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JULIEN MARCHÉ AND MAXIME WOLFF

Abstract. We describe on any finitely generated group Γ the space of maps Γ → C which
satisfy the parallelogram identity, f(xy) + f(xy−1) = 2f(x) + 2f(y).

It is known (but not well-known) that these functions correspond to Zariski-tangent vectors
at the trivial character of the character variety of Γ in SL2(C). We study the obstructions for
deforming the trivial character in the direction given by f . Along the way, we show that the
trivial character is a smooth point of the character variety if dimH1(Γ,C) < 2 and not a smooth
point if dimH1(Γ,C) > 2.
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1. Introduction

It is a classical undergraduate exercise to show that any function f : Zn → C satisfying the
parallelogram identity below is a quadratic form:

(1) f(xy) + f(xy−1) = 2f(x) + 2f(y).

The identity, written multiplicatively for the purpose of generalisation, holds for all x, y ∈ Zn.
Solving this equation for a general group is a nice and recreative question which has already
been studied although not completely solved as far as we know (see [8] for instance). The
question sounds deeper once we relate it to the theory of character varieties. This relation was
first noticed by Chenevier in [5] in which this theory is partially developed. Our interest in
it grew out independently from different motivations (skein theory and dynamics on character
varieties). Before explaining this relation, let us fix a finitely generated group Γ and give a
complete description of the space P(Γ) of all functions satisfying Equation (1).

1.1. Description of the parallelogram functions. The first solutions are the quadratic
forms, defined as f(γ) = b(γ, γ) with b : Γ×Γ→ C a bimorphism, i.e., a morphism in both vari-
ables. They form a set we denote by Q(Γ). Interestingly, some groups admit other parallelogram
functions, contrary to the case of Zn.

The case Γ = 〈a, b, c〉 of a free group of rank 3 gives the simplest example. If w is a reduced
word in the variables aε1 , bε2 , cε3 where ε1, ε2, ε3 ∈ {±1}, we count, with sign ε1ε2ε3, all ways of
extracting aε1bε2cε3 , up to cyclic permutation, from the word w, and we substract, with sign
δ1δ2δ3, all ways of extracting aδ1cδ2bδ3 inside w, up to cyclic permutation. The resulting map,
which satisfies for example f(abc) = −f(cba) = 1, turns out to be in P(Γ), see Lemma 2.2. It
is obviously not in Q(Γ), as it does not factor through the abelianization of Γ.

To understand this phenomenon in greater generality, let us introduce the notion of polynomial
functions on groups. We can linearise any map f : Γ→ C and view it as a linear form on C[Γ],
the group algebra of Γ. Let us abuse notation and still denote it by f . A map f : Γ → C is
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polynomial of order < n if

f((γ1 − 1) · · · (γn − 1)) = 0 ∀ γ1, . . . , γn ∈ Γ,

see e.g. [19, Chap. 5]. For instance a constant function has order 0, a morphism has order 6 1,
a quadratic form has order 6 2, and we will see in Section 2.2 that a parallelogram function f
has order 6 3. Moreover, for a parallelogram function, the map

f ◦ ε3(γ1, γ2, γ3) = f((γ1 − 1)(γ2 − 1)(γ3 − 1))

which may be thought of as a kind of differential of order 3 of f is an alternating trimorphism
on Γ × Γ × Γ. We will see that a parallelogram function is quadratic if and only if this third
derivative vanishes hence we get an exact sequence

(2) 0 // Q(Γ) // P(Γ)
ε∗3 // Λ3H1(Γ,C)∗.

This exact sequence was already noticed in [5,8]. Our contribution so far is to describe completely
the image of ε∗3. This requires some basic knowledge of group cohomology for which we refer
to [3]. The shortest way to formulate our result is to consider the dual of the cup-product
map H1(Γ,C) × H1(Γ,C) → H2(Γ,C). By universal coefficients, it may be seen as a map
c : H2(Γ,C) → Λ2H1(Γ,C), which has a rather elementary description, as we will recall in
Section 2.3.

Theorem 1.1. Given any finitely generated group Γ, the image of ε∗3 in the sequence (2) is the
space

E(Γ) =
{

Φ: Λ3H1(Γ,C)→ C | ∀x ∈ H1(Γ,C), ∀y ∈ H2(Γ,C),Φ(x ∧ c(y)) = 0
}
.

The proof is an elementary application of the Hopf formula for H2(Γ,Z) and our theorem gives
a complete, and efficient description of the space of parallelogram functions (see the comments
after the proof of Lemma 2.6). As an application, we show that for a surface Σg of genus g > 2,
the group Mod(Σg) = Out(π1Σg) acts by precomposition on P(π1Σg) in a way which recovers
the Johnson homomorphism on the Torelli group.

1.2. Relation with the character variety. We consider the space

R(Γ) = Hom(Γ,SL2(C))

of morphisms from Γ to SL2(C). This is an affine algebraic set. One can embed it –non
canonically– in C4n by sending ρ to the tuple (ρ(γ1), . . . , ρ(γn)) where γ1, . . . , γn is a generating
set of Γ. The ring A(Γ) of “regular functions” on R(Γ) is the ring of polynomials in the
indeterminates ali,j (1 6 i, j 6 2, 1 6 l 6 n) where ali,j is the entry (i, j) of ρ(γl). Of course these
functions satisfy some relations: the relations among the generators in Γ and those telling that
det ρ(γl) = 1. It should be observed however that the algebra A(Γ) is not necessarily reduced.

The group SL2(C) acts algebraically on R(Γ) by conjugation and the character variety X(Γ) is
the algebraic quotient of R(Γ) by this action (see for instance [16], Section 5.1). As a topological
space, X(Γ) is the quotient of R(Γ) by the relation ρ ∼ ρ′ if and only if f(ρ) = f(ρ′) for all regular
functions on R(Γ) invariant by conjugation. Equivalently, X(Γ) is the space of characters, i.e.,
maps from Γ to C of the form χρ(γ) = Tr ρ(γ) for some ρ ∈ Hom(Γ, SL2(C)). The trivial
character is then simply that of the trivial representation, mapping all elements of Γ to 2.

The subring A(Γ)SL2(C) of invariant functions becomes by definition the ring of regular func-
tions on X(Γ). Generators for the ring of invariants by the group SL2(C) were known to spe-
cialists of the late 19th century (see for instance [13]) but the search for a complete description
of the ring of invariants of tuples of matrices of size n started only with Artin in [2] and was
completed by Procesi in [20]. The statement has been reformulated many times since then: we
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state here the case of SL2(C) and postpone to the end of the introduction the case of GLn(C).
In this form, this statement first appears in [4, Proposition 9.1] and a simpler proof is due to
Chenevier, see [6, Proposition 2.3].

Theorem 1.2 (see [4,6]). The ring A(Γ)SL2(C) is generated by the elements tγ for γ ∈ Γ where
tγ(ρ) = Tr ρ(γ) (and a finite number of them suffice). Moreover these functions satisfy t1 = 2
and the famous trace identity

tγtδ = tγδ + tγδ−1 , ∀γ, δ ∈ Γ

and these relations generate the ideal of relations among them.

As a main consequence, any function f : Γ → C satisfying the relations f(1) = 2 and
f(γ)f(δ) = f(γδ) + f(γδ−1) for all γ, δ ∈ Γ has the form f = χρ for some representation
ρ : Γ→ SL2(C).

We may think of the trivial character, defined by tγ = 2 for all γ, as an origin for the character

variety. Thus, it may be convenient to write tγ = uγ + 2. Now A(Γ)SL2(C) is generated by the
functions uγ , subject to the relations u1 = 0 and

(3) uγδ + uγδ−1 = 2uγ + 2uδ + uγuδ.

In this note we are interested in the “deformations” of the trivial character. This word
“deformations” is rather ubiquitous and deserves to be explicited. Actual deformations in the

algebraic set X(Γ) may be realized as analytic paths t 7→ ft(γ), with ft(γ) = tf1(γ)+ t2

2 f2(γ)+· · ·
for each γ, which satisfy for any γ, δ ∈ Γ the following equation:

(4) fn(γδ) + fn(γδ−1) = 2fn(γ) + 2fn(δ) +
n−1∑
k=1

(
n

k

)
fk(γ)fn−k(δ).

From this perspective, understanding the deformations of the trivial character consists in solving
Equation (4), for n gradually increasing. A solution for all n then yields a formal deformation
of the trivial character and the Artin approximation theorem (see [1]) tells that there exists a
convergent series which coincides with the formal one at any given order.

At a purely algebraic level, the trivial character corresponds to the maximal ideal m of
A(Γ)SL2(C) generated by all uγ , for γ ∈ Γ. The Zariski-tangent space at the trivial character is
then, by definition, the dual to the vector space m/m2. In the vector space m/m2, Equation (3)
loses its term uγuδ, and a Zariski-tangent vector at the trivial character is then simply a map
Γ→ C satisfying the parallelogram identity. In other words,

Observation 1.3. Let f1 : Γ → C be any function. Then, f1 ∈ P(Γ) if and only if the map

uγ 7→ tf1(γ) defines an algebra morphism from A(Γ)SL2(C) to C[t]/(t2).

Of course, this is nothing else than a solution of Equation (4) to the order n = 1. More
generally, solutions of Equation (4) to the order n may be thought of as Zariski-jets to the order
n at the trivial character. Said more abstractly, they form the space of ring morphisms from
A(Γ)SL2(C) to C[t]/(tn+1) that have zero constant term on m.

In this note we explore the problem of solving Equation (4) for small n. We find that a
parallelogram function has two universal obstructions: one at order 2 and one at order 3. Here
is the precise result.

Theorem 1.4. Let f1 ∈ P(Γ) be a parallelogram function.

(1) If there exists an algebra morphism f = tf1 + t2f2 : A(Γ)SL2(C) → C[t]/(t3) then f1 is a
quadratic form.
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(2) If there exists an algebra morphism f = tf1 + t2f2 + t3f3 : A(Γ)SL2(C) → C[t]/(t4) then
f1 is a quadratic form of rank 6 2.

We will see that there are no other “universal obstructions” in the sense that if Γ is a free
group and f1 ∈ P(Γ) is a quadratic form of rank 6 2 then there is a complete deformation
f = tf1 + t2f2 + · · · . This fits into a more general result of independent interest: any formal
deformation of the trivial character (at all orders) is the character of a formal deformation of a
parabolic representation. Let us state the precise result.

Theorem 1.5. Let f = tf1+t2f2+· · · and suppose that uγ 7→ f(γ) defines an algebra morphism

from A(Γ)SL2(C) to C[[t]]. Then there exists a representation ρ : Γ → SL2(C[[t]]) such that for
all γ ∈ Γ,

2 + f(γ) = Tr ρ(γ).

Notice that ρ evaluated at t = 0 has trivial character. Hence is a parabolic representation, that
is, it takes values in the abelian group of unipotent upper triangular matrices.

Using these results we show that the trivial character is a smooth point ofX(Γ) if dimH1(Γ,C) <
2 and is not smooth if dimH1(Γ,C) > 2. In the remaining case, dimH1(Γ,C) = 2, we will see
that X(Γ) is smooth at the trivial character, if and only if R(Γ) is smooth at the trivial repre-
sentation; and we will deduce some explicit criteria for this smoothness.

Finally, we obtain the following consequence of a celebrated theorem of Stallings (see [24]).

Theorem 1.6. Let φ : Γ1 → Γ2 be a group homomorphism, that induces an isomorphism between
H1(Γ1,Z) and H1(Γ2,Z) and an epimorphism from H2(Γ1,Z) to H2(Γ2,Z). Then φ∗ : X(Γ2)→
X(Γ1) is étale at the trivial character.

This latter property is an algebraic analogue of a local diffeomorphism. Concretely, this means
that φ∗ induces an isomorphism between the spaces of Zariski-jets at the trivial character, see
e.g. [14, Proposition 3.26].

It seems interesting to extend the results of this article to more general settings. We conclude
this introduction by determining the functional equation corresponding to the case of GLn(C).
Let An(Γ) be the algebra of regular functions on Hom(Γ,GLn(C)), Procesi’s theorem states
that the functions tγ(ρ) = Tr ρ(γ) still generate the invariant subalgebra of An(Γ) and gives
a complicated list of relations. We learned from [6, Chap. 2] the following reinterpretation in
terms of pseudo-characters.

Theorem 1.7 (Procesi [20] reformulated by Chenevier [6]). Let R be a C-algebra and T : Γ→ R
be a central map (i.e., invariant by conjugation) which maps 1 to n. Then there exists a morphism

of algebras An(Γ)GLn(C) to R mapping tγ to T (γ) if and only if the following Frobenius identity
is satisfied:

∀γ0, . . . , γn ∈ Γ,
∑

σ∈Sn+1

ε(σ)T σ(γ0, . . . , γn) = 0

where T (i1,...,ik)(γ0, . . . , γn) = T (γi1 · · · γik) and T σ =
∏k
j=1 T

σj if σ = σ1 · · ·σk is the decompo-

sition of σ into cycles (including the trivial ones).

Such a map T is called a pseudo-character. We can derive from this theorem a higher rank
analogue of parallelogram functions.

Corollary 1.8. The Zariski-tangent space at the trivial character of Hom(Γ,GLn(C))//GLn(C)
is naturally isomorphic to the space of central functions f : Γ → C satisfying the following
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equality:

(5) ∀γ0, . . . , γn ∈ Γ,
n+1∑
k=1

∑
0≤i1,...,ik≤n

(−1)k

k!
f(γi1 · · · γik) = 0.

Proof. Writing T = n+ εf in Frobenius identity with ε2 = 0 we get the formula∑
σ∈Sn+1

ε(σ)nc(σ)−1
∑

(i1,...,ik) cycle of σ

f(γi1 . . . γik) = 0

where c(σ) is the number of cycles of σ. Each time a cycle (i1, . . . , ik) appears in a permutation
σ, this permutation induces a permutation σ′ of {0, . . . , n} r {i1, . . . , ik} of n + 1 − k letters,
with c(σ′) = c(σ) − 1 and ε(σ′) = (−1)k+1ε(σ). We can count the contribution of these terms
by using the following formula due to Rouquier, see [21, Corollaire 3.2]:∑

σ∈Sl

ε(σ)tc(σ) = t(t− 1) · · · