class map

clEd : CHd(Ed) −→ H2d((Ed)et,Qp(d))

satisfies Im(clEd) ∩ F 2H2d((Ed)et,Qp(d)) = 0.

Under additional hypotheses on p, an analogue of Theorem D can be proved for cohomology with Zp-
coefficients. Combined with vanishing results for a Zp-version of αS,S ([Fl]), this can be applied to the
torsion in the Chow groups:
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Theorem G. Let E be a modular elliptic curve over Q, without complex multiplication (over Q). Then
there is an explicit integer cE ≥ 1 such that, for every d ≥ 1 and every prime p not dividing (2d)! · cE , we
have (

Im
[
CHd(Ed) −→ H2d((Ed)et,Zp(d))

])
tors

= 0.

(0.17) Theorem B was independently proved by Nizio l[Ni] for Xv smooth and projective over Spec(Ov). A
special case of (0.12.2) is treated by Langer-Saito ([LaSa], Thm. 6.5). Our approach is modelled on a paper
of M. Gros [Gros]. However, many arguments in [Gros] are rather sketchy. The Appendix to the present
paper will treat the compatibility of syntomic and étale Chern classes in (0.12.0-1) (this is one of the points
where the treatment in [Gros] does not seem to be completely satisfactory).
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I. Topological background

This chapter sums up technical material that will be needed later.

1. Abstract nonsense

(1.1) Notation. For a category (resp. a site) C, denote by Ĉ (resp. C˜) the category of presheaves (resp.
sheaves) on C (we suppress the dependence on a universe). For a topos E, write Ab(E) for the category of
abelian groups in E. If A is a ring in E, Mod(E,A) denotes the category of A-modules in E. Both Ab(E)
and Mod(E,A) are abelian categories with enough injectives ([SGA 4], Exp. II, 6.9). If E = (Sets), then
we often write (A−Mod) instead of Mod((Sets), A). Write ΓE = Γ(E,−) : E −→ (Sets) for the functor of
global sections on E. Cohomology groups in E are denoted by Hq(E,−) (resp. Hq(E;X,−) for an object
X of E). Occasionally, we shall abuse the notation and write Hq(C,−) instead of Hq(C˜,−) (and similarly
for Hq(C;X,−)). See Appendix and ([SGA 4], Exp. I–VI) for further topological terminology.

(1.2) Localization. Let A be an abelian category. Denote by Q(A) = A⊗Q its localization with respect
to all morphisms n · 1A : A −→ A (for A ∈ Ob(A), n ≥ 1). It has the same class of objects as A and the
identity induces a functor Q : A −→ Q(A). We give a list of standard properties of Q(A).
(1) Q(A) is an abelian category.
(2) Q : A −→ Q(A) is an additive functor, exact and essentially surjective.
(3) For every A,B ∈ Ob(A),

HomQ(A)(Q(A), Q(B)) = HomA(A,B)⊗Q

(4) If B is an additive category and u : A −→ B an additive functor such that u(n ·1A) = n ·1u(A) : u(A) −→
u(A) is invertible for all A ∈ Ob(A), n ≥ 1, then u factors uniquely as

u : A Q−→Q(A) v−→B,

where v is an additive functor. In particular, for every commutative ring R the functor −⊗Q : (R−Mod) −→
((R⊗Q)−Mod) factors as

(R−Mod)
Q−→Q(R−Mod)

ξ−→((R⊗Q)−Mod),

where ξ is an exact functor.
(5) For A ∈ Ob(A), Q(A) = 0 iff n ·HomA(A,A) = 0 for some n ≥ 1.
(6) An additive functor u : A −→ B between abelian categories A,B induces an additive functor Q(u) :
Q(A) −→ Q(B) such that the diagram

A u−→ ByQA

yQB

Q(A)
Q(u)−→ Q(B)

is (strictly) commutative.
(7) In the situation of (6), u is exact (resp. left exact, resp. right exact) =⇒ Q(u) is exact (resp. left exact,
resp. right exact).
(8) If A has enough injectives (e.g. if A = Mod(E,A)), then Q(A) has enough injectives and

{X ∈ Ob(Q(A)) |X injective} = {QA(I) | I ∈ Ob(A) injective}

(9) If A has enough injectives and if u : A −→ B (as in (6)) preserves injectives, then Q(u) : Q(A) −→ Q(B)
preserves injectives.
(10) If A has enough injectives and u : A −→ B (as in (6)) is left exact, then Q(u) : Q(A) −→ Q(B) is left
exact, Rqu, RqQ(u) are defined for all q ≥ 0 and the diagram
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A Rqu−−−−→ ByQA

yQB

Q(A)
Rq(Q(u))−−−−→ Q(B)

is commutative (up to a canonical isomorphism).
(11) Denote by C(A) (resp. K(A), resp. D(A)) the category of complexes (resp. the category of complexes
up to homotopy, resp. the derived category) of A. The functor QA : A −→ Q(A) extends to triangulated
functors Q : K(A) −→ K(Q(A)) and QD : D(A) −→ D(Q(A)).
If X (resp. Y ) is a complex bounded below (resp. bounded above), then the canonical maps

HomC(A)(X,Y )⊗Q −→ HomC(Q(A))(Q(X), Q(Y ))

HomK(A)(X,Y )⊗Q −→ HomK(Q(A))(Q(X), Q(Y ))

are both isomorphisms.
(12) If A has enough injectives, then the canonical map

HomD(A)(X,Y )⊗Q −→ HomD(Q(A))(QD(X), QD(Y ))

is an isomorphism for every X ∈ Ob(D−(A)), Y ∈ Ob(D+(A)).
(13) If A has enough injectives and u : A −→ B is a left exact functor to an abelian category B, then there
is a canonical isomorphism

QD(Ru(X)) ∼−→ R(Q(u))(QD(X))

for every X ∈ Ob(D+(A)).

(1.3) Projective systems. Let C be a category. Denote by CN the category of projective systems

[An]n∈N = [A0 ←− A1 ←− A2 ←− · · ·]

(indexed by N) in C.
If E is a topos, then EN is a topos as well. Indeed, viewing the ordered set N as a category in the usual

way, consider the functor Φ : N −→ E sending each element of N to the final object eE of E. The pull-back
of the fibred topos of arrows Fl(E) −→ E ([SGA 4], Exp. VI, 7.3.1) by Φ is a fibred topos Φ∗(Fl(E)) −→ N
over N. The associated total topos Top(Φ∗(Fl(E)) (cf. [Il 1], VI.5.2) is canonically equivalent to EN. The
functor of global sections of EN factors as

Γ(EN) : EN ΓN
E−→(Sets)N ΓN−→(Sets),

where ΓN
E ([An]) = [ΓE(An)] and ΓN = lim←−N (cf. [SGA 4], Exp. VI, 7.4.15; [Il 1], VI.5.8.1(ii)).

(1.4) Continuous cohomology. For a projective system A = [An] ∈ Ob(Ab(EN)) we shall write, abu-
sively, Hq(E, [An]) instead of Hq(EN, [An]). The spectral sequence of ([SGA 4], Exp. VI, 7.4.15; Appendix
2.3.2) for the composition of functors

Γ(EN) = ΓN ◦ ΓN
E : Ab(EN) −→ (Ab)N −→ (Ab)

becomes

0 −→ (R1 lim←−N ) Hq−1(E,An) −→ Hq(E, [An]) −→ lim←−N Hq(E,An) −→ 0, (1.4.1)

as RqΓN = Rq lim←−N = 0 for q > 1 (in (Ab)N). We denote by Hq
naive(E, [An]) the third group in the short

exact sequence (1.4.1).
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(1.5) A morphism of topoi u = (u∗, u∗) : E −→ E′ induces a morphism of topoi uN : EN −→ E′N, given
termwise by u. On abelian group objects, the derived functors

RquN
∗ : Ab(EN) = Ab(E)N −→ Ab(E′N) = Ab(E′)N

can be computed termwise as well: (
RquN

∗
)

([An]) = [Rqu∗(An)] (1.5.1)

The Leray spectral sequence for uN ([SGA 4], Exp. V, 5.3) is given by

Ep,q
2 = Hp(E′, [Rqu∗(An)]n∈N) =⇒ Hp+q(E, [An]n∈N) (1.5.2)

Denote by F iHq(E, [An]) the induced filtration on its abutment. The kernel of the edge homomorphism is
equal to

Ker
[
Hq(E, [An]) −→ E0,q

2

]
= F 1Hq(E, [An])

and (1.5.2) induces a homomorphism

δ : F 1Hq(E, [An]) −→ E1,q−1
∞ ↪→ E1,q−1

2 (1.5.3)

(1.6) Mittag-Leffler conditions. Recall that a projective system [An] ∈ Ob(Ab(E)N) is a ML-system if,
for each n ∈ N, the sequence of subobjects [Im(Am+n −→ An)]m∈N of An becomes stationary for m > m(n).
The projective system is ML-zero, if this stationary value is equal to 0 (= the final object of Ab(E)) for
all n ∈ N. The projective system is an AR-system (= Artin-Rees), if the value of m(n) can be taken
independent of n. If [An] is ML-zero, then ([Ja 1], Lemma 1.11)

Hq(E, [An]) = 0 (1.6.1)

A ML-isomorphism is a homomorphism f : [An] −→ [Bn] such that both Ker(f) and Coker(f) are ML-zero.
By (1.6.1), such an f induces an isomorphism

Hq(E, [An]) ∼−→ Hq(E, [Bn]) (1.6.2)

for all q ≥ 0. A projective system [An] of abelian groups is called ML-p-adic if it is ML-isomorphic to the
system [A⊗ Z/pnZ] for a suitable abelian group A.

(1.7) Group cohomology. Let G be a pro-finite group and let BG be its classifying topos ([SGA 4],
Exp. IV, 2.7). Objects of BG are sets with a discrete left action of G (the stabilizer of each element is an
open subgroup of G). Abelian groups in BG are discrete G-modules. For a projective system of discrete
G-modules [An], we write Hq(G, [An]) for Hq(BG, [An]).

The group G acts continuously on the projective limit A = lim←−N An (equipped with the topology of a

projective limit of discrete sets) and one can consider continuous cohomology groups Hq
cont(G,A) in the

sense of Tate [Ta], computed using continuous cochains. The basic comparison result, due to Jannsen ([Ja
1], Thm. 2.2), states that for a Mittag-Leffler system [An] there is a canonical (and functorial) isomorphism

Hq
cont(G, lim←−N An) ∼−→ Hq(G, [An]) (1.7.1)

(1.8) Lemma. Let G be a pro-finite group, p a prime number such that d := cdp(G) (cf. [Se 1], I.3.1) is
finite. If [An] is a projective system of p-power torsion discrete G-modules, then
(1) Hq(G, [An]) = 0, if q > d+ 1.
(2) Hd+1(G, [An]) = 0, if [An] is a ML-system.

Proof. (1) Follows from (1.4.1). For (2), we have to show that (R1 lim←−N ) Hd(G, [An]) = 0 (again by (1.4.1)).

In view of (1.6.1), we can assume that [An] is a surjective system. In this case
[
Hd(G,An)

]
n

is a surjective
system as well, hence its (R1 lim←−N ) vanishes.

11



(1.9) Proposition. Let G be a pro-finite group, T a topological G-module. Define a topology on T ⊗Q
as follows: T ⊗Q = lim−→m Im(αm), where αm : T −→ T ⊗Q (for m ≥ 1) is given by αm(x) = x⊗ (1/m). Put

the quotient topology on Im(αm) and the inductive limit topology on T ⊗Q. If Ttors has a finite exponent,
then the canonical map

Hq
cont(G,T )⊗Q −→ Hq

cont(G,T ⊗Q)

is an isomorphism (for each q ≥ 0).

Proof. As in ([Ja 1], Thm. 5.15.c).

(1.10) Remark. If p is a prime number and [An] is a ML-p-adic projective system of discrete abelian
groups, then the projective limit topology on A = lim←−N An is the p-adic one (see [Ja 1], Lemma 4.5).

2. Continuous étale cohomology

This is a brief summary of some aspects of Jannsen’s theory [Ja 1].

(2.1) For a scheme X, let Xet be its small étale site ([SGA 4], Exp. VII, 1.2). As in 1.4, for an object [An]
of Ab(X∼

et)
N, there are continuous cohomology groups Hq(Xet, [An]) sitting in the exact sequence

0 −→ (R1 lim←−N ) Hq−1(Xet, An) −→ Hq(Xet, [An]) −→ lim←−N Hq(Xet, An) −→ 0 (2.1.1)

As before, we denote the third group by Hq
naive(Xet, [An]).

(2.2) Let K be a (commutative) field. Fix a separable closure Ks of K and put GK = G(Ks/K). Evaluation
at η : Spec(Ks) −→ Spec(K) (more precisely, at Spec(L) −→ Spec(K) for all finite subextensions K ⊂ L ⊂
Ks) defines an equivalence of categories

Spec(K)∼et
≈−→BGK

, A 7→ Aη,

inducing canonical isomorphisms

Hq(Spec(K)et, [An]) ∼−→ Hq(GK , [(An)η]n∈N) (2.2.1)

Let π : X −→ Spec(K) be a coherent (= quasi-compact and quasi-separated) morphism (for example, a
morphism of finite type). For every abelian sheaf A on Xet and q ≥ 0, there is a canonical isomorphism

(Rqπ∗A)η
∼−→ Hq(Xet, A), (2.2.2)

where X = X ⊗K Ks ([SGA 4], Exp. VIII, 5.2) (by abuse of notation, we write A instead of f∗A, for
f : X −→ X). If π is not coherent, then the R.H.S. of (2.2.2) has to be replaced by

lim−→L Hq((X ⊗K L)et, A),

with L running through subextensions K ⊂ L ⊂ Ks, finite over K. The Leray spectral sequence (1.5.2)
becomes – for coherent π – the Hochschild-Serre spectral sequence

Ei,j
2 = Hi(GK , [Hj(Xet, An)]n∈N) =⇒ Hi+j(Xet, [An]n∈N) (2.2.3)

(2.3) Under additional hypotheses, the spectral sequence (2.2.3) further simplifies ([Ja 1], Rmk. 3.5):
(2.3.1) If [Hj(Xet, An)]n∈N is a ML-system for all j ≥ 0 (e.g. if the groups Hj(Xet, An) are finite for all
j, n ≥ 0), then

Hq(Xet, [An]) ∼−→ Hq
naive(Xet, [An])

12



and (1.7.1) gives

Ei,j
2 = Hi

cont(GK ,H
j
naive(Xet, [An])) =⇒ Hi+j(Xet, [An]n∈N) (2.3.1.1)

(2.3.2) If, furthermore, Hi(GK ,M) is finite for any finite GK-module M and i ≥ 0, then the spectral
sequence (2.3.1.1) and its abutment are equal to lim←−N of the usual spectral sequences

Ei,j
2 = Hi(GK ,H

j(Xet, An)) =⇒ Hi+j(Xet, An), (2.3.2.1)

as all groups in (2.3.2.1) are finite and lim←−N is exact on projective systems of finite groups. This happens, for

example, if K is a finite field or a finite extension of Q`.
(2.3.3) For a prime p different from the characteristic of K we put, as usual,

Z/pnZ(r) =

{
µ⊗r

pn if r ≥ 0

Hom(µpn ,Z/pnZ)⊗−r if r ≤ 0

If π : X −→ Spec(K) is of finite type, then, according to ([SGA 5], Exp. V, 5.3.1),

[Hi(Xet,Z/pnZ(r))]n∈N is a ML−p− adic system of finite groups (2.3.3.1)

(for every i ≥ 0, r ∈ Z). This implies that

Hj(Xet,Zp(r)) ∼−→ Hj
naive(Xet,Zp(r)).

Following Jannsen [Ja 1], we use the following notation:

Hq(Xet,Zp(r)) := Hq(Xet, [Z/pnZ(r)])
Hq(Xet,Qp(r)) := Hq(Xet, [Z/pnZ(r)])⊗Zp

Qp

(2.3.1.1) then gives a spectral sequence

Ei,j
2 = Hi

cont(GK ,H
i(Xet,Zp(r))) =⇒ Hi+j(Xet,Zp(r)), (2.3.3.2)

which, on tensoring by Q, becomes – in view of Proposition 1.9 –

Ei,j
2 = Hi

cont(GK ,H
i(Xet,Qp(r))) =⇒ Hi+j(Xet,Qp(r)) (2.3.3.3)

Note that the topology on Hi(Xet,Zp(r)) (resp. on Hi(Xet,Qp(r))) is the p-adic one, according to (1.10)
and (2.3.3.1),

If follows from (2.3.3.1) and Lemma 1.8 that

Ei,j
2 = 0 for i > cdp(K) (2.3.3.4)

(for both spectral sequences (2.3.3.2–3)).
If X is smooth and projective over K, then the spectral sequence (2.3.3.3) degenerates at E2, by ([De

1], Prop. 2.4) and the existence of a good formalism for the derived category of Qp-sheaves (Ekedhal [Ek],
Jannsen (unpublished)). It follows from de Jong’s theorem on alterations [de J] that E2 = E∞ for X proper
(not necessarily projective) and smooth over K.
(2.3.4) If, furthermore, K is as in (2.3.2), then (2.3.3.2) is the projective limit of spectral sequences

Ei,j
2 = Hi(GK ,H

i(Xet,Z/pnZ(r))) =⇒ Hi+j(Xet,Z/pnZ(r)), (2.3.4.1)

with all groups in (2.3.4.1) being finite.

(2.4) Proper base change. Let S be the spectrum of a henselian local ring, s ↪→ S the inclusion of
the closed point. Let π : X −→ S be a proper morphism with a special fibre Xs = X ⊗S s. Denote by
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i : Xs ↪→ X the immersion of Xs into X. If A = [An] is a projective system of torsion abelian sheaves on
Xet, then i induces an isomorphism

i∗ : Hq(Xet, [An]) ∼−→ Hq((Xs)et, [i
∗An]) (∀q ≥ 0) (2.4.1)

This follows from (2.1.1) and the usual proper base change theorem. The latter also implies that

(RqπN
∗ A)s := [(Rqπ∗An)s]n∈N

∼−→ [Hq((Xs)et, i
∗
An)]n∈N (2.4.2)

(2.5) Let p be a prime number. Write “Zp” for the projective system [Z/pnZ]n∈N; it is a ring in (Sets)N.
For any topos E, the morphism of topoi ΓN

E : EN −→ (Sets)N defines a ring (ΓN
E )∗(“Zp”) in EN, which will

be again denoted by “Zp”. By abuse of language, we put

Mod(E, “Zp”) := Mod(EN, “Zp”), Mod(E, “Qp”) := Q(Mod(E, “Zp”))

These are abelian categories with enough injectives (cf. (1.1), (1.2.8)).
If K is a field of characteristic char(K) 6= p and G = GK , denote by “Zp(r)” (for any r ∈ Z) the

projective system of discrete G-modules [Z/pnZ(r)]n∈N. It is a flat object of Mod(BG, “Zp”). Write “Qp(r)”
for Q(“Zp(r)”), which is a flat object of Mod(BG, “Qp”).

Tensor products X 7→ X ⊗“Zp” “Zp(r)” (resp. X 7→ X ⊗“Qp” “Qp(r)”) define exact endofunctors
X 7→ X(r) (“Tate twists”) of Mod(BG, “Zp”) (resp. Mod(BG, “Qp”)). For every X and r, q ∈ Z, there are
canonical isomorphisms

(X(r))(q) ∼−→ X(r + q), (X(r))(−r) ∼−→ X (2.5.1)

3. Some homological algebra

This section should be skipped on the first reading. We shall need Proposition 3.5 for our main comparison
results in Chapters III and IV.

(3.1) Suppose we are given the following data:
(0) An integer i ∈ Z.
(1) Abelian categories with enough injectives C, C,D.
(2) Left exact functors u : C −→ C, Ψ : C −→ D, Φ = Ψ ◦ u : C −→ D.
(3) Distinguished triangles ∆ : A −→ B −→ C −→ A[1] (resp. ∆ : A −→ B −→ C −→ A[1]) in D+(C)

(resp. D+(C)).
(4) A morphism of triangles ∆ −→ (Ru)(∆) in D+(C).
(5) Objects E ∈ Ob(D+(C)), E ∈ Ob(D+(C)) and an isomorphism ρ : E ∼−→ (Ru)(E).
(6) Morphisms µ : A −→ E (resp. µ : A −→ E) in D+(C) (resp. D+(C)) such that the diagram

A
µ−→ Ey yoρ

(Ru)(A)
Ru(µ)−−→ (Ru)(E)

is commutative.
Denote the composition

(Ri+1Ψ)(A)
µ−→(Ri+1Ψ)(E) ∼−→ (Ri+1Φ)(E)

by ν and write λj for the map (RjΨ)(B) −→ (RjΨ)(C).

We assume the following axioms hold:
(A1) Ker

[
Hj(A) −→ Hj(B)

]
= 0 for j = i, i+ 1.

14



(A2) µ induces an isomorphism τ≤iA
∼−→ τ≤iE and a monomorphism Φ(Hi+1(A)) ↪→ Φ(Hi+1(E)).

(A3) The canonical maps (RjΨ)(B) −→ Φ(Hj(B)), (RjΨ)(C) −→ Φ(Hj(C)) (for j = i, i + 1) induce
isomorphisms

Coker(λi) ∼−→ Coker
[
Φ(Hi(B)) −→ Φ(Hi(C))

]
Ker(λi+1) ∼−→ Ker

[
Φ(Hi+1(B)) −→ Φ(Hi+1(C))

]
Note that (A2) resp. (A3) follow from stronger axioms

(A2’) µ induces an isomorphism τ≤i+1A
∼−→ τ≤i+1E.

(A3’) The canonical maps (RjΨ)(B) −→ Φ(Hj(B)), (RjΨ)(C) −→ Φ(Hj(C)) are isomorphisms for j =
i, i+ 1.

(3.2) The spectral sequence Ep,q
2 = (RpΦ)(Hq(A)) =⇒ (Rp+qΦ)(A)

defines a decreasing filtration F i(RjΦ)(A) and homomorphisms

edge : (RjΦ)(A) −→ E0,j
∞ ↪→ E0,j

2 = Φ(Hj(A))

δ : F 1(RjΦ)(A) = Ker(edge) −→ E1,j−1
∞ ↪→ E1,j−1

2 = (R1Φ)(Hj−1(A))

(and similarly for B, C). The maps in (A3) are given by

(RjΨ)(B) = Hj(RΨ(B))
(3.1.4)−→ Hj(RΨRu(B)) ∼−→ Hj(RΦ(B)) = (RjΦ)(B)

edge−→Φ(Hj(B))

Proposition. For every j ∈ Z, the following diagram is commutative:

Ker
[
(RjΦ)(C)

edge−→Φ(Hj(C)) −→ Φ(Hj+1(A))
]

−→ F 1(Rj+1Φ)(A)yedge

yδ

Ker
[
Φ(Hj(C)) −→ Φ(Hj+1(A))

] ∂−→(R1Φ)(Im[Hj(A) −→ Hj(B)]) ←− (R1Φ)(Hj(A))

Here ∂ is the coboundary map in the cohomology exact sequence of

0 −→ Im[Hj(A) −→ Hj(B)] −→ Hj(B) −→ Ker[Hj(C) −→ Hj+1(A)] −→ 0

Proof. This is a derived category version of [Ja 3, Lemma 9.5].

(3.3) The axiom (A1) implies that

Im
[
(RiΦ)(C) −→ (Ri+1Φ)(A)

]
⊆ F 1(Ri+1Φ)(A), (3.3.1)

the sequence

0 −→ Hi(A) −→ Hi(B) −→ Hi(C) −→ 0

is exact and the maps

Φ(Hj(A)) −→ Ker
[
Φ(Hj(B)) −→ Φ(Hj(C))

]
(3.3.2)

are isomorphisms for j = i, i+ 1.
According to the axiom (A2), µ induces isomorphisms

(RjΦ)(A) ∼−→ (RjΦ)(E), Hj(A) ∼−→ Hj(E) (∀j ≤ i)
F 1(RjΦ)(A) ∼−→ F 1(RjΦ)(E) (∀j ≤ i+ 1)

(3.3.3)

and a monomorphism (which is an isomorphism, if (A2’) holds)
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F 1(Ri+1Φ)(A) ↪→ F 1(Ri+1Φ)(E). (3.3.4)

By transport of structure, we obtain an exact sequence

0 −→ Hi(E) −→ Hi(B) −→ Hi(C) −→ 0

Denote by

∂ : Φ(Hi(C)) −→ (R1Φ)(Hi(E))

the corresponding boundary map.

(3.4) Corollary. Assuming (A1), (A2), the following diagram is commutative

Coker
[
(RiΦ)(B)) −→ (RiΦ)(C))

] (3.3.1)−→ F 1(Ri+1Φ)(A)
µ−→ F 1(Ri+1Φ)(E)yedge

yδ

yδ

Coker
[
Φ(Hi(B)) −→ Φ(Hi(C))

] ∂
↪→ (R1Φ)(Hi(A))

µ−→ (R1Φ)(Hi(E))

Both maps µ are isomorphisms, by (3.3.3).

(3.5) Proposition. Suppose the axioms (A1)–(A3) hold. Then
(1) There is a commutative diagram with exact rows, with vertical maps induced by ν:

0 −→ Coker(λi) −→ (Ri+1Ψ)(A) −→ Ker(λi+1) −→ 0yβ

yν

yα

0 −→ F 1(Ri+1Φ)(E) −→ (Ri+1Φ)(E)
edge−→ Φ(Hi+1(E))yδ

(R1Φ)(Hi(E))

(2) The composition δ ◦ β is equal to the map ∂ (composed with the isomorphism of (A3)). In particular,
Ker(δ ◦ β) = 0.
(3) Ker(α) = 0. If (A2’) holds, then α is an isomorphism and Coker(edge) = 0.
(4) Ker(ν) = 0.

Proof. (1),(2) The first row is the cohomology sequence of ∆. The commutativity of the right square is
clear. The commutativity of the left square follows from Corollary 3.4 and the commutative diagram

Coker(λi) −−−−→ (Ri+1Ψ)(A)y y
Coker

[
(RiΦ)(B)) −→ (RiΦ)(C))

]
↪→ F 1(Ri+1Φ)(A) ↪→ (Ri+1Φ)(A)

(3) The map α is the composition of the monomorphism Φ(Hi+1(A)) ↪→ Φ(Hi+1(E)) (which is an isomor-
phism, if (A2’) is satisfied), and the isomorphisms (3.3.2) and (A3).
(4) Follows from Ker(α) = Ker(β) = 0.

(3.6) Define a filtration on (RjΨ)(A) by

F 0(RjΨ)(A) = (RjΨ)(A)

F 1(RjΨ)(A) = Ker
[
(RjΨ)(A) −→ (RjΨ)(B)

] ∼←− Coker(λj−1)

Fm(RjΨ)(A) = 0 (m > 1)

Proposition 3.5 can then be reformulated as follows:
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Proposition. (1) For every j ≥ 0, we have ν(F j(Ri+1Ψ)(A)) ⊆ F j(Ri+1Φ)(E)) and the induced map
grj

F (ν) : grj
F (Ri+1Ψ)(A) −→ grj

F (Ri+1Φ)(E) = Ej,i+1−j
∞ is a monomorphism.

(2) Im
[
gr1F (Ri+1Ψ)(A) ↪→ E1,i

∞ ↪→ E1,i
2

]
= Im(∂).

(3) If (A2’) is satisfied, then the map

gr0F (Ri+1Ψ)(A) ↪→ E0,i+1
∞ ↪→ E0,i+1

2 = Φ(Hi+1[E))

is an isomorphism and E0,i+1
∞ = E0,i+1

2 .
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II. Local situation at ` 6= p

There is nothing new in this chapter. We simply summarize well-known results on étale cohomology and
p-adic regulators for varieties over `-adic fields.

1. Étale cohomology

(1.1) Geometric situation. Let ` 6= p be prime numbers, K/Q` a finite extension, OK ⊂ K the ring of
integers, k the residue field of OK , IK ⊂ GK the inertia subgroup.
For a morphism π : X −→ Spec(OK), denote by πη : X −→ Spec(K) = η (resp. πs : Y −→ Spec(k) = s) its
generic (resp. special) fibre. Denote the corresponding open (resp. closed) immersion by j : X ↪→ X (resp.
i : Y ↪→ X).

(1.2) Cohomology. For a fixed r ∈ Z, there is a projective system of abelian sheaves [Z/pnZ(r)]n∈N on
Xet. The Leray spectral sequences (1.5.2) for π, πη, πs (tensored by Q) are

Ea,b
2 = Ha(Spec(OK)et, [R

bπ∗(Z/pnZ(r))]n∈N)⊗Q =⇒ Ha+b(Xet,Qp(r))
sEa,b

2 = Ha(Spec(k)et, [R
bπs∗(Z/pnZ(r))]n∈N)⊗Q =⇒ Ha+b(Yet,Qp(r))

ηEa,b
2 = Ha(Spec(K)et, [R

bπη∗(Z/pnZ(r))]n∈N)⊗Q =⇒ Ha+b(Xet,Qp(r))

(1.2.1)

(see (2.3.3) for the notation).
If π is a morphism of finite type, then

sEa,b
2 = Ha

cont(Gk,H
b(Y et,Zp(r)))⊗Q ∼−→ Ha

cont(Gk,H
b(Y et,Qp(r)))

ηEa,b
2 = Ha

cont(GK ,H
b(Xet,Zp(r)))⊗Q ∼−→ Ha

cont(GK ,H
b(Xet,Qp(r)))

(1.2.2)

by (I.1.9) and (I.2.3.3.2). According to (I.2.3.3–4), we have

Hq(Zet,Zp(r)) ∼−→ Hq
naive(Zet,Zp(r)) (1.2.3)

for all Z = X,X, Y, Y .

(1.3) Base change. The immersions i, j induce homomorphisms

sEa,b
c

i∗←−Ea,b
c

j∗−→ηEa,b
c

Ha+b(Yet,Qp(r)) i∗←−Ha+b(Xet,Qp(r))
j∗−→Ha+b(Xet,Qp(r))

(1.3.1)

As cdp(k) = 1 and cdp(K) = 2, (I.2.3.3.4) implies that sEa,b
2 = 0 for a > 1 and ηEa,b

2 = 0 for a > 2. Thus
sEa,b

2 = sEa,b
∞ .

The filtrations F . induced by the spectral sequences (1.2.1) on their abutments are compatible with the
maps i∗, j∗ in (1.3.1). From now on, assume that π is proper. Then i∗ induces an isomorphism of spectral
sequences Ea,b

c and sEa,b
c , by (I.2.4.1–2). This means that F 2Hi(Xet,Qp(r)) = 0 and that the map δ of

(I.1.5.3) (for πs) is an isomorphism, sitting in a commutative diagram

F 1Hi+1(Yet,Qp(r)) ∼←− F 1Hi+1(Xet,Qp(r)) −→ F 1Hi+1(Xet,Qp(r))yo yδ

H1
cont(Gk,H

i(Y et,Qp(r))) −−−−→ H1
cont(GK ,H

i(Xet,Qp(r)))

(1.3.2)

All of its entries (as well as Hi(Xet,Qp(r)) and Hi(Y et,Qp(r))) are Qp-vector spaces of finite dimension,
by (I.2.3.4).
Write V i

s (resp. V i
η ) for Hi(Y et,Qp) (resp. Hi(Xet,Qp)). The graded pieces for the filtrations F . satisfy
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gr0FH
i+1(Xet,Qp(r)) = E0,i+1

∞
∼−→ sE0,i+1

∞ = sE0,i+1
2 =

(
V i+1

s (r)
)Gk

gr1FH
i+1(Xet,Qp(r)) = E1,i

∞
∼−→ sE1,i

∞ = sE1,i
2 = H1

cont(Gk, V
i
s (r))

grj
FH

i+1(Xet,Qp(r)) = 0 (∀j > 1)

(1.3.3.1)

and

gr0FH
i+1(Xet,Qp(r)) = ηE0,i+1

∞ ↪→ ηE0,i+1
2 =

(
V i+1

η (r)
)GK

gr1FH
i+1(Xet,Qp(r)) = ηE1,i

∞ = ηE1,i
2 = H1

cont(GK , V
i
η (r))

(1.3.3.2)

The homomorphisms

gr0F (j∗) :
(
V i+1

s (r)
)Gk −→

(
V i+1

η (r)
)GK

gr1F (j∗) : H1
cont(Gk, V

i
s (r)) −→ H1

cont(GK , V
i
η (r))

(1.3.4)

are induced by the specialization maps

spj : V j
s −→

(
V j

η

)IK (1.3.5)

for j = i + 1 (resp. j = i). In particular, the bottom arrow in (1.3.2) is equal to gr1F (j∗), hence factors
through the unramified Galois cohomology:

H1
cont(Gk, V

i
s (r)) −→ H1

cont(Gk, (V i
η (r))IK ) = H1

ur(GK , V
i
η (r)) ↪→ H1

cont(GK , V
i
η (r)) (1.3.6)

According to Deligne ([De 4], Thm. 1), V i
s (r) is mixed of weights ≤ i− 2r. Consequently,

gr0FH
i+1(Xet,Qp(r)) = 0, if r > (i+ 1)/2

gr1FH
i+1(Xet,Qp(r)) = 0, if r > i/2

(1.3.7)

If π is proper and smooth, then IK acts trivially on V i
η and spi is an isomorphism (for all i ≥ 0), by the

proper and smooth base change theorems.

(1.4) Proposition. Let π : X −→ Spec(OK) be proper.
(1) If r > (i+ 1)/2, then Hi+1(Xet,Qp(r)) = 0.
(2) If r = (i+ 1)/2, then the edge homomorphism H2r(Xet,Qp(r)) −→ V 2r

s (r)Gk is an isomorphism.

Proof. Everything follows from (1.3.7) and (1.3.3.1).

(1.5) Purity conjecture for the monodromy filtration. Suppose that π : X −→ Spec(OK) is proper
and its generic fibre πη : X −→ Spec(K) is smooth. According to Grothendieck ([ST], Appendix), there
is a finite extension K ′/K such that IK′ acts on H := Hi(Xet,Qp) unipotently, through the p-part of its
tame quotient. This gives rise ([De 4], Prop. 1.6.1) to a monodromy operator N : H −→ H(−1) and the
corresponding monodromy filtration MiH (increasing, exhaustive and separating). It is characterized by

N(MjH) ⊆Mj−2(−1) (j ∈ Z); N j : GrM
j (H) ∼−→ GrM

−j(H)(−j)

The purity conjecture for the monodromy filtration ([De 2], 8.1) predicts that

H = MiH (⇐⇒M−i−1H = 0) (1.5.1)
Over K ′, GrM

j (H) is unramified and pure of weight i+ j (∀j ∈ Z) (1.5.2)

The characteristic polynomial det(1− T · Frk′ | GrM
j (H)) has coefficients in Q

and is independent of p (1.5.3)
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If true, then the weights of

Hi(Xet,Qp)IK ⊆ Hi(Xet,Qp)I′K = Ker(N : H −→ H(−1)) (1.5.4)

are contained in the set {0, 1, . . . , i} and all weights of

Hi(Xet,Qp)IK
←− Hi(Xet,Qp)I′

K
= Coker(N(1) : H(1) −→ H) (1.5.5)

are contained in {i, i+ 1, . . . , 2i}.

(1.6) The conjecture (1.5.1–3) has been proved in the following cases:
(1.6.0) i = 0 (trivial).
(1.6.1) X has good reduction ([De 3]). In this case H is pure of weight i: H = M0H and M−1H = 0.
(1.6.2) i = 1 ([SGA 7], Exp. IX, Thm. 3.6).
(1.6.3) dim(X) = 2 ([RZ], Thm. 2.13, assuming that X has semistable reduction; it follows from de Jong’s
theorem on alterations [de J] that this assumption is unnecessary).
(1.6.4) X is an abelian variety (by (1.6.2) and the fact that the cohomology ring of X is the exterior algebra
over H1).
(1.6.5) If X is equidimensional of dim(X) = d, then (1.5.1–3) is valid for i iff it is valid for 2d − i, by the
Poincaré duality.
(1.6.6) If X has a potentially semistable reduction, then (1.5.1) is proved in [RZ] (cf. [Il 2, Cor. 3.3]). As
in 1.6.3, the general case follows from de Jong’s theorem.

(1.7) The following statement is well-known ([Ja 2], [So 1]). It shows that, in many cases, the cohomology
group H1

cont(GK ,H
i(Xet,Qp(r))) vanishes.

Proposition. (1) If X is proper and smooth over K and the purity conjecture for the monodromy filtration
holds for Hi(Xet,Qp), then

(a) H0(GK ,H
i(Xet,Qp(r))) = H1

ur(GK ,H
i(Xet,Qp(r))) = 0 for

{
r < 0

r > i/2
In particular, the ”local Euler factor” of Hi(X) has no pole for these values of s = r.

(b) H2
cont(GK ,H

i(Xet,Qp(r))) = 0 for

{
r < i/2 + 1

r > i+ 1

(c) H1
cont(GK ,H

i(Xet,Qp(r))) = 0 for


r < 0

r = (i+ 1)/2

r > i+ 1
(2) If, furthermore, X has good reduction, then
(a) H0(GK ,H

i(Xet,Qp(r))) = H1
ur(GK ,H

i(Xet,Qp(r))) = 0 for r 6= i/2.
(b) H2

cont(GK ,H
i(Xet,Qp(r))) = 0 for r 6= i/2 + 1.

(c) H1
cont(GK ,H

i(Xet,Qp(r))) = 0 for r 6= i/2, i/2 + 1.
(d) Hi+1(Xet,Qp(r)) = 0 for r 6= i/2, (i+ 1)/2, i/2 + 1.
(e) Hi+1(Xet,Qp(r)) = Hi+1(Yet,Qp(r)) = 0 for r 6= i/2, (i+ 1)/2.
(here X is a model of X, proper and smooth over Spec(OK), and Y its special fibre).
In fact, the statements (a)–(d) are true if X has only a potentially good reduction.

Proof. (1) This is a standard weight argument. Putting V := Hi(Xet,Qp(r)), we see that V IK has no
invariants (resp. coinvariants) by the Frobenius for r < 0 or r > i/2, by (1.5.4), proving (a). By local
duality ([Se 1], II.5.2.2), H2

cont(GK , V ) is dual to H0(GK , V
∗(1)). The statement (b) follows from (1.5.5),

as V ∗(1)IK′ = (VIK′ )
∗(1) has no invariants under Frobenius for the indicated values of r. For (c), we

use the formula for the local Euler characteristic ([Se 1], II.5.4.17): dimH0(GK , V ) − dimH1(GK , V ) +
dimH2(GK , V ) = 0.
(2) In (a)–(d), all the groups involved satisfy Galois descent for finite Galois extensions L/K. This means
that all the statements for X with a potentially good reduction are reduced, by a suitable base change, to
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the case of a good reduction. The argument for (a)–(c) is then the same as in (1), simplified by the fact
that V is unramified and pure of weight i− 2r. (d) follows from the Hochschild-Serre spectral sequence and
(a)–(c). For (e), observe that the two cohomology groups are isomorphic by the proper base change (2.4.1).
As in (1.3), the Hochschild-Serre spectral sequence gives an exact sequence

0 −→ H1
cont(Gk,H

i(Y et,Qp(r))) −→ Hi+1(Yet,Qp(r)) −→ Hi+1(Y et,Qp(r))Gk −→ 0

and we apply the vanishing statements (a) (resp. (c)) for the first (resp. the third) term.

(1.8) If π is semistable, then the specialization maps spi can be analysed using the spectral sequence of
vanishing cycles and an explicit construction of the monodromy operator N [RZ], [Il 2]. For example, if the
purity conjecture (1.5.2) for the monodromy filtration on Hi(Xet,Qp) holds, then spi is surjective.

(1.9) The discussion in (1.3.1-6) remains valid if one replaces everywhere Qp by Zp (and V i
s (resp. V i

η ) by
T i

s = Hi(Y et,Zp) (resp. T i
η = Hi(Xet,Zp))). In particular,

Im
[
δ ◦ j∗ : F 1Hi+1(Xet,Zp(r)) −→ H1

cont(GK , T
i
η(r))

]
⊆ H1

ur(GK , T
i
η(r))

If π is proper and smooth, then T i
η is unramified and spi : T i

s
∼−→ T i

η is an isomorphism (for all i ≥ 0).
Consequently,

gr0F (j∗) :
(
T i+1

s (r)
)Gk −→

(
T i+1

η (r)
)GK

is an isomorphism and

gr1F (j∗) : H1
cont(Gk, T

i
s(r)) −→ H1

cont(GK , T
i
η(r))

is injective, with image equal to H1
ur(GK , T

i
η(r)). This implies that the restriction map

j∗ : Hi+1(Xet,Zp(r)) −→ Hi+1(Xet,Zp(r)) (1.9.1)

is injective and that

F kHi+1(Xet,Zp(r)) = (j∗)−1
(
F kHi+1(Xet,Zp(r))

)
,

for every k ≥ 0. In particular,

Im(j∗) ∩ F 2Hi+1(Xet,Zp(r)) = 0. (1.9.2)

2. Regulators

(2.1) K-theory. In the situation of (1.1), suppose that π : X −→ Spec(OK) is of finite type. Then, for
r > (i+ 1)/2, there are étale Chern classes ([Gi])

K2r−i−1(X)
j∗−→ K2r−i−1(X)yci+1,r

yci+1,r

Hi+1(Xet,Z/pnZ(r))
j∗−→ Hi+1(Xet,Z/pnZ(r))

which factor through K2r−i−1(X,Z/pnZ) (resp. K2r−i−1(X,Z/pnZ)). Taking projective limit and using
(1.2.3), we obtain a commutative diagram

K2r−i−1(X)⊗Q
j∗−→ K2r−i−1(X)⊗Qychi+1,r

ychi+1,r

Hi+1(Xet,Qp(r))
j∗−→ Hi+1(Xet,Qp(r))

(2.1.1)

with chi+1,r = (−1)r−1/(r − 1)! · ci+1,r (the scalar factor ensures that the Chern character ch is compatible
with products). This map was denoted by rp in the Introduction.
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(2.2) Theorem. If π : X −→ Spec(OK) is proper and r > (i+ 1)/2, then

Im
[
K2r−i−1(X)⊗Q

ch◦j∗−−→Hi+1(Xet,Qp(r))
]

= 0

Proof. In the commutative diagram (2.1.1), the group Hi+1(Xet,Qp(r)) vanishes, by Proposition 1.4.1.

(2.3) Algebraic cycles. Let us now consider the “central point” r = (i + 1)/2. Assume that π : X −→
Spec(OK) is a separated morphism of finite type with X regular. Cycle classes define a commutative diagram

CHr(X)⊗Q
j∗−→ CHr(X)⊗QyclX

yclX

H2r(Xet,Qp(r))
j∗−→ H2r(Xet,Qp(r))

(2.3.1)

The vertical maps can be defined in several ways (see [Grot], [Sa] in the smooth case); one possibility is to
use K-theory:

clX : CHr(X)⊗Q ∼−→ K0(X)(r)Q −→ H2r(Xet,Qp(r))

clX : CHr(X)⊗Q ∼−→ K0(X)(r)Q −→ H2r(Xet,Qp(r))

These isomorphisms are due to Grothendieck ([SGA 6], Exp. XIV, 4.1) and Soulé ([So 2], Thm. 4(iv);
[GiSo], Thm. 8.2); the maps from K-theory to étale cohomology are given by (−1)r−1/(r− 1)! · cr, where cr
is the r-th Chern class of a vector bundle ([SGA 5], Exp. VII, Prop. 3.4; [Ja 1], Thm. 6.12).
Denote the subgroups of homologically trivial cycles by

(CHr(X)⊗Q)0 :=Ker
[
CHr(X)⊗Q −→ H2r(Xet,Qp(r))

]
(CHr(X)⊗Q)0 :=Ker

[
CHr(X)⊗Q −→ H2r((X⊗OK

Our
K )et,Qp(r))

]
Suppose, furthermore, that π is proper. Then

H2r((X⊗OK
Our

K )et,Qp(r)) ∼−→ H2r(Y et,Qp(r)) = V 2r
s (r) (2.3.2)

by the proper base change (I.2.4.1).

(2.4) Theorem. Assume π : X −→ Spec(OK) is proper and X is regular. Then

Im
[
(CHr(X)⊗Q)0

j∗−→(CHr(X)⊗Q)0
clX−→H2r(Xet,Qp(r))

]
= 0.

Proof. By (2.3.2) and Proposition 1.4.2, we have (CHr(X)⊗Q)0 = Ker(clX). We conclude by (2.3.1).

(2.5) As in 1.5, assume that π is proper with smooth generic fibre πη. A folklore conjecture states that

clX((CHr(X)⊗Q)0) = 0. (2.5.1)

According to (1.3.3.2),

(CHr(X)⊗Q)0 = cl−1
X (F 1H2r(Xet,Qp(r))),

which means that (2.5.1) is equivalent to

Im(clX) ∩ F 1H2r(Xet,Qp(r)) = 0. (2.5.2)

Note that the purity conjecture for the monodromy filtration on H2r−1(Xet,Qp) would imply that

F 1H2r(Xet,Qp(r)) = F 2H2r(Xet,Qp(r)), (2.5.3)

by (1.3.3.2) and Proposition 1.7.1(c).
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(2.6) Proposition. Let π be proper and πη smooth. The conjecture (2.5.1) holds in the following cases.
(i) X is equidimensional of dimension dim(X) = r (zero cycles).
(ii) r = 1 (divisors).
(iii) X is regular and the map j∗ : (CHr(X)⊗Q)0 −→ (CHr(X)⊗Q)0 is surjective.
(iv) π is proper and smooth (good reduction).

Proof. (i) [Be 3, 2.2], [Ra, Prop. 3.2]. (ii) There is a canonical isomorphism α : A(K)⊗Q ∼−→ (CH1(X)⊗
Q)0, where A = Pic0(X/F ). The composition clX ◦ α is the descent map

A(K)⊗Q −→ A(K)⊗̂Qp ↪→ H1
cont(GK , Vp(A)).

The group A(K) has a subgroup of finite index, isomorphic to the direct sum of several copies of Z`. As
` 6= p, this implies that the completed tensor product A(K)⊗̂Qp vanishes.
(iii) This follows from Theorem 2.4.
(iv) In this case the map j∗ is surjective, since sp2r is an isomorphism. We conclude by (iii).

(2.7) Consider the base change map u : X ⊗K L −→ X for a finite field extension L/K of degree d. There
are contravariant (resp. covariant) maps u∗ (resp. u∗) between Chow groups, étale cohomology and the
terms of the Hochschild-Serre spectral sequences of X resp. X ⊗K L. They satisfy the usual identitites:

u∗ ◦ u∗ = d · 1; u∗ ◦ u∗ =
∑

g∈G(L/K)

g (if L/K is Galois)

This implies that the restriction maps

u∗ : CHr(X)⊗ Z[1/d] −→ CHr(X ⊗K L)⊗ Z[1/d] (2.7.1)

and

u∗ : F jHm(Xet,Zp(r))⊗ Z[1/d] −→ F jHm((X ⊗K L)et,Zp(r))⊗ Z[1/d] (2.7.2)

are both injective. Moreover, for L/K Galois, the image of u∗ coincides with G(L/K)-invariants of the
R.H.S. It follows from the injectivity of (2.7.2) that the conditions (iii) and (iv) of Proposition 2.6 can be
replaced by
(iii’) There is a finite extension L/K and a proper regular model XL of X ⊗K L over Spec(OL) such that
the map

j∗ : (CHr(XL)⊗Q)0 −→ (CHr(X ⊗K L)⊗Q)0

is surjective.
(iv’) X has potentially good reduction.

(2.8) Proposition. If L/K is a finite extension of degree prime to p such that X⊗K L has good reduction,
then

Im(clX) ∩ F 2H2n(Xet,Zp(n)) = 0.

Proof. For X ⊗K L this follows from (1.9.2); we can descend to X thank to the injectivity of (2.7.2).

(2.9) It follows from a recent work of K. Künnemann [Kn] that (2.5.1) holds for abelian varieties with
potentially totally toric reduction.
Another (partial) result in this direction is proved in ([GrSc], Prop. 7.2), where the authors show that the
class of a modified diagonal on the triple product of a semistable curve lies in the image of j∗.

(2.10) Proof of Theorems A and D(1-2). Theorem A is a combination of Theorems 2.2 and 2.4.
Theorem D(1-2) follows from Proposition 2.6 and remarks in 2.7.
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III. Local situation at p

In this chapter we prove a comparison result (Theorem 3.2) that relates syntomic cohomology (in the case of
good reduction) to the Bloch-Kato exponential map. Similar result (Theorem 5.2) is proved for cohomology
with Zp-coefficients, under more restrictive hypotheses. As a consequence we obtain upper bounds on the
images of p-adic regulators.

1. p-Adic Galois representations

In this section we recall Fontaine’s machinery relating crystalline and étale cohomology and also the expo-
nential map of Bloch-Kato.

(1.1) Notation. Let k be a perfect field of characteristic char(k) = p > 0; W = W (k) the ring of Witt
vectors of k; K0 = W [p−1] the fraction field of W ; σ the lifting of the absolute Frobenius a 7→ ap to W and
K0; K a finite totally ramified extension of K0. We fix an algebraic closure K of K and write G for the
Galois group G(K/K). For any scheme S over Spec(W ) put Sn = S ⊗W Wn.

(1.2) Fontaine [Fo 2, 4] constructed topological K0-algebras Bcris, BdR equipped with the following struc-
ture:
(i) A continuous K0-linear action of G on Bcris and BdR.
(ii) A commutative diagram of (G-equivariant and injective) continuous K0-algebra homomorphisms

Kur
0 ↪→ B+

cris ↪→ Bcris

∩
↓

∩
↓

∩
↓

K ↪→ B+
dR ↪→ BdR

(iii) A σ-linear continuous bijective Qp-algebra homomorphism f : Bcris −→ Bcris, commuting with G and
preserving B+

cris.
(iv) An exhaustive and separated decreasing filtration F iBdR (by K[G]-submodules of BdR) with B+

dR =
F 0BdR. Warning: B+

cris 6= B+
dR ∩Bcris.

(v) A Qp[G]-equivariant injective map

Qp(1) =
(

lim←−n µpn(K)
)
⊗Zp

Qp ↪→ B+
cris

such that, for any 0 6= t ∈ Qp(1) ⊂ B+
cris ⊂ B+

dR, we have f(t) = pt, FnBdR = tnB+
dR (n ∈ Z),

Bcris = B+
cris[t−1] and BdR = B+

dR[t−1].
(vi) (Bcris)G =

(
B+

cris

)G
= K0, (BdR)G =

(
B+

dR

)G
= K.

(1.3) These rings have a crystalline interpretation (see Appendix for the notation). For a subextension
L/K of K/K and n, r ≥ 0, put

Bn,L :=H0((Spec(OL)/Wn)cris,OSpec(OL)/Wn
) = H0(Spf(OL)syn−et,O

cris
n )

J
[r]
n,L :=H0((Spec(OL)/Wn)cris, J

[r]
Spec(OL)/Wn

) = H0(Spf(OL)syn−et, J
[r]
n )

(here OL is the ring of integers of L and Spf(OL) denotes the formal p-adic completion of Spec(OL)). Bn,L

is a Wn-algebra and J
[r]
n,L an ideal of Bn,L with a divided power structure. Put

Bn := lim−→L Bn,L,

J
[r]
Bn

:= lim−→L J
[r]
n,L,

Acris := lim←−n Bn

J
[r]
Acris

:= lim←−n J
[r]
Bn
,
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where L runs through all finite extesions of K inside K. By [FM, II.2.2] we have

Bn = Bn,K , J
[r]
Bn

= J
[r]

n,K

It is proved in ([Fo 3], Thm. 1(ii)) that

Bn = Acris ⊗ Z/pnZ (n ≥ 0)

and the same argument shows that

J
[r]
Bn

= J
[r]
Acris

⊗ Z/pnZ (n ≥ 0)

The rings B+
cris, B

+
dR are defined as

B+
cris := Acris ⊗Q = Acris ⊗W K0

B+
dR := lim←−r

(
Q⊗ lim←−n

(
Bn/J

[r]
Bn

))
= lim←−r

(
Q⊗

(
Acris/J

[r]
Acris

))
The embedding B+

cris ↪→ B+
dR is induced by the canonical maps

Acris = lim←−n Bn −→ lim←−n

(
Bn/J

[r]
n

)
The ring BdR has a canonical topology, defined in [Fo 4]. Its subrings Acris, Bcris, B

+
dR are equipped with

the induced topology. The topology induced on K,Acris is coarser than the p-adic topology.
Recall from [FM, III.3.1] that there are homomorphisms

µpn −→ sn(1) −→ J [1]
n

of sheaves on Spec(Wn)syn. They define maps µpn(L) −→ J
[1]
n,L and, passing to the limit, homomorphisms

Zp(1) −→ J
[1]
Acris

↪→ Acris, Qp(1) −→ B+
cris (1.3.1)

If t 6= 0 is any element in the image of Qp(1), then Bcris = B+
cris[t−1] and BdR = B+

dR[t−1].
The action of the crystalline Frobenius f on Bn,L defines, in the limit, the operator f : B+

cris −→ B+
cris. By

definition of sn(1), f = p on Qp(1) ⊂ B+
cris; it extends to Bcris by putting f(t−1) = p−1t−1.

(1.4) Denote by Rep(G) the abelian category of p-adic representations of G (= vector spaces of finite
dimension over Qp with a continuous linear action of G) and by MFK the additive category of filtered
Dieudonné modules over K 1. Recall that an object of MFK is a vector space D of finite dimension over K0,
equipped with a σ-linear bijective endomorphism f : D −→ D and with a separated exhaustive decreasing
filtration F iDK of DK = D ⊗K0 K by K-subspaces. Morphisms in MFK are K0-linear maps compatible
with f and the filtrations F i.
Fontaine [Fo 1, 4] defines a functor V : MFK −→ Rep(G) by

V (D) = (D ⊗K0 Bcris)f=1 ∩ F 0 (DK ⊗K BdR) (1.4.1)

Here f = f ⊗ f on D ⊗K0 Bcris and

F i (DK ⊗K BdR) =
∑

a+b=i

Im
(
F aDK ⊗K F bBdR ↪→ DK ⊗K BdR

)
. (1.4.2)

For V ∈ Ob(Rep(G)) he defines

D(V ) =
(
V ⊗Qp

Bcris

)G
, DdR(V ) =

(
V ⊗Qp

BdR

)G (1.4.3)

1 A terminology suggested in [Og] is “Fontaine modules”.
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D(V ) is a vector space over K0 = (Bcris)G with a σ-linear action of f = 1 ⊗ f . DdR(V ) is a vector space
over K = (BdR)G with a decreasing filtration by K-subspaces

F iDdR(V ) =
(
V ⊗Qp

F iBdR

)G
(1.4.4)

It is shown in [Fo 1] that the canonical map D(V )⊗K0 K −→ DdR(V ) is injective and that

dimK0(D(V )) ≤ dimK(DdR(V )) ≤ dimQp
(V ) (1.4.5)

The full subcategory of crystalline representations Repcris(G) ⊂ Rep(G) consists of those V which satisfy

dimK0(D(V )) = dimQp
(V ) (

(1.4.5)
=⇒ = dimK(DdR(V )))

Then D becomes a functor D : Repcris(G) −→MFK with

D(V )K = DdR(V ), F iD(V )K = F iDdR(V ).

(1.5) The full subcategory of admissible filtered Dieudonné modules MF ad
K ⊂ MFK is, by definition, the

essential image of D. According to a fundamental result of Fontaine ([Fo 1], Thm. 3.6.5), the functors V
and D are quasi-inverse to each other and define an equivalence of categories Repcris(G) ≈MF ad

K .
More precisely, for V ∈ Ob(Repcris(G)) and D = D(V ) (resp. D ∈ Ob(MF ad

K ) and V = V (D)), there
is a canonical isomorphism

D ⊗K0 Bcris
∼−→ V ⊗Qp

Bcris, (1.5.1)

compatible with the action of G and f . Here g ∈ G acts by 1⊗ g (resp. g ⊗ g) on the L.H.S. (resp. R.H.S.)
and f acts as f ⊗ f (resp. 1⊗ f) on the L.H.S. (resp. R.H.S.). The induced isomorphism

DK ⊗K BdR = D ⊗K0 BdR
∼−→ V ⊗Qp BdR (1.5.2)

is compatible with the filtrations: F i(DK ⊗K BdR), defined in (1.4.2), corresponds to V ⊗Qp F
iBdR.

The functors D 7→ F iDK , D 7→ DK/F
iDK are exact on MF ad

K and (1.5.2) induces isomorphisms

F iDK
∼−→
(
V ⊗Qp

F iBdR

)G
, DK/F

iDK
∼−→
(
V ⊗Qp

(BdR/F
iBdR)

)G
(1.5.3)

(1.6) Both Repcris(G) and MF ad
K are Qp-linear rigid tensor categories and the functors D,V preserve this

structure. For example, we have

D(V1 ⊗Qp
V2) = D(V1)⊗K0 D(V2) (with f = f ⊗ f)

DdR(V1 ⊗Qp
V2) = DdR(V1)⊗K DdR(V2)

(1.6.1)

with the convolution filtration (defined as in (1.4.2)) and

D(V ∗) = HomK0(D(V ),K0) (with f(d∗) = σ ◦ d∗ ◦ f−1)
DdR(V ∗) = HomK(DdR(V ),K)

(1.6.2)

with F i(HomK(DdR(V ),K)) = (F 1−iDdR(V ))⊥.
The unit object of Rep(G) (resp. MF ad

K ) is Qp with trivial action of G (resp. D(Qp) = K0 with f = σ,
DdR(Qp) = K = F 0 ⊃ F 1 = 0). The representation on p-power roots of unity

Qp(1) = Zp(1)⊗Zp
Qp =

(
lim←−n µpn(K)

)
⊗Zp Qp

is crystalline, hence all its tensor powers Qp(n) = Qp(1)⊗n (n ∈ Z) are crystalline as well. The corresponding
filtered modules are
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D(Qp(n)) = K0 e−n with f = p−nσ

DdR(Qp(n)) = K e−n = F−n ⊃ F−n+1 = 0
(1.6.3)

If V is a crystalline representation, then its Tate twists V (n) = V ⊗Qp
Qp(n) (n ∈ Z) are crystalline as well

and (1.6.1-3) give

D(V (n)) = D(V )⊗K0 K0 e−n
∼−→ D(V ) (with f replaced by p−nf)

DdR(V (n)) = DdR(V )⊗K K e−n
∼−→ DdR(V )

(1.6.4)

with F iDdR(V (n)) = F i+nDdR(V ) ⊗K K e−n
∼−→ F i+nDdR(V ). In fact, the formulas (1.6.4) can be used

to define Tate twists D{n} for objects of MFK .

(1.7) Bloch-Kato theory. Let V be a crystalline representation of G. For q ≥ 0, define

Hq
f (G,V ) := Extq

Repcris(G)(Qp, V )
(

∼−→ Extq

MF ad
K

(D(Qp), D(V ))
)

(1.7.1)

These Yoneda Ext-groups can be interpreted in terms of derived functors as follows ([Hu], Thm. 2.6): the
Ind-category A = Ind(Repcris(G)) (see [SGA 4], Exp. I, 8.2.1) is an abelian category with enough injectives,
the functor F : A −→ (Ab) given by

F ((Ai)i∈I) = lim−→I HomRepcris(G)(Qp, V )

(for any small filtered category I) is left exact and, for every q ≥ 0,

Hq
f (K,−) = RqF |Repcris(G) (1.7.2)

It is shown in [BK] (see also [FoPR], Prop. 3.3.7) that

H0
f (K,V ) = H0(G,V ) = V G

H1
f (K,V ) = Ker

[
H1

cont(G,V ) −→ H1
cont(G,V ⊗Qp Bcris)

]
Hq

f (K,V ) = 0 (q ≥ 2)

(1.7.3)

More precisely, Hq
f (K,V ) are cohomology groups of the complex

C .
f (V ) =

[
D(V )

(1−f,can)−−−−→D(V )⊕DdR(V )/F 0
]

(1.7.4)

The isomorphism

V G ∼−→ H0(C .
f (V )) = D(V )f=1 ∩ F 0DdR(V )

follows from (1.2.(vi)), (1.4.1); the isomorphism H1
f (K,V ) ∼−→ H1(C .

f (V )) can be described as follows [Ne
2]: given an extension in Repcris(G)

0 −→ V −→ E −→ Qp −→ 0,

chose a K0-linear section s of the surjection D(E) −→ D(Qp) = K0 and associate to (the extension class
of) E the class of [(f − 1)s(1),−s(1) modF 0DdR(E)] ∈ C1

f (V ) in H1(C .
f (V )), which does not depend on the

choice of s; observe that DdR(V )/F 0 ∼−→ DdR(E)/F 0 (cf. [Ne 2], Prop. 1.21).
The original approach of Bloch and Kato (which makes sense for representation V that are de Rham,

i.e. those satisfying dimQp
(V ) = dimK(DdR(V ))) was based on the exact sequence ([BK], 1.17.2)

0 −→ Qp −→ Bcris
(1−f,can)−−−−→Bcris ⊕BdR/B

+
dR −→ 0, (1.7.5)

which, on tensoring with V , gives a commutative diagram with exact rows (cf. 1.5)
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0 −→ V −→ V ⊗Qp
Bcris

(1−1⊗f,can)−−−−→ (V ⊗Qp
Bcris)

⊕
(V ⊗Qp

(BdR/B
+
dR)) −→ 0∥∥∥ yo yo

0 −→ V −→ D(V )⊗K0 Bcris
(1−f⊗f,can)−−−−→ (D(V )⊗K0 Bcris)

⊕ DdR(V )⊗KBdR

F 0(DdR(V )⊗KBdR) −→ 0
(1.7.6)

The map (1− f, can) in (1.7.5) admits a continuous section ([BK], 1.18), thus (1.7.6) gives rise to an exact
cohomology sequence ([BK], 3.8.4)

0 −→H0(G,V ) −→ D(V )
(1−f,can)−−−−→D(V )⊕DdR(V )/F 0 ∂−→

−→ Ker
[
H1

cont(G,V ) −→ H1
cont(G,V ⊗Qp

Bcris)
]
−→ 0

(1.7.7)

The coboundary map ∂ is the exponential map of Bloch-Kato

expV : D(V )⊕DdR(V )/F 0 −→ H1
f (K,V ) (1.7.8)

Replacing V by V (r) (for r ∈ Z), we get exact sequences (cf. (1.6.4))

0 −→ V (r) −→D(V )⊗K0 Bcris
(1−p−rf⊗f,can)−−−−−−→ (D(V )⊗K0 Bcris)

⊕ DdR(V )⊗K BdR

F r(DdR(V )⊗K BdR)
−→ 0 (1.7.9)

0 −→H0(G,V (r)) −→ D(V )
(1−p−rf,can)−−−−−−→D(V )⊕DdR(V )/F r −→ H1

f (K,V (r)) −→ 0 (1.7.10)

If T ⊂ V is a Zp-lattice stable by GK , then H1
f (K,T ) is defined as the preimage of H1

f (K,V ) in H1(K,T ).

2. Geometric situation

In this section we recall Fontaine’s crystalline conjecture and its ”syntomic” proof. We then make prepara-
tions for the proof of comparison results of Section 3.

(2.1) In the notation of (1.1), let X −→ Spec(OK) be a proper smooth morphism with a generic (resp.

special) fibre X = X ⊗OK
K (resp. Y = X ⊗OK

k). Write X̂ = lim−→n (X ⊗ Z/pnZ) (resp. X̂) for the p-adic

completion of X (resp. of X = X⊗OK
OK) and put X = X ⊗K K.

We recall from Appendix various syntomic-étale ([FM], III.4) and étale topoi and morphisms between them:

X̂∼syn−et −→ X∼syn−et ←− X∼
et, (2.1.1)

projective limits of (2.1.1) for X⊗OK
OL (for finite extensions K ⊂ L ⊂ K)

X̂
∼
syn−et −→ X

∼
syn−et ←− X∼

et (2.1.2)

and a G-equivariant version of (2.1.2)

(X̂
∼
syn−et, G) −→ (X

∼
syn−et, G)←− (X∼

et, G) (2.1.3)

There is a commutative diagram of morphisms of topoi

X̂
∼
syn−et

v−→ (X̂
∼
syn−et, G) π−→ X̂∼syn−etyΓ

X

yΓ
X

yΓX

(Sets) v−→ BG
ΓG−→ (Sets)

(2.1.4)

and similar diagrams for X∼syn−et and X∼
et. In (2.1.4), BG is the category of discrete G-sets, v∗ = “forget the

action of G”, (ΓG)∗ = (−)G , (ΓG)∗ = “let G act trivially”. The étale version of π defines an equivalence
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of categories π∗ : X∼
et ≈ (X∼

et, G), which underlies the Hochschild-Serre spectral sequence. See Appendix for
more details.

(2.2) The crystalline conjecture. For i ≥ 0, denote by

Di := Hi((Y/K0)cris,OY/K0) = Hi(RΓNRΓ((Y/Wn)cris,OY/Wn
))⊗W K0

D̃i := Hi((X1/K0)cris,OX1/K0) = Hi(RΓNRΓ((X1/Wn)cris,OX1/Wn
))⊗W K0

the crystalline cohomology of Y (resp. X1) with coefficients in K0. The canonical isomorphism

Di
K = Di ⊗K0 K

∼−→ Hi
dR(X/K) = Hi(XZar,Ω.

X/K)

proved in ([BO 2], Cor. 2.5) makes Di an object of the category MFK ; the filtration F rDi
K is given by the

Hodge filtration

F rHi
dR(X/K) = Hi(XZar, σ≥rΩ.

X/K)

Put

V i := Hi(Xet,Qp) ∼−→ Hi
naive(Xet,Zp)⊗Zp

Qp

(cf. I.2.3.3). The crystalline conjecture of Fontaine [Fo 2] asserts that
(2.2.1) Di is admissible.
(2.2.2) V i is a crystalline representation of G.
(2.2.3) There are canonical isomorphisms D(V i) ∼−→ Di, V (Di) ∼−→ V i.

This conjecture was proved under some restrictions (K = K0 and p > dim(X)) in [FM] and in full
generality in [Fa]. Combining the methods of [FM] with results on p-adic vanishing cycles, the conjecture
was proved in [KaM] (resp. [Ts]) for p > 2 dim(X) + 1 (resp. all p).

(2.3) Various syntomic sheaves of crystalline origin form “Zp”-modules (cf. I.2.5, Appendix):

Ocris
“Zp” =

[
Ocris

n

]
n∈N

, J
[r]
“Zp” =

[
J [r]

n

]
n∈N

, J
′[r]
“Zp” =

[
J ′[r]n

]
n∈N

, s“Zp”(r) = [sn(r)]n∈N

are objects of Mod(X̂∼syn−et, “Zp”). We denote by Ocris
“Qp” = Q(Ocris

“Zp”), J [r]
“Qp” = Q(J [r]

“Zp”) etc. their images

in Mod(X̂∼syn−et, “Qp”). Recall from [FM, III.4.1] and Appendix that all of these sheaves have the same
cohomology on the syntomic-etale site of X̂ as on the syntomic site of X (and similarly for X).

Proposition. (1) For 0 ≤ r < p there is an exact sequence in Mod(X̂∼syn−et, “Zp”)

0 −→ s“Zp”(r) −→ J
[r]
“Zp”

1−fr−−→Ocris
“Zp” −→ 0

(2) For every r ≥ 0 there is a commutative diagram with exact rows in Mod(X̂∼syn−et, “Qp”)

0 −→ s“Qp”(r) −→ J
[r]
“Qp”

1−p−rf−−−−→ Ocris
“Qp” −→ 0

‖ ∩
↓

y(id,0)

0 −→ s“Qp”(r) −→ Ocris
“Qp”

(1−p−rf,can)−−−−−−→ Ocris
“Qp” ⊕Ocris

“Qp”/J
[r]
“Qp” −→ 0

Proof. (1) This follows from [FM, III.1.1] and the fact that (in+r)∗ :
(
X∼n+r

)
syn
−→ X̂∼syn−et is an exact

functor ([FM, III.4.1], Appendix). (2) The exactness of the first row is obtained as in (1), observing that
J

[r]
“Zp”/J

′[r]
“Zp” is killed by pr; an easy diagram chase proves the exactness of the second row.
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(2.4) Fix r ≥ 0. According to Proposition 2.3, there is a distinguished triangle

s“Qp”(r) −→ Ocris
“Qp”

(1−p−rf,can)−−−−−−→Ocris
“Qp” ⊕Ocris

“Qp”/J
[r]
“Qp” −→ s“Qp”(r)[1] (2.4.1)

in D+(Mod(X̂∼syn−et, “Qp”)). Applying R(Q(ΓN(X̂syn−et))), we obtain a distinguished triangle

R(Q(ΓN(X̂syn−et)))(s“Qp”(r)) −→ R(Q(ΓN(X̂syn−et)))(Ocris
“Qp”)

(1−p−rf,can)−−−−−−→

−→R(Q(ΓN(X̂syn−et)))(Ocris
“Qp”)⊕R(Q(ΓN(X̂syn−et)))(Ocris

“Qp”/J
[r]
“Qp”)−→ R(Q(ΓN(X̂syn−et)))(s“Qp”(r))[1]

(2.4.2)
in D+(Mod(Sets, “Qp”)), which will be denoted by

∆r : Ar −→ Br −→ Cr −→ Ar[1] (2.4.3)

In fact, all Ar, Br, Cr are objects of Db(Mod(Sets, “Qp”)), (see Appendix).

Apply the functor π∗ from (2.1.4) to the triangle (2.4.1) and take R(Q(ΓN(X̂syn−et))). We obtain a
distinguished triangle

R(Q(ΓN(X̂syn−et)))(s“Qp”(r)) −→ R(Q(ΓN(X̂syn−et)))(Ocris
“Qp”)

(1−p−rf,can)−−−−−−→

−→R(Q(ΓN(X̂syn−et)))(Ocris
“Qp”)⊕R(Q(ΓN(X̂syn−et)))(Ocris

“Qp”/J
[r]
“Qp”)−→ R(Q(ΓN(X̂syn−et)))(s“Qp”(r))[1]

(2.4.4)
in D+(Mod(BG, “Qp”)), which will be denoted by

∆r : Ar −→ Br −→ Cr −→ Ar[1] (2.4.5)

Note that Cr = Br ⊕ C ′r, Cr = Br ⊕ C
′
r for

C ′r = R(Q(ΓN(X̂syn−et)))(Ocris
“Qp”/J

[r]
“Qp”), C

′
r = R(Q(ΓN(X̂syn−et)))(Ocris

“Qp”/J
[r]
“Qp”)

(2.5) Proposition. For every q, r ≥ 0, there are canonical maps between distinguished triangles(
Q(ΓN

G )∗∆r

)
(q) −→ ∆r+q, Q(ΓN

G )∗∆r −→ ∆r+q(−q)

in Mod(BG, “Qp”).

Proof. For q = 0 there is nothing to prove: for every abelian sheaf A on X̂syn−et there is a canonical map

Γ∗GRΓ(X̂syn−et, A) can−→RΓ(X̂syn−et, π
∗A)

induced by π.
Suppose that q ≥ 1. The canonical map

“Zp(1)” = [µpn(K)]n∈N −→ [H0(X̂syn−et, sn(1))]n∈N

in Mod(BG, “Zp”) is compatible with products, defining a map

“Zp(q)” −→ [H0(X̂syn−et, sn(q))]n∈N −→ RΓ(X̂syn−et, s“Zp”(q))

in D+(Mod(BG, “Zp”)). Together with the cup product

Ar

L
⊗“Qp”Aq = R(Q(ΓN(X̂syn−et)))(s“Qp”(r))

L
⊗R(Q(ΓN(X̂syn−et)))(s“Qp”(q)) ∪−→

∪−→R(Q(ΓN(X̂syn−et)))(s“Qp”(r + q)) = Ar+q,
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this induces a map

αr,q :
(
Q(ΓN

G )∗Ar

)
(q) can−→Ar(q) = Ar

L
⊗“Qp”“Qp(q)” −→ Ar

L
⊗“Qp”Aq

∪−→Ar+q

(see Appendix for the discussion of cup products and comments on the simultaneous appearance of RΓ and
L
⊗).

In the same vein, the morphisms s“Zp”(q) −→ J
[q]
“Zp” −→ Ocris

“Zp” and the cup product associated to
Ocris

“Zp” ×Ocris
“Zp” −→ Ocris

“Zp” give rise to a map

βr,q :
(
Q(ΓN

G )∗Br

)
(q) can−→Br(q) = Br

L
⊗“Qp”“Qp(q)” −→ Br

L
⊗“Qp”Aq −→ Br

L
⊗“Qp”Bq

∪−→Br+q,

compatible with αr,q. As f acts as pq on the image of “Qp(q)” in Ocris
“Qp”, we have

1− pr+qf ◦ βr,q = 1− p−rβr,q ◦ f (2.5.1)

Finally, the cup product associated to

Ocris
“Qp”/J

[r]
“Qp” × J

[q]
“Qp” −→ J

[q]
“Qp”/J

[r+q]
“Qp” −→ O

cris
“Qp”/J

[r+q]
“Qp”

and s“Qp”(q) −→ J
[q]
“Qp” define a map

γ′r,q :
(
Q(ΓN

G )∗C ′r
)

(q) can−→C ′r(q) = C
′
r

L
⊗“Qp”“Qp(q)” −→ C

′
r

L
⊗“Qp”RΓ(X̂syn−et, J

[q]
“Qp”) ∪−→C ′r+q,

Thank to (2.5.1), the map

γr,q = (βr,q, γ
′
r,q) :

(
Q(ΓN

G )∗Cr

)
(q) −→ Cr+q

together with αr,q and βr,q define a map of triangles(
Q(ΓN

G )∗∆r

)
(q) −→ ∆r+q

Using (I.2.5.1), we get the second map.

(2.6) Let u : (E′, A′) −→ (E,A) be a morphism of ringed topoi such that u∗ : Mod(E,A) −→ Mod(E′, A′)
is exact (⇐⇒ A′ is a flat u−1(A)-module). The “trivial duality” ([Ber], V.3.3.1; [BO1], Prop. 7.7) gives a
canonical (and functorial) isomorphism

HomD(Mod(E′,A′))(u∗(X), Y ′) ∼−→ HomD(Mod(E,A))(X,Ru∗(Y ′)) (2.6.1)

for all X ∈ Ob(D−(Mod(E,A))), Y ′ ∈ Ob(D+(Mod(E′, A′))). From (I.1.2.12–13) we get a canonical
isomorphism

HomD(Q(Mod(E′,A′)))(Q(u)∗(QD(X)), QD(Y ′)) ∼−→ HomD(Q(Mod(E,A)))(QD(X),RQ(u)∗(QD(Y ′))) (2.6.2)

For (E′, A′) = ((BG)N, “Zp”), (E,A) = ((Sets)N, “Zp”) and u = ΓN
G , we know that all constituents Ar, Br,

Cr of ∆r (resp. Ar+q, Br+q, Cr+q of ∆r+q) are of the form QD(X) for some X ∈ Ob(Db(Mod(E,A))) (resp.
QD(Y ′) for some Y ′ ∈ Ob(D+(Mod(E′, A′)))) (2.4).
It follows from Proposition 2.5 and (2.6.2) that, for all r, q ≥ 0, there is a canonical map of distinguished
triangles

∆r −→ RQ(ΓN
G )∗

(
∆r+q(−q)

)
(2.6.3)
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in D+(Q(Mod((Sets)N, “Zp”))) = D+(Mod(Sets, “Qp”)).

(2.7) There is a diagram of functors

Mod(BG, “Qp”)
Q(ΓN)−→ Q(Zp[G]−Mod)

ξG−→ (Qp[G]−Mod)yQ((ΓN
G )∗)

yQ((ΓG)∗)

y(ΓG)∗

Mod(Sets, “Qp”)
Q(ΓN)−→ Q(Zp −Mod)

ξ−→ (Qp −Mod),

(2.7.1)

in which ΓG = (−)G, ΓN = lim←−N and ξ, ξG are the (exact) functors from (I.1.2.4). The first square of (2.7.1)

is commutative; in the second square, there is a canonical morphism of functors

ξ ◦Q((ΓG)∗) −→ (ΓG)∗ ◦ ξG (2.7.2)

such that

ξ ◦Q((ΓG)∗)(X) −→ (ΓG)∗ ◦ ξG(X)

is a monomorphism for every X ∈ Ob(Q(Zp[G] −Mod)) (this is just the canonical map Y G ⊗Zp
Qp −→

(Y ⊗Zp
Qp)G).

Put

Ψ = ξ ◦Q(ΓN) : Mod(Sets, “Qp”) −→ (Qp −Mod)

Φ = Ψ ◦Q((ΓN
G )∗) : Mod(BG, “Qp”) −→ (Qp −Mod)

Θ = ξG ◦Q(ΓN) : Mod(BG, “Qp”) −→ (Qp[G]−Mod)

(2.7.3)

(all of these functors are left exact) and write v∗ : (Qp[G] −Mod) −→ (Qp −Mod) for the functor “forget
the action of G”. There are canonical morphisms of functors (induced by (2.7.2))

Φ −→ (ΓG)∗ ◦Θ −→ v∗ ◦Θ (2.7.4)

such that both arrows in

Φ(X) −→ (ΓG)∗ ◦Θ(X) −→ v∗ ◦Θ(X) (2.7.5)

are monomorphisms (for every X ∈ Ob(Mod(BG, “Qp”))).

(2.8) We show that syntomic(-étale) cohomology fits into the abstract framework of I.3.1.

(0) Fix an integer i ∈ Z.
(1),(2) We have categories C = Mod(Sets, “Qp”), C = Mod(BG, “Qp”), D = (Qp −Mod) and functors
u = Q((ΓN

G )∗), Ψ,Φ from (2.7.3).
(3),(4) Fix r ≥ 0 and choose q ≥ 0 such that r + q > i (as cdp(Xet) = 2 dim(X), we can treat all relevant
i’s simultaneously by taking q such that r + q > 2 dim(X)). By (2.4) and (2.6.3), there are distinguished
triangles ∆ = ∆r, ∆ = (∆)r+q(−q) and a morphism of triangles ∆ −→ (Ru)(∆). As in (2.4), we have
C = B ⊕ C ′, C = B ⊕ C ′.
(5) Étale cohomology defines objects E = R(Q(ΓN(Xet)))(“Zp(r)”) ∈ Ob(D+(C)), E = R(Q(ΓN(Xet)))
(“Zp(r)”) ∈ Ob(D+(C)). The isomorphism ρ : E ∼−→ (Ru)(E) comes from the equivalence of categories
π∗ : X∼

et ≈ (X∼
et, G).

(6) The morphisms µ : A −→ E (resp. µ : A −→ E) are furnished by the Fontaine-Messing map ([FM],
III.5.1; Appendix). The diagram in I.3.1.6 is commutative, as the Fontaine-Messing map is compatible with
cup products, the Galois action and with the map µpn −→ sn(1).

(2.9) In Sections 2.9–14 we show that objects defined in 2.8 verify the axioms (A1)–(A3) of I.3.1. Almost
by definition, we have
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RjΨ(A) = Hj(X̂syn−et, sQp
(r)) (∀j ≥ 0) (2.9.1)

According to ([KaM], Lemma 4.5(1)),

RjΨ(C ′) = Dj
K/F

r (∀j ≥ 0) (2.9.2)

It is shown in ([KaM], Prop. 1.2, Prop. 1.3(1)) that (for j ≥ 0)

Θ(Hj(Br+q)) = Dj ⊗K0 B
+
cris

Θ(Hj(C
′
r+q)) = (Dj

K ⊗K B+
dR)/F r+q(Dj

K ⊗K B+
dR),

(2.9.3)

which implies that, for j ≤ r + q,

Θ(Hj(B)) = Dj ⊗K0 B
+
cris(−q) ∼−→ Dj ⊗K0 t

−qB+
cris ↪→ Dj ⊗K0 Bcris

Θ(Hj(C
′
)) =

Dj
K ⊗K B+

dR

F r+q(Dj
K ⊗K B+

dR)
(−q) ∼−→

Dj
K ⊗K t−qB+

dR

F r(Dj
K ⊗K t−qB+

dR)
↪→

Dj
K ⊗K BdR

F r(Dj
K ⊗K BdR)

(2.9.4)

Here t is a generator of Qp(1) ⊂ B+
cris. Note that the last map in (2.9.4) is indeed injective: for i ≤ r+ q we

have

F r(Dj
K ⊗K F−qBdR) =

∑
k≤j

F kDj
K ⊗K F r−k(F−qBdR) =

∑
k≤j

F kDj
K ⊗K F r−kBdR = F r(Dj

K ⊗K BdR)

(2.10) Vanishing cycles and the crystalline conjecture. Consider the map induced by µ on coho-
mology:

Hj(A) = Q([Hj(X̂syn−et, sn(r + q))(−q)]n∈N) −→ Q([Hi(Xet,Z/pnZ(r))]n∈N) = Hj(E) (2.10.1)

A fundamental theorem on vanishing cycles, proved in an increasing degree of generality by Kato [Ka],
Kurihara [Ku] and Tsuji [Ts], asserts that (2.10.1) is an isomorphism for all j ≤ r + q, proving thus (A2).
According to (I.2.3.3.1), the projective system [Hj(Xet,Z/pnZ(r))]n∈N is ML-p-adic, hence the last group
in (2.10.1) is isomorphic to Q([T j(r)⊗ Z/pnZ]n∈N), where

T j = Hj(Xet,Zp) ∼−→ lim←−n Hj(Xet,Z/pnZ)

This implies that (2.10.1) induces an isomorphism

Θ(Hj(A)) ∼−→ V j(r), (∀j ≤ i+ 1) (2.10.2)

which, together with (2.9.4), shows that the complex

Θ(Hj(A)) −→ Θ(Hj(B)) −→ Θ(Hj(C))

is isomorphic to the first row of the following commutative diagram

V j(r) α−→ Dj ⊗K0 t
−qB+

cris

(1−p−r,can)−−−−→ (Dj ⊗K0 t
−qB+

cris) ⊕ Dj
K
⊗Kt−qB+

dR

F r(Dj
K
⊗Kt−qB+

dR
)

∩
↓

∩
↓

0 −→ V (Dj(r)) −→ Dj ⊗K0 Bcris
(1−p−r,can)−−−−→ (Dj ⊗K0 Bcris) ⊕ Dj

K
⊗KBdR

F r(Dj
K
⊗KBdR)

(2.10.3)

33



(here V is Fontaine’s functor defined in (1.4.1)). Let us rapidly recall how one deduces from (2.10.3) the
crystalline conjecture (2.2) (see [KaM, 3.2], [Ts] for more details): an argument based on Poincaré duality
([FM], 6.3) shows that the map α in (2.10.3) is injective; a dimension count then implies that α induces
isomorphisms

V j(r) ∼−→ V (Dj(r)), V j ⊗Qp Bcris
∼−→ Dj ⊗K0 Bcris, (∀j ≤ i+ 1)

which proves the crystalline conjecture (taking, e.g., i = 2 dim(X)).

(2.11) Put Kj := Ker[Φ(Hj(A)) −→ Φ(Hj(B))]. As (2.8.4) and α in (2.10.3) are injective, it follows that

Φ(Kj) = Ker
[
Φ(Hj(A)) −→ Φ(Hj(B))

]
= 0 (∀j ≤ i+ 1) (2.11.1)

However, Kj ⊆ Hj(A) ∼−→ Q([T j(r) ⊗ Z/pnZ]n∈N), with T j a Zp-module of finite type. For such Kj ,
(2.11.1) implies that Kj = 0 for all j ≤ i+ 1. This proves the axiom (A1) of I.3.1.

(2.12) As crystalline cohomology depends only on reduction (mod p ), we have

RjΨ(B) = Hj((X/W )cris,OX/W )⊗W K0 = Hj((X1/W )cris,OX1/W )⊗W K0 = D̃j

Our aim is to compare D̃j and Dj , using the “Frobenius trick” of [BO 2].
For a scheme T over Spec(Fp) denote by FT : T −→ T its absolute Frobenius morphism. Consider the
commutative diagram

Y
g
↪→ X1yFY

yFX1

Y
g
↪→ X1

and the induced maps on crystalline cohomology

Dj g∗←− D̃jxf

xf ′

Dj g∗←− D̃j

For sufficiently large integer n >> 0 there is a morphism ρ : X1 −→ Y (depending on n, which will be fixed)
such that

ρ ◦ g = Fn
Y , g ◦ ρ = Fn

X1
.

The induced map on cohomology ρ∗ : Dj −→ D̃j satisfies f ′ ◦ ρ∗ = ρ∗ ◦ f , g∗ ◦ ρ = fn, ρ∗ ◦ g∗ = f ′n. The
crystalline Frobenius f : Dj −→ Dj is bijective, which implies that g∗ : D̃j −→ Dj is surjective.
According to [BO 2], the canonical map

D̃j = RjΨ(B) −→ RjΨ(C ′)
(2.9.2)

= Dj
K/F

r

factors as D̃j g∗−→Dj can−→Dj
K/F

r.

(2.13) Lemma. For every 0 6= α ∈ K0, the map g∗ induces isomorphisms

(D̃j)αf ′=1 ∼−→ (Dj)αf=1, D̃j/(αf ′ − 1)D̃j ∼−→ Dj/(αf − 1)Dj

and a quasi-isomorphism[
D̃j(αf ′−1,can◦g∗)−−−−−−→ D̃j ⊕Dj

K/F
r
]

Qis−→
[
Dj (αf−1,can)−−−−−−→Dj ⊕Dj

K/F
r
]
.
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Proof. (Following a remark of P. Berthelot) We apply the Snake lemma to the diagram

0 −→ Ker(g∗) −→ D̃j g∗−→ Dj −→ 0yαf ′−1

yαf ′−1

yαf−1

0 −→ Ker(g∗) −→ D̃j g∗−→ Dj −→ 0
We first observe that g∗ indeed induces an isomorphism between the kernels (resp. cokernels) of the second
and third vertical maps (it is invertible, its inverse being αnρ∗). This implies that the first vertical arrow
must be an isomorphism. Another application of the Snake lemma, this time to

0 −→ Ker(g∗) −→ D̃j g∗−→ Dj −→ 0yαf ′−1

y(αf ′−1,can◦g∗)
y(αf−1,can)

0 −→ Ker(g∗) −→ D̃j ⊕Dj
K/F

r (g∗,id)−→ Dj ⊕Dj
K/F

r −→ 0,
concludes the proof.

(2.14) Observe that, for j ≤ i+ 1, the composite map

D̃j =RjΨ(B) −→ Φ(Hj(B))
incl
↪→ (ΓG)∗ ◦Θ(Hj(B))

(2.9.4)∼−−−−→
∼−→ (Dj ⊗K0 t

−qB+
cris)G incl

↪→ (Dj ⊗K0 Bcris)G = Dj

resp.

Dj
K/F

r =RjΨ(C ′) −→ Φ(Hj(C
′
))

incl
↪→ (ΓG)∗ ◦Θ(Hj(C

′
))

(2.9.4)∼−−−−→

∼−→

(
Dj

K ⊗K F−qBdR

F r(Dj
K ⊗K F−qBdR)

)G
incl
↪→

(
Dj

K ⊗K BdR

F r(Dj
K ⊗K BdR)

)G
(1.5.3)

= Dj
K/F

r

is equal to g∗ resp. to the identity map. This implies that all four inclusion maps
incl
↪→ above are equalities.

The axiom (A3) then follows from Lemma 2.13 (for α = p−r).

3. The Main Comparison Theorem

In this section we prove Theorems B, C and D(3).

(3.1) The assumptions of (2.1) (including p > 2) are in force. For i, r ≥ 0, denote the map

Di (1−p−r,can)−−−−−−→Di ⊕Di
K/F

r

by λi,r. From (2.9.1–2) and the cohomology sequence of ∆r we obtain an exact sequence

0 −→ Coker(λi,r) −→ Hi+1(X̂syn−et, sQp(r)) −→ Ker(λi+1,r) −→ 0 (3.1.1)
The crystalline conjecture (2.2) and (1.7.3–4) yield isomorphisms

Ker(λi+1,r) ∼−→ H0(GK , V
i+1(r)) (3.1.2.1)

expV i(r) : Coker(λi,r) ∼−→ H1
f (K,V i(r)) (3.1.2.2)

The Hochschild-Serre spectral sequence gives rise to an exact sequence

0 −→ F 1Hi+1(Xet,Qp(r)) −→ Hi+1(Xet,Qp(r))
edge−→ H0(GK , V

i+1(r))yδ

H1
cont(GK , V

i(r))

(3.1.3)

We are now ready to state our main p-adic comparison result, relating (3.1.1) and (3.1.3).
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(3.2) Theorem. Let i, r ≥ 0. The Fontaine-Messing map ν : Hi+1(X̂syn−et, sQp(r)) −→ Hi+1(Xet,Qp(r))
is injective and gives rise to a commutative diagram with exact rows

0 −→ Coker(λi,r) −→ Hi+1(X̂syn−et, sQp(r)) −→ Ker(λi+1,r) −→ 0yβ

yν

yα

0 −→ F 1Hi+1(Xet,Qp(r)) −→ Hi+1(Xet,Qp(r)) −→ H0(GK , V
i+1(r)) −→ 0yδ

H1
cont(GK , V

i(r))

in which α is an isomorphism, δ ◦ β = expV i(r) is injective and Im(δ ◦ β) = H1
f (K,V i(r)).

Proof. Everything follows from Proposition I.3.5, applied to the data (2.8). The axioms of I.3.1 were verified
in (2.9)–(2.12).

(3.3) Denote by F j
et the filtration induced on Hi+1(Xet,Qp(r)) by the Hochschild-Serre spectral sequence.

As cdp(k) = 1 ([Se 1], II.2.2.3), we have cdp(K) ≤ 2 ([Se 1], II.4.3.12), hence F j
et = 0 for j > 2 (I.2.3.3.4)

and E1,b
2 = E1,b

∞ for all b ≥ 0 (recall that, for X smooth and projective over K, the Hochschild-Serre spectral
sequence degenerates at E2 (I.2.3.3)).

As in I.3.6, we define a filtration F j
syn on Hi+1(X̂syn−et, sQp(r)) by

F 0
syn = Hi+1(X̂syn−et, sQp

(r))

F 1
syn = Ker

[
Hi+1(X̂syn−et, sQp

(r)) h−→Hi+1(X̂syn−et,Ocris
Qp

)
]

F 2
syn = 0

(the map h is induced by sn(r) ↪→ J
[r]
n ↪→ Ocris

n ). From I.3.6 we get

Proposition. (1) For all j ≥ 0, ν(F j
syn) ⊆ F j

et.

(2) gr0F (ν) : F 0
syn/F

1
syn

∼−→ F 0
et/F

1
et = E0,i+1

∞ = E0,i+1
2 = H0(GK , V

i+1(r)) is an isomorphism.

(3) gr1F (ν) : F 1
syn ↪→ F 1

et/F
2
et = E1,i

∞ = E1,i
2 = H1

cont(GK , V
i(r)) is injective, with image equal to

H1
f (K,V i(r)).

(3.4) p-adic Beilinson-Deligne cohomology. In an ideal world, one would hope that there is a canonical
object RΓcris(Xet,Qp(r)) in Db(Repcris(G)) with cohomology groups Hi(Xet,Qp(r)); the p-adic Beilinson-
Deligne cohomology of X would then be defined as

Hi
BD(X,Qp(r)) = HomDb(Repcris(G))(Qp,RΓcris(Xet,Qp(r))[i])

The associated spectral sequence

Ea,b
2 = Ha

f (K,V b(r)) =⇒ Ha+b
BD (X,Qp(r))

would degenerate into exact sequences

0 −→ H1
f (K,V i(r)) −→ Hi+1

BD (X,Qp(r)) −→ H0(GK , V
i+1(r)) −→ 0.

Theorem 3.2 shows that Hi+1(X̂syn−et, sQp
(r)) behaves exactly like this conjectural “p-adic Beilinson-Deligne

cohomology”, as it sits in an exact sequence

0 −→ H1
f (K,V i(r)) −→ Hi+1(X̂syn−et, sQp(r)) −→ H0(GK , V

i+1(r)) −→ 0.
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It would be interesting to carry out Beilinson’s construction [Be 2] of the Beilinson-Deligne cohomology
(called ”absolute Hodge cohomology” in [Be 2]) in the p-adic context.

(3.5) If K is a finite extension of Qp (⇐⇒ k is a finite field), then the crystalline Weil conjectures predict
that the action of f on Di should be pure of weight i, i.e. all eigenvalues of the semi-simplification of the
K0-linear map f [K0:Qp] : Di −→ Di should be algebraic integers with all archimedean absolute values equal
to p[K0:Qp]i/2. This was proved by Katz and Messing [KM] for X smooth and projective over Spec(OK), and
by Chiarellotto and Le Stum [CLeS] in general. As a consequence, the crystalline conjecture, (1.7.4) and
local duality imply that

H0(GK , V
i(r)) = 0 for r 6= i/2

H2
cont(GK , V

i(r)) = 0 for r 6= i/2 + 1
(3.5.1)

It follows from (3.5.1) that the Hochschild-Serre spectral sequence induces isomorphisms

δ : Hi+1(Xet,Qp(r)) ∼−→ H1
cont(GK , V

i(r)) (r 6= (i+ 1)/2) (3.5.2)

and Theorem 3.2 reduces to

(3.6) Corollary. Suppose thatK is a finite extension of Qp and that X is proper and smooth over Spec(OK).
Then, for every r 6= (i+1)/2, the isomorphism (3.5.2) and the Fontaine-Messing map ν induce an isomorphism

δ ◦ ν : Hi+1(X̂syn−et, sQp
(r)) ∼−→ H1

f (K,V i(r))

(3.7) It is explained in Appendix how to construct Chern classes

Kj(X) −→ H2i−j(X̂syn−et, sQp
(r)),

which are homomorphisms for j > 0 and are compatible with p-adic étale Chern classes on X. The corre-
sponding Chern character maps ([Sc 1], p. 28) define syntomic regulators (resp. cycle classes), which are
multiplicative and compatible with p-adic étale regulators (resp. cycle classes) on X.

For r > (i+ 1)/2, put

K2r−i−1(X)0 := Ker
[
K2r−i−1(X) −→ H0(GK ,H

i+1(Xet,Qp(r)))
]

and write

δ ◦ rp ◦ j∗ : K2r−i−1(X)0 −→ H1
cont(GK ,H

i(Xet,Qp(r)))

for the map induced by the p-adic étale regulator and the Hochschild-Serre spectral sequence.

(3.8) Theorem. Under the assumptions of (2.1),
(1) Im

[
CHr(X)0

rp−→H1
cont(GK ,H

2r−1(Xet,Qp(r)))
]
⊆ H1

f (K,H2r−1(Xet,Qp(r))).
(2) The cycle class map clX : CHr(X) −→ H2r(Xet,Qp(r)) satisfies Im(clX) ∩ F 2H2r(Xet,Qp(r)) = 0.
(3) For r > (i+ 1)/2,
Im
[
δ ◦ rp ◦ j∗ : K2r−i−1(X)0 −→ H1

cont(GK ,H
i(Xet,Qp(r)))

]
⊆ H1

f (K,Hi(Xet,Qp(r))).
(4) If K is a finite extension of Qp, then K2r−i−1(X)0 = K2r−i−1(X) for all r > (i+ 1)/2.

Proof. (1),(2) This follows from Theorem (3.2), the compatibility of étale and syntomic cycle classes
(Appendix) and the fact that j∗ : CHr(X) −→ CHr(X) is surjective.
(3) Follows from Theorem 3.2 and the compatibility of étale and syntomic regulators (Appendix).
(4) In this case, H0(GK ,H

i+1(Xet,Qp(r))) = 0 vanishes, by crystalline Weil conjectures (3.5.1).

(3.9) If L/K is a finite Galois extension, then the canonical maps
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H0(K,V ) −→ H0(L, V )G(L/K)

H1
f (K,V ) −→ H1

f (L, V )G(L/K)

are isomorphisms (for every Qp-representation V of GK). This implies that the statements (1), (2) of
Theorem 3.8 hold true under a weaker assumption that X has a potentially good reduction.

(3.10) Proof of Theorems B, C, D(3). The statements of Theorem B and Theorem D(3) follow from
Theorem 3.8 and (3.9). Theorem C follows from Corollary 3.6 and [Ku], as explained in ([Sc 2], Sect. 7).

4. Integral theory

What follows is an integral version of results of Sect. 2. Throughout Sect. 4, K = K0. From 4.13 on, p > 2.

(4.1) We recall the main results of the theory of Fontaine-Laffaille [FL]. Denote by MFW,tf the category
of triples (M,F iM,ϕi), where
(0) M is a W -module of finite type.
(1) (F iM)i∈Z is a decreasing filtration of M by W -submodules, which are direct summands and satisfy

F iM = M (resp. F iM = 0) for i << 0 (resp. i >> 0).
(2) ϕi : F iM −→M are σ-linear maps with ϕi|F i+1M = pϕi+1.
(3)

∑
i∈Z ϕi(F iM) = M .

A morphism (M,F iM,ϕi,M ) −→ (N,F iN,ϕi,N ) is a W -linear map α : M −→ N satisfying α(F iM) ⊆ F iN ,
α ◦ ϕi,M = ϕi,N ◦ α (for all i ∈ Z). Denote by MFW,lf the full subcategory of MFW,tf consisting of objects
with lengthW (M) < ∞ (⇐⇒ M is W -torsion). Both of these categories are abelian and Zp-linear. All
morphisms are strictly compatible with filtrations and all functors M 7→ F iM are exact.

(4.2) For a pair of integers a ≤ b, denote by MF
[a,b]
W (resp. MF

[a,b]
W,tors) the full subcategory of MFW,tf

(resp. of MFW,lf ) consisting of objects with F aM = M , F b+1 = 0. Denote by MF
[a,b[
W (resp. MF

]a,b]
W ) the

full subcategory of MF
[a,b]
W consisting of M with no non-zero quotients N satisfying N = F bN (resp. no

non-zero subobjects satisfying F a+1N = 0). (And similarly with MF
[a,b[
W,tors, resp. MF

]a,b]
W,tors).

For every n ∈ Z there is a functor M 7→M{n} (“Tate twist”), given by

F i(M{n}) = F i+nM, ϕi,M{n} = ϕi+n,M

This defines an equivalence of categories between MF
[a,b]
W and MF

[a−n,b−n]
W .

The category MFW,tf admits internal Hom and ⊗. The unit object for ⊗ is

11 = M, F iM =

{
W, if i ≤ 0

0, if i > 0
, ϕi =

{
p−iσ, if i ≤ 0

0, if i > 0

(4.3) The formulas D := M ⊗W K, F iD := F iM ⊗W K, f |F iD := ϕi ⊗ piσ define a functor

−⊗W K : MFW,tf −→MFK , (4.3.1)

compatible with internal Hom, ⊗ and Tate twists. According to Laffaille ([L], Thm. 3.2), the essential image
of (4.3.1) is the category of weakly admissible filtered Dieudonné modules MF f

K . This category was defined
by Fontaine, who also proved ([Fo 1], Prop. 4.4.5) that MF f

K contains MF ad
K and conjectured that these

two categories coincide. If we define MF
[a,b]
K and its (weakly) admissible versions as in 4.2, then [FL, Thm.

8.4] says that

MF
f,[a,b]
K = MF

ad,[a,b]
K , if 0 ≤ b− a < p (4.3.2)
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(4.4) We recall the definition and basic properties of functors ψr and Λr studied by Kato [Ka].

(4.4.1) Fix n ≥ 0. Recall (1.3) that Bn = Acris ⊗ Z/pnZ has a decreasing filtration by J
[r]
Bn

(r ≥ 0) and

that, for 0 ≤ r < p, the crystalline Frobenius f defines σ-linear maps fr : J [r]
Bn
−→ Bn such that prfr = f .

Let M be an object of MF
[0,p−1]
W,tors , killed by pn. Put on M ⊗W Acris = M ⊗Wn

Bn the convolution filtration

F r(M ⊗Wn
Bn) =

∑
0≤i≤r

(
(F iM)⊗Wn

J
[r−i]
Bn

)
and define, for 0 ≤ r < p, σ-linear maps fr : F r(M ⊗W Acris) −→M ⊗W Acris by

fr

∣∣(F iM)⊗Wn J
[r−i]
Bn

= ϕi,M ⊗ fr−i 0 ≤ i ≤ r)

This is well-defined and independent on n, as all quotients J [i]
Bn
/J

[i+1]
Bn

are free Wn-modules.

(4.4.2) Definition. For M ∈ Ob(MF
[0,p−1]
W,tors ) and 0 ≤ r < p, define a Zp[GK ]-module ψr(M) (resp.

Λr(M)) to be the kernel (resp. the cokernel) of the map

1− fr : F r(M ⊗W Acris) −→M ⊗W Acris

For M ∈ Ob(MF
[0,p−1]
W ) and 0 ≤ r < p, put ψr(M) = lim←−n (ψr(M/pnM)).

(4.4.3) By ([Ka], II.3.2), a short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

in MF
[0,p−1]
W,tors induces an exact sequence of Zp[GK ]-modules

0 −→ ψr(M ′) −→ ψr(M) −→ ψr(M ′′) −→ Λr(M ′) −→ Λr(M) −→ Λr(M ′′) −→ 0

(for every 0 ≤ r < p).

(4.5) Lemma. Let M ∈ Ob(MF
[0,p−1]
W ), 0 ≤ r < p. Then

(1) If r > 0, then the canonical map ψr−1(M)(1) −→ ψr(M) (induced by µpn(OK) ↪→ J
[1]
Bn

) is injective. If
F rM = 0, then it is an isomorphism.
(2) Assume that r < p − 1, lengthW (M) < ∞ and either: (a) F r+1M = 0, or (b) F rM = M . Then
Λr(M) = 0.

Proof. First of all, we can assume that k = k, as replacing M by M ⊗W W (k) ∈ Ob(MF
[0,p−1]

W (k)
) does not

change ψr(M) nor Λr(M). In this case, all statements are proved in ([Ka], II.3.4.1, 3.7.1, 3.8.1) for simple
objects of MF

[0,p−1]

W (k)
(note that the statements of ([Ka], II.3.4, 3.7) are true even for r = p − 1, by ([FL],

Thm. 5.3)). The general case follows by dévissage and (4.4.3).

(4.6) We are now ready to formulate a covariant version of the main result of Fontaine and Laffaille ([FL],
Thm. 5.3, Thm. 6.1) (cf . [Fo 3], [Ka]). Denote by RepZp

(GK) the category of Zp-modules of finite type
with a continuous linear action of GK (recall that K = K0).

Proposition. (1) The formula T (M) := ψp−1(M)(1 − p) defines an exact and faithful functor T :
MF

[0,p−1]
W −→ RepZp(GK).

(2) If M ∈ Ob(MF
[0,p−1]
W,tors ), then T (M) is finite and lengthW (M) = lengthZp(T (M)).

(3) If M ∈ Ob(MF
[0,p−1]
W ) is free over W , then T (M) is free over Zp and rkW (M) = rkZp

(T (M)).
(4) The restriction of T to MF

[0,p−1[
W (resp. MF

]0,p−1]
W ) is fully faithful, inducing an equivalence of categories

between MF
[0,p−1[
W (resp. MF

]0,p−1]
W ) and its essential image.
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(5) For every M ∈ Ob(MF
[0,p−1]
W ), the filtered Dieudonné module D := W ⊗K M is admissible and there

is a canonical isomorphism V (D) ∼−→ T (M)⊗Zp
Qp.

For example, for 0 ≤ r < p, 11{−r} is an object of MF
[0,p−1]
W and T (11{−r}) = Zp(−r).

The isomorphism in (5) is given by

ψp−1(M)(1− p)⊗Zp Qp
∼−→
(
F p−1(D ⊗K0 B

+
cris)(1− p)

)fp−1=1 ∼−→ F 0(D ⊗K0 t
1−pB+

cris)f=1 ∼−→
∼−→ F 0(D ⊗K0 Bcris)f=1

(4.7) For M ∈ Ob(MFW,tf ), the complex

C .(M) =
[
F 0M

1−ϕ0−−→M
]

(in degrees 0, 1) computes the Ext-groups Ext(11,M) in the category MFW,tf . The isomorphisms between
Hi(C .(M)) and Exti

MFW,tf
(11,M) can be described as follows.

For i = 0, a morphism α : 11 −→M is uniquely determined by its value α(1) ∈ (F 0M)ϕ0=1 = H0(C .(M)).

For i = 1, an extension 0 −→M −→ E −→ 11 −→ 0 gives an exact sequence of W -modules

0 −→ F 0M −→ F 0E −→W −→ 0

Choosing a W -linear splitting s : W −→ F 0E, we obtain an element m = (ϕ0,E − 1)(s(1)) ∈M , the class of
which in M/(1− ϕ0,M )F 0M = H1(C .(M)) depends only on the isomorphism class of E. As H1(C .(M)) is
right exact, it follows that Exti(11,M) vanish for i > 1.

Replacing M by M{r}, we see that the complex

[F rM
1−ϕr−−→M ]

computes Ext(11,M{r}) = Exti(11{−r},M) (for every r ∈ Z).

Put D := M ⊗W K, which is an object of MF f
K . The maps incl : F 0D ↪→ D, (id, 0) : D −→ D ⊕D/F 0D

define a quasi-isomorphism between C .(M)⊗W K = [F 0D
1−f−→D] and the complex[

D
(1−f,can)−−−−→D ⊕D/F 0D

]
of 1.7.4.

(4.8) For M ∈ Ob(MF
[0,p−1]
W ), put T := T (M). If 0 ≤ r < p, then the functor T induces homomorphisms

(by the discussion in 4.7)

αr,M : (F rM)ϕr=1 ∼−→ HomMFW,tf
(11{−r},M) = Hom

MF
[0,p−1]
W

(11{−r},M) ↪→

↪→ HomRepZp (GK)(Zp(−r), T ) = T (r)GK

(injective) and

βr,M : Coker [F rM
1−ϕr−−→M ] ∼−→ Ext1MFW,tf

(11{−r},M) = Ext1
MF

[0,p−1]
W

(11{−r},M) −→

−→ Ext1RepZp (GK)(Zp(−r), T ) = H1
cont(GK , T (r))

The filtered Dieudonné module D := M⊗WK is admissible (4.3.2) and the canonical map V := T⊗Zp
Qp −→

V (D) is an isomorphism (4.6.5). Comparing (4.7) with (1.7.4), we see that the following diagrams are
commutative (the vertical maps are given by −⊗Zp Qp):
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(F rM)ϕr=1 αr,M−→ T (r)GKy y
(F rD)p−rf=1 1.7−→ V (r)GK

Coker [F rM
1−ϕr−−→M ]

βr,M−−−−→ H1
cont(GK , T (r))y y

Coker [F rD
1−p−rf−−→ D] ∼−→ Coker [D

(1−p−rf,can)−−−−→ D ⊕D/F rD]
expV (r)−−→ H1

cont(GK , V (r))

As Im(expV (r)) = H1
f (K,V (r)), this shows that Im(βr,M ) ⊆ H1

f (K,T (r)).

If M ∈ Ob(MF
[0,p−1[
W ) and 0 ≤ r < p− 1 (i.e. 11{−r} ∈ Ob(MF

[0,p−1[
W )), then αr,M is an isomorphism and

βr,M is injective, by Proposition 4.6.4.

(4.9) Lemma. ([BK], Lemma 4.5) Let M ∈ Ob(MF
[0,p−1[
W ), 0 ≤ r < p − 1. Put T := T (M). If M is

torsion-free (⇐⇒ T is torsion-free), then βr,M induces an isomorphism

Coker [F rM
1−ϕr−−→M ] ∼−→ H1

f (K,T (r)) ⊆ H1
cont(GK , T (r))

Proof. [BK] 1 One must show that the cokernel of the map

Coker [F rM
1−ϕr−−→M ] −→ H1

cont(K,T (r))

is torsion-free. This follows from the commutative diagram with exact rows

M/(1− ϕr)F rM
p−→ M/(1− ϕr)F rM −→ (M/pM)/(1− ϕr)(F r(M/pM)) −→ 0yβr,M

yβr,M

yβr,M/pM

H1
cont(GK , T (r))

p−→ H1
cont(GK , T (r)) −→ H1(GK , T/pT (r))

and the injectivity of all vertical arrows βr,− (by (4.8)).

(4.10) Geometric case. Let X be a proper and smooth scheme over Spec(W ), X = X⊗WK, X = X⊗KK,
Xn = X⊗ Z/pnZ, Y = X1, X = X⊗W OK , Y = X⊗O

K
k. Put d = dim(Y ).

For q, r, n ≥ 0, denote

Mq
n := Hq((Xn)syn,Ocris

n ) = Hq((Y/Wn)cris,OY/Wn
) = Hq

dR(Xn/Wn)

F rMq
n := Hq((Xn)syn, J

[r]
n ) = Hq((Xn)Zar, σ≥rΩ.

Xn/Wn
)

T q
n := Hq(Xet,Z/pnZ); T q := Hq(Xet,Zp)

Mq := Hq(Xsyn,Ocris
Zp

) = Hq((Y/W )cris,OY/W )

F rMq := Hq(Xsyn, J
[r]
Zp

)

By ([BO 1], 7.24.3), we have

Mq ∼−→ lim←−n (Mq
n) , F rMq ∼−→ lim←−n (F rMq

n) , T q ∼−→ lim←−n (T q
n)

and the projective system [Mq
n]n∈N (resp. [T q

n ]n∈N) is AR-isomorphic to [Mq⊗Z/pnZ] (resp. [T q⊗Z/pnZ]).
All F rMq are W -modules of finite type, T q are objects of RepZp

(GK).

1 Note that there is a misprint in ([BK], Lemma 4.5); it should read H1
f , not H1

e .
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(4.11) Proposition. If min(q, d) < p, then
(1) The canonical maps F r+1Mq

n −→ F rMq
n, F r+1Mq −→ F rMq are injective ∀n, r ≥ 0).

(2) (Mq
n, F

rMq
n, ϕr = fr) (resp. (Mq, F rMq, ϕr = fr)) is an object of MF

[0,min(q,d)]
W,tors (resp. MF

[0,min(q,d)]
W ).

Proof. ([FM], II.2.7), ([Ka], II.2.5, I.1.8), ([Fo 3], Prop. 1.3).

(4.12) Proposition. Let q, n ≥ 0, 0 ≤ r < p. Then
(1) Hq(Xsyn,Ocris

n ) ∼−→ Hq
dR(Xn/Wn)⊗Wn

Bn = Mq
n ⊗Wn

Bn.
(2) If min(q + 1, d) < p, then

(i) Hq(Xsyn, J
[r]
n ) ∼−→ F r(Hq

dR(Xn/Wn)⊗Wn Bn) = F r(Mq
n ⊗Wn Bn).

(ii) There is an exact sequence

0 −→ Λr(Mq−1
n ) −→ Hq(Xsyn, sn(r)) −→ ψr(Mq

n) −→ 0

(iii) If p− 1 > r ≥ min(q − 1, d), then Hq(Xsyn, sn(r)) ∼−→ ψr(Mq
n).

Proof. (1) ([FM], III.1.3), ([Ka], I.4.6, I.1.8).
(2)(i) ([FM], III.1.5.i), ([Ka], II.4.1, I.1.8). We recall the argument: there are spectral sequences

Ea,b
1 = Hb(Xn,Ωa

Xn/Wn
) =⇒Ma+b

n

′Ea,b
1 = Ea,b

1 ⊗Wn J
[r−a]
Bn

=⇒ Ha+b((Xn)syn, J
[r]
n )

According to Proposition 4.11.1, we have Ea,b
1 = Ea,b

∞ for a + b < p − 1 (or even for all a, b ≥ 0, provided
d < p). As J [r−a]

Bn
is flat over Wn, ′Ea,b

c = Ea,b
c ⊗Wn

J
[r−a]
Bn

for all a, b ≥ 0, c ≥ 1. This implies the claim.

(ii) This follows form (1), (i) and the exact cohomology sequence of 0 −→ sn(r) −→ J
[r]
n

1−fr−−→Ocris
n −→ 0.

(iii) By Lemma 4.5.2, Λr(Mq−1
n ) = 0.

(4.13) Proposition. ([Ka]) For 0 ≤ q ≤ r < p − 1 and n ≥ 0, the Fontaine-Messing map induces
isomorphisms

Hq(Xsyn, sn(r)) ∼−→ Hq(Xet,Z/pnZ(r)) = T q
n(r)

Hq(Xsyn, sZp
(r)) ∼−→ Hq(Xet,Zp(r)) = T q(r)

Proof. The first statement is proved by Kato ([Ka], I.4.3). The second statement follows by passing to the
projective limit, as R1 lim←−n T q

n(r) = 0 by I.2.3.3.1.

(4.14) Corollary. For 0 ≤ q ≤ r < p − 1 and n ≥ 0, the Fontaine-Messing map and (4.12) induce
isomorphisms

T q
n

∼−→ ψr(Mq
n)(−r) ∼−→ T (Mq

n)

T q ∼−→ ψr(Mq)(−r) ∼−→ T (Mq)

(The second isomorphism comes from Lemma 4.5.1.)

Proof. Combine Proposition 4.13, Proposition 4.12.2.(iii) and Lemma 4.5.1.

(4.15) As in (2.8), we invoke the axiomatic setting of I.3.1.
(0) Fix an integer i ∈ Z (to be specified later).
(1),(2) We have categories C = Mod(Sets, “Zp”), C = Mod(BG, “Zp”), D = (Zp − Mod) and functors
u = (ΓN

G )∗, Ψ = ΓN = lim←−N , Φ = Ψ ◦ u = lim←−N (−)G.

(3),(4) For an integer 0 ≤ r < p, there are distinguished triangles

∆r :RΓN(X̂syn−et, s“Zp”(r)) −→ RΓN(X̂syn−et, J
[r]
“Zp”)

1−fr−−→RΓN(X̂syn−et,Ocris
“Zp”) −→

−→ RΓN(X̂syn−et, s“Zp”(r))[1]
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in D+(C) and

∆r :RΓN(X̂syn−et, s“Zp”(r)) −→ RΓN(X̂syn−et, J
[r]
“Zp”)

1−fr−−→RΓN(X̂syn−et,Ocris
“Zp”) −→

−→ RΓN(X̂syn−et, s“Zp”(r))[1]

in in D+(C). By Appendix, ∆r lies in Db(C). If q ≥ 0 is an integer satisfying r + q < p, then the same
argument as in (2.5) gives morphisms of triangles(

ΓN
G

)∗
∆r −→ ∆r+q(−q)

in in D+(C) and

∆r −→ R
(
ΓN

G

)
∗

(
∆r+q(−q)

)
in D+(C). This defines a morphism ∆ −→ (Ru)(∆) for ∆ := ∆r, ∆ := ∆r+q(−q).
(5) As before, étale cohomology defines objects E = RΓN(Xet, “Zp(r)”) (resp. E = RΓN(Xet, “Zp(r)”)) of
D+(C) (resp. D+(C)) and an isomorphism ρ : E ∼−→ (Ru)(E).
(6) The morphisms µ : A −→ E (resp. µ : A −→ E) are given by the Fontaine-Messing map ([FM], III.5.1;
Appendix).

(4.16) We shall verify the axioms (A1), (A2’), (A3’) of I.3.1, under the assumptions

0 ≤ i+ 1, r < p− 1

We choose q ≥ 0 such that i+ 1 ≤ r + q < p− 1.
By Proposition 4.11 and 4.12,

Hj(B) =
[
F r+q(M j

n ⊗Wn Bn)(−q)
]
n∈N

(∀j ≤ p− 2)

Hj(C) =
[
M j

n ⊗Wn Bn(−q)
]
n∈N

(∀j ≥ 0)
(4.16.1)

Lemma 4.5.2 and Proposition 4.11 then imply

Ker
[
Hj(A) −→ Hj(B)

]
= Coker

[
Hj−1(B) −→ Hj−1(C)

]
= 0

for all j ≤ r + q + 1, proving (A1). According to Proposition 4.13, µ induces isomorphisms

Hj(A) ∼−→ Hj(E) (∀j ≤ r + q),

which gives (A2’). Now to (A3’): by definition,

(RjΨ)(B) = F rM j , (RjΨ)(C) = M j (∀j ≥ 0) (4.16.2)

It follows from (4.16.1) that

Φ(Hj(B)) = lim←−n
(
F r+q(M j

n ⊗W Acris)(−q)
)G

(∀j ≤ p− 2)

Φ(Hj(C)) = lim←−n
(
M j

n ⊗W Acris(−q)
)G

(∀j ≥ 0)
(4.16.3)

Recall that, for n ≥ 0 and 0 ≤ q < p− 1,

(Acris ⊗ Z/pnZ(−q))G = Z/pnZ · tq, (4.16.4)

where t is a Zp-basis of Zp(1) ↪→ Acris. Combining (4.16.2–4), we get (A3’).

(4.17) In fact, the assumptions of (4.16) can be slightly altered, to cover the value i + 1 = p − 1 as well.
Assume that
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0 ≤ r < p− 1, dim(X) < p (4.17.1)

Then all M j are objects of MF
[0,p−2]
W , by Proposition 4. 11(2). Consider the objects defined in (4.15), for

q = p − 2 − r = i − r. The formulas (4.16.1) hold for all j ≥ 0 and the same arguments as in the rest of
(4.16) give (A1), (A3’) and show that µ induces an isomorphism τ≤iA

∼−→ τ≤iE.

Our aim is to show that Φ(Hi+1(A)) −→ Φ(Hi+1(E)) is injective. Observing that both maps

αr,Mp−1 : Ker(λ′p−1,r) =
(
F rMp−1

)ϕr=1 −→ Φ(Hi+1(A)) = (T (Mp−1)(r))GK

Ker(λp−1,r) = Ker(λ′p−1,r)⊗Zp Qp −→ Φ(Hi+1(E))⊗Zp Qp = H0(GK , V
i+1(r))

are isomorphisms, by (4.8) and (3.1.2.1) respectively, we see that (A2) is satisfied, provided

F rMp−1 is torsion− free (4.17.2)

5. The Integral Comparison Theorem

(5.1) The assumptions of (4.1) (including p > 2) are in force. For 0 ≤ r < p and j ≥ 0, denote the map
1− ϕr : F rM j −→M j by λ′j,r. As in (3.1), the cohomology sequence of ∆ = ∆r becomes

0 −→ Coker(λ′i,r) −→ Hi+1(X̂syn−et, sZp
(r)) −→ Ker(λ′i+1,r) −→ 0

According to (4.8) and Proposition 4.11, for j satisfying min(j, d) < p there are injective homomorphisms

αr,Mj : Ker(λ′j,r) ↪→ H0(K,T (M j)(r))

βr,Mj : Coker(λ′j,r) ↪→ H1
f (K,T (M j)(r))

Moreover, Corollary 4.14 says that T (M j) is canonically isomorphic to T j , provided 0 ≤ j < p− 1.

(5.2) Theorem. Assume that 0 ≤ i+ 1, r < p− 1. Then:

(1) The Fontaine-Messing map ν : Hi+1(X̂syn−et, sZp
(r)) −→ Hi+1(Xet,Zp(r)) is injective and gives rise to

a commutative diagram with exact rows

0 −→ Coker(λ′i,r) −→ Hi+1(X̂syn−et, sZp
(r)) −→ Ker(λ′i+1,r) −→ 0yβ

yν

yα

0 −→ F 1Hi+1(Xet,Zp(r)) −→ Hi+1(Xet,Zp(r)) −→ H0(G,T i+1(r)) −→ 0yδ

H1
cont(G,T

i(r))

(2) α = αr,Mi+1 is an isomorphism, δ ◦ β = βr,Mi is injective and Im(δ ◦ β) ⊆ H1
f (K,T i(r)). If M i is

torsion-free (⇐⇒ T i is torsion-free), then Im(δ ◦ β) = H1
f (K,T i(r)).

Proof. This follows from Proposition I.3.5 (applied to the data (4.15)), (4.8) and Lemma 4.9. The axioms
of I.3.1 were verified in (4.16).

(5.3) As in (3.3), Theorem 5.2 can be reformulated in terms of the filtrations F j
et = F jHi+1(Xet,Qp(r))

(with F j
et = 0 for j > 2) and F j

syn defined by
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F 0
syn = Hi+1(X̂syn−et, sZp

(r))

F 1
syn = Ker

[
Hi+1(X̂syn−et, sZp

(r)) −→ Hi+1(X̂syn−et, J
[r]
Zp

)
]

(4.11.1)
=

= Ker
[
Hi+1(X̂syn−et, sZp

(r)) −→ Hi+1(X̂syn−et,Ocris
Zp

)
]

F 2
syn = 0

Proposition. Let 0 ≤ i+ 1, r < p− 1. Then the Fontaine-Messing map ν satisfies
(1) ν(F j

syn) ⊆ F j
et (∀j ≥ 0).

(2) gr0F (ν) : F 0
syn/F

1
syn

∼−→ F 0
et/F

1
et = E0,i+1

∞ = E0,i+1
2 = H0(G,T i+1(r)) is an isomorphism.

(3) gr1F (ν) : F 1
syn ↪→ F 1

et/F
2
et = E1,i

∞ = E1,i
2 = H1

cont(GK , T
i(r)) is injective, with image contained in

H1
f (K,T i(r)).

(4) If T i is torsion-free (⇐⇒ M i is torsion-free), then the image of gr1F (ν) is equal to H1
f (K,T i(r)).

(5.4) Suppose that p > dim(X)− 1, 0 ≤ r < p. The map

(−1)r−1csyn
r /(r − 1)! :

(
K0(X)⊗ Z

[
1

(dim(X)− 1)!

])(r)

−→ H2r(X̂syn−et, sZp
(r)),

composed with the isomorphism ([So 2], Thm. 4(iv); [GiSo], Thm. 8.2)

CHr(X)⊗ Z
[

1
(dim(X)− 1)!

]
∼−→
(
K0(X)⊗ Z

[
1

(dim(X)− 1)!

])(r)

defines a cycle class map clX which makes the following diagram commutative:

CHr(X)⊗ Z
[

1
(dim(X)−1)!

]
j∗−→ CHr(X)⊗ Z

[
1

(dim(X)−1)!

]
yclX

yclX

H2r(X̂syn−et, sZp(r)) ν−→ H2r(Xet,Zp(r))

(5.4.1)

(5.5) Proposition. Suppose that p > max(2r + 1,dim(X)− 1). Then

Im(clX) ∩ F 2H2r(Xet,Zp(r)) = 0.

Proof. This follows from Proposition 5.3, the diagram (5.4.1) and the surjectivity of the map j∗ in (5.4.1).

(5.6) Assume that 0 ≤ r < p− 1, i+ 1 = p− 1, dim(X) < p and that F rHp−1
dR (X/W ) is torsion-free. Then

the conclusions of (5.2)–(5.5) are still valid with the following modifications: in Theorem 5.2, the map α is
injective and there is no zero at the end of the second row in (1). In Proposition 5.3(2), the map gr0F (ν) is
injective. In Proposition 5.5, we take r = (i+ 1)/2. All this follows again from Proposition I.3.5 and 4.17.
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IV. Cycle classes and filtrations on Chow groups

In this chapter we treat varieties over number fields, by putting together local results of Chapters II and III,

1. Beilinson’s philosophy

(1.1) let F/Q be a finitely generated extension of transcendence degree d ≥ 0. If π : X −→ Spec(F ) is a
smooth and projective scheme, then the conjectural spectral sequence (0.1.0)

Ea,b
2 = Ha(Spec(F )mot, R

bπ∗Q(n)) =⇒ Ha+b(Xmot,Q(n))

is expected to degenerate at E2. It is also expected that Ea,b
2 = 0 for a > d+1 ([Ja 4], 4.12(c)). Consequently,

the induced filtration F .H∗(Xmot,Q(n)) should satisfy

grj
FH

m(Xmot,Q(n)) ∼−→ Hj(Spec(F )mot, R
m−jπ∗Q(n))

F d+2Hm(Xmot,Q(n)) = 0
(1.1.1)

The corresponding p-adic étale realization, given by the Hochschild-Serre spectral sequence (0.3.0), degen-
erates at E2 and defines a filtration on H∗(Xet,Qp(n)) satisfying

grj
FH

m(Xet,Qp(n)) ∼−→ Hj
cont(GF ,H

m−j(Xet,Qp(n)))

The p-adic realization map

Hm(Xmot,Q(n)) −→ Hm(Xet,Qp(n)) (1.1.2)

is expected to be strictly compatible with the filtrations, thus inducing injective maps

grj
FH

m(Xmot,Q(n)) ↪→ grj
FH

m(Xet,Qp(n)) (1.1.3)

(1.2) In order to make (1.1.3) a testable statement, one replaces motivic cohomology by its K-theoretic
version

Hm(Xmot,Q(n)) ?= K2n−m(X)(n)
Q

We shall be particularly interested in the case m = 2n, when

K0(X)(n)
Q

∼−→ CHn(X)⊗Q

and the map (1.1.2) is replaced by the cycle class map

clX : CHn(X)⊗Q −→ H2n(Xet,Qp(n))

The filtration F iH2n(Xmot,Q(n)) should then correspond to the mysterious filtration on CHn(X) ⊗ Q,
studied extensively by Beilinson, Bloch, Jannsen, Murre, Raskind, S. Saito and many other people (see [Ja
4] and [Ra] for references). The conjecture (1.1.1) predicts that

F d+2(CHn(X)⊗Q) = 0 (1.2.1)

and 1.1.3 can be reformulated as

F j(CHn(X)⊗Q) = cl−1
X

(
F jH2n(Xet,Qp(n))

)
(1.2.2)

This implies, among other things, that
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Ker(clX) = 0 (1.2.3)
Im(clX) ∩ F d+2H2n(Xet,Qp(n)) = 0 (1.2.4)

The injectivity of clX is a very difficult problem. We shall investigate (1.2.4) in the special case d = 0 (i.e.
when F is a number field).

2. Cycle class maps and étale cohomology

(2.1) Fix a prime number p. Let F/Q be a finite extension, πF : X −→ Spec(F ) a proper and smooth
map. Let S be a finite set of primes of F such that {v|p} ⊆ S and that there is a proper and smooth model
π : X −→ Spec(OF,S) = Spec(OF ) − S of X. Let GF,S be the Galois group of the maximal extension of F
unramified outside of S ∪ {v|∞}. Denote the map Spec(F ) −→ Spec(OF,S) by j.

For every i, n ≥ 0, r ∈ Z, the sheaf A = Riπ∗(Z/pnZ(r)) on Spec(OF,S)et is locally constant and
constructible, thus A = j∗j

∗A, j∗A = RiπF∗(Z/pnZ(r)) = Hi(Xet,Z/pnZ(r)) (which is a finite GF,S-
module) and

H∗(Spec(OF,S)et, A) = H∗(GF,S ,H
i(Xet,Z/pnZ(r)))

([Mi, II.2.9]). Using I.2.3, we get a similar statement for continuous cohomology

H∗(Spec(OF,S)et, [R
iπ∗(Z/pnZ(r))]n∈N) = H∗

cont(GF,S , T
i(r)) (2.1.1)

Here T i(r) = Hi(Xet,Zp). Of course, as GF,S satisfies the condition I.2.3.2, the continuous cohomology
group Hj

cont(GF,S , T
i(r)) coincides with the naive one and is a Zp-module of finite type.

(2.2) It follows from (2.1.1) that the Leray spectral sequence for π∗ is just

Ea,b
2 = Ha

cont(GF,S , T
b(r)) =⇒ Ha+b(Xet,Zp(r))

(cf. [Ja 2, Lemma 6]). It defines a filtration F .Hn,r on Hn,r = Hn(Xet,Zp(r)). Similarly, the Leray spectral
sequence for πF∗

′Ea,b
2 = Ha

cont(GF , T
b(r)) =⇒ Ha+b(Xet,Zp(r))

defines a filtration F .Hn,r on Hn,r = Hn(Xet,Zp(r)). The restriction map j∗ : Hn,r −→ Hn,r is compatible
with the filtrations.
As cdp(GF ) = cdp(GF,S) = 2, we have

gr0F (Hn,r) = E0,n
∞ = E0,n

3 ↪→ E0,n
2

gr1F (Hn,r) = E1,n−1
∞ = E1,n−1

2

gr2F (Hn,r) = F 2Hn,r = E2,n−2
∞ = E2,n−2

3

F 3Hn,r = 0

(2.2.1)

(and similarly for Hn,r). It follows from Weil’s conjectures [De 3] that E0,n
2 = ′E0,n

2 are finite groups for
n 6= 2r, thus

E2,n−2
∞ differs from E2,n−2

2 by a finite group (n 6= 2r − 1) (2.2.2)

(and similarly for ′E2). It follows from remarks at the end of (2.1) that all groups Ea,b
2 , Hn,r are Zp-modules

of finite type.
As
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E0,n
2 = Tn(r)GF,S = Tn(r)GF = ′E0,n

2

E1,n−1
2 = H1

cont(GF,S , T
n−1(r))

inf
↪→ H1

cont(GF , T
n−1(r)) = ′E1,n−1

2 ,

we see that both maps

gr0F (j∗) : gr0F (Hn,r) −→ gr0F (Hn,r)

gr1F (j∗) : gr1F (Hn,r) −→ gr1F (Hn,r)

are injective. As a result, we have

F kHn,r = (j∗)−1(F kHn,r) (k = 0, 1, 2) (2.2.3)

(2.3) For every r ≥ 0, there is a commutative diagram of cycle class maps (cf. [Sa], Sect. 5)

CHr(X)
j∗−→ CHr(X)yclX

yclX

H2r,r = H2r(Xet,Zp(r))
j∗−→ H2r(Xet,Zp(r)) = H2r,r,

in which the top horizontal arrow is surjective. Combined with (2.2.3), this implies that

Im(clX) ∩ F kH2r,r = j∗(Im(clX) ∩ F kH2r,r) (k = 0, 1, 2) (2.3.1)

(2.4) We are also interested in torsion phenomena. Recall a well-known

Lemma. Let F be a field finitely generated over Q, X a separated scheme of finite type over F .
(1) For every a ≥ 0 there is an integer C ′ ≥ 1 such that Ha(Xet,Zp)tors is finite for every prime number p
and vanishes for p 6 | C ′(X, a).
(2) If X is proper and smooth over F , then, for every a ≥ 0, b ∈ Z, a 6= 2b, there is an integer C(X, a, b) ≥ 1
such that

(
Ha(Xet,Zp(b))⊗Qp/Zp

)GF
is finite for every prime number p and vanishes for p 6 | C(X, a, b).

Proof. (1) Choose an embedding σ : F ↪→ C and put Y = X ⊗F,σ C. The smooth base change and
comparison theorem with classical cohomology tell us that

Ha(Xet,Zp) = Ha(Y (C),Z)⊗Z Zp

However, Ha(Y (C),Z) is a finitely generated abelian group, so its torsion is finite.
(2) There exists a subring R ↪→ F , finitely generated as a Z-algebra, and a proper and smooth model
X −→ Spec(R) of X. Let v be a closed point of Spec(R), with residue field k(v). Let p be a prime, different
from the characteristic `v of k(v). Then Ha(Xet,Zp(b)) is isomorphic to Ha((X ⊗R k(v))et,Zp(b)), by the
smooth and proper base change theorems. By Weil’s conjectures [De 4], the polynomial Pv(T ) = det(1 −
Fr(v)T |Ha(Xet,Qp(b)) has coefficients in Z[1/`v], is independent of p and Pv(1) 6= 1 (as Ha(Xet,Qp(b))
is pure of weight a− 2b 6= 0 at v). The group

(
Ha(Xet,Zp(b))⊗Qp/Zp

)GF is annihilated by Pv(1) by the
Cayley-Hamilton theorem, so we can take C(X, a, b) = `v · (numerator of Pv(1)).

(2.5) Lemma. In the situation of 2.1, we have(
gr0FH

n(Xet,Zp(r))
)
tors

=
(
gr0FH

n(Xet,Zp(r))
)
tors

= 0 (p 6 | C ′(X,n))(
gr1FH

n(Xet,Zp(r))
)
tors

=
(
gr1FH

n(Xet,Zp(r))
)
tors

= 0 (p 6 | C(X,n− 1, r)C ′(X,n− 1), n 6= 2r + 1)

Proof. As (E0,n
2 )tors = (′E0,n

2 ))tors = Hn(Xet,Zp(r))GF
tors, the first statement follows from Lemma 2.4.(1)

and (2.2.1). For the second statement, observe that
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(E1,n−1
2 )tors ↪→ (′E1,n−1

2 )tors = H1(GF ,H
n−1(Xet,Zp(r))tors)⊕H1(GF ,H

n−1(Xet,Zp(r))/tors)tors

The first term vanishes for p 6 | C ′(X,n − 1), by Lemma 2.4.(1). The second term is isomorphic to ([Ta],
Prop. 2.3) (

Hn−1(Xet,Zp(r))⊗Qp/Zp

)GF
/Div,

which vanishes for p 6 | C(X,n− 1, r), n 6= 2r + 1, by Lemma 2.4.(2). We conclude again by (2.2.1).

(2.6) Corollary. If X is equidimensional of dimension d and A = Alb(X) is the Albanese variety of X,
then (

gr0FH
2d(Xet,Zp(d))

)
tors

= 0 (for all p)(
gr1FH

2d(Xet,Zp(d))
)
tors

= 0 (for p 6 | ](A(F )tors))

Proof. The trace map induces an isomorphism H2d(Xet,Zp(d)) ∼−→ Zc
p, thus C ′(X, 2d) = 1. As

H2d−1(Xet,Zp(d)) ∼−→ Tp(A),

we have (
H2d−1(Xet,Zp(d))⊗Qp/Zp

)GF = A(F )p∞ .

Both claims now follow from Lemma 2.5.

3. Proof of Theorems E, F, G

(3.1) We begin with Theorem E, following its notation and assumptions. Fix a proper and smooth model
X −→ Spec(OF,S) of X as in (2.1). Writing V i for Hi(Xet,Qp), then we have (by I.2.3.3 and (2.2.2))

F 2H2n(Xet,Qp(n)) = H2
cont(GF , V

2n−2(n))

F 2H2n(Xet,Qp(n)) = H2
cont(GF,S , V

2n−2(n))

For every prime v of F , the restriction map

resv : H2n(Xet,Qp(n)) −→ H2n((Xv)et,Qp(n))

(where Xv = X ⊗F Fv) is compatible with the filtrations F j on both sides. Again by I.2.3.3, we have

F 2H2n((Xv)et,Qp(n)) = H2
cont(GFv

, V 2n−2(n))

Applying II.2.5.3 and III.3.8-9, we see that

Im(clX) ∩ F 2H2n(Xet,Qp(n)) ⊆ Ker(αS,Σ)

Theorem E now follows from a Qp-version of 2.3.1.

(3.2) For Theorem F, we apply Theorem E, with F = Q and X = Ed. According to Proposition II.2.6(i),
we have Σ = S. Poitou-Tate duality and Poincaré duality for X show that Ker(αS,S) is the Qp-dual of

Ker

[
βV : H1

cont(GQ,S , V ) −→
⊕
`∈S

H1
cont(GQ`

, V )

]
,

where V = H2(Xet,Qp(1)). Künneth formula gives
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V = Qp
(d+1

2 ) ⊕W (d
2),

where

W = Sym2
(
H1(Eet,Qp)

)
(1).

Class field theory shows that Ker(βQp
) = 0. The vanishing of Ker(βW ) follows from the results of [Fl], [La

1, Lemma 2.5], [Wi].

(3.3) We now turn to the proof of Theorem G, with the following value of cE :

cE = 2NE(deg(Φ))(](E(Q)tors))
∏
`∈T1

(`− 1)(−ord`(j(E)))
∏
`∈T2

` (3.3.1)

Here NE is the conductor of E, Φ : X0(NE) −→ E some modular parametrization of E and

T1 = {` |E has a potentially multiplicative reduction at `}
T2 = {` |GQ −→ Aut(E`) is not surjective}

Note that, according to ([Se 2], Thm. 2), the set T2 is finite. If E is semistable (i.e. NE is square-free), then
T2 ⊆ {2, 3, 5, 7} ([Se 2], Prop. 21).
If d = 1, then CH1(E) = Pic(E), CH1(E)0 = Pic0(E) = E(Q) and the kernel of clE : CH1(E) −→
H2(Eet,Zp(1)) is equal to the prime-to-p torsion in E(Q); thus Im(clE)tors = E(Q)p∞ .
Suppose now that d > 1 and p 6 | (2d)! ·cE (in particular, p > 3). Put X = Ed (= Alb(X)). As p 6 | ]((Ed)tors),
Cor. 2.6 implies that

H2d(Xet,Zp(d))tors ⊆
(
F 2H2d(Xet,Zp(d))

)
tors

Here we take X as in (2.1), with S = {`|pNE}. Write, as before, T i = Hi(Xet,Zp). Each T i is torsion-free
by Künneth formula, thus the spectral sequence in (2.2) satisfies E0,i

2 = 0 for i 6= 2d. This shows that

F 2H2d(Xet,Zp(d)) = E2,2d−2
2 = H2

cont(GQ,S , T
2d−2(d))

In fact the same argument applies locally: for any n ≥ 1 and any prime `, we have(
V 2n−1(n)

)GQ` = 0,

by II.1.6.4 and II.1.7(1a) (resp. III.3.5.1) for ` 6= p (resp. ` = p). As T 2n−1 is torsion-free, we obtain

F 2H2n((X`)et,Zp(n)) = H2
cont(GQ`

, T 2n−2(n)) (3.3.2)

(here X` = X ⊗Q Q`).
Fix now ` ∈ S and consider the restriction map

res` : H2
cont(GQ,S , T

2d−2(d)) −→ H2
cont(GQ`

, T 2d−2(d))

By Künneth formula,

T 2d−2(d) = Zp(1)d ⊕
(
Tp(E))⊗2

)(d
2) .

It follows that

H2
cont(GQ`

, T 2d−2(d))tors = H2
cont(GQ`

, (Tp(E))⊗2)(
d
2)

tors. (3.3.3)

Write H for Im(clX)tors. We claim that
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res`(H) = 0 (∀` ∈ S) (3.3.4)

Case ` = p: In this case (3.3.4) follows from (3.3.2) and Proposition III.5.5.
Case ` 6= p: By ([Si], IV.10.3 and V.5.3), the greatest common divisor of degrees [K : Q`] of extensions
over which E acquires semistable reduction divides 24. As p > 3, we can choose such an extension K/Q` of
degree d prime to p.
Subcase ` ∈ T1: By Lemma 3.4 below, the group (3.3.3) vanishes.
Subcase ` 6∈ T1 ∪{p}: E has a potentially good reduction at `. As above, we can choose an extension K/Q`

of degree prime to p over which E acquires good reduction. In this case (3.3.4) follows from Proposition
II.2.8 and (3.3.2).
So we see that H is contained in (the torsion subgroup of)

Ker

[
α : H2

cont(GQ,S , T ) −→
⊕
`∈S

H2
cont(GQ`

, T )

]

for T = T 2d−2(d). By Poitou-Tate duality, Ker(α) is the Pontryagin dual of

Ker

[
β : H1

cont(GQ,S , T
∗(1)⊗Qp/Zp) −→

⊕
`∈S

H1
cont(GQ`

, T ∗(1)⊗Qp/Zp)

]
We have

T ∗(1) = Zp
(d+1

2 ) ⊕
(
Sym2(Tp(E))(−1)

)(d
2)

The first factor does not contribute to Ker(β) by class field theory; as for the second factor,

Ker

[
H1

cont(GQ,S ,Sym2(Tp(E))(−1)⊗Qp/Zp) −→
⊕
`∈S

H1
cont(GQ`

,Sym2(Tp(E))(−1)⊗Qp/Zp)

]

vanishes by ([Fl], Thm. 1). Theorem G is proved.

(3.4) Lemma. Let K be a finite extension of Q`, k the residue field of K, E an elliptic curve over K
with a potentially multiplicative reduction. For a prime p 6= `, put T = Tp(E), V = T ⊗ Q. If p 6 |
(](k∗))(−ordK(j(E))) (here ordK : K∗ −→ Z is a surjective valuation and j(E) the j-invariant of E), then
(1) H0(GK , V

⊗2/T⊗2(−1)) ∼−→ Qp/Zp.

(2) H2
cont(GK , T

⊗2) ∼−→ Zp.

Proof. It is sufficient to prove (1); the statement (2) then follows by local duality, as T ∗(1) ∼−→ T . Our
assumptions imply that E is a quadratic twist of a Tate curve. Such a twist does not change the Galois
representation T⊗2, so we can assume that E itself is a Tate curve over K, with Tate’s parameter qE ∈ K∗.
The boundary map

δ : Qp/Zp −→ H1(GK ,Qp/Zp(1)) = K∗ ⊗Qp/Zp

associated to the standard exact sequence of GK-modules

0 −→ Qp/Zp(1) α−→V/T β−→Qp/Zp −→ 0

is given by δ(a) = qE ⊗ a. As p 6 | (](k∗)), the valuation ordK defines an isomorphism ordK ⊗ id : K∗ ⊗
Qp/Zp

∼−→ Qp/Zp. This implies that δ is an isomorphism as well, since p 6 | ordK(qE) = −ordK(j(E)).
Observing that
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H0(GK ,Qp/Zp(1)) = H0(GK ,Qp/Zp(−1)) = 0

(again by p 6 | (](k∗))), we see that various cohomology sequences associated to the diagram

0 0 0y y y
0 −→ Qp/Zp(1)

id⊗α(−1)−−−−→ V/T
id⊗β(−1)−−−−→ Qp/Zp −→ 0yα(−1)⊗id

yα(−1)⊗id

yα(−1)⊗id

0 −→ V/T
id⊗α(−1)−−−−→ V ⊗2/T⊗2(−1)

id⊗β(−1)−−−−→ V/T (−1) −→ 0yβ(−1)⊗id

yβ(−1)⊗id

yβ(−1)⊗id

0 −→ Qp/Zp
id⊗α(−1)−−−−→ V/T (−1)

id⊗β(−1)−−−−→ Qp/Zp(−1) −→ 0y y y
0 0 0

give H0(GK , V/T ) = Ker(δ) = 0 and isomorphisms

Qp/Zpyo
H0(GK , V

⊗2/T⊗2(−1)) ∼−→ H0(GK , V/T (−1)),

(3.3.5)

which proves the statement (1) of the Lemma (to see that the horizontal map in (3.3.5) is an isomorphism,
note that the boundary map

H0(GK , V/T (−1)) −→ H1(GK , V/T )

composed with the isomorphism H0(GK ,Qp/Zp) ∼−→ H0(GK , V/T (−1)) vanishes for trivial reasons).
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[Be 1] A. A. Beilinson, Vysšije reguljatory i značenija L-funkcij, in: Itogi Nauki i Techniki, Sovremennyje
Problemy Matematiki 24 , VINITI, Moskva, 1984, pp. 181–238 (English translation: Higher regulators
and values of L-functions, Journal of Soviet Mathematics 30 (1985), 2036–2070).

[Be 2] A. A. Beilinson, Notes on absolute Hodge cohomology, in: Applications of Algebraic K-theory to Alge-
braic Geometry and Number Theory, Part I, Proceedings of a Summer Research Conference held June
12-18, 1983, in Boulder, Colorado, Contemporary Mathematics 55 , American Mathematical Society,
Providence, Rhode Island, pp. 35–68.

[Be 3] A. A. Beilinson, Height pairing between algebraic cycles, in: K-theory, Arithmetic and Geometry; Sem-
inar, Moscow 1984-86 (Yu.I. Manin, ed.), Lect. Notes in Math. 1289 , Springer, Berlin, Heidelberg,
New York, 1987, pp. 1–26.
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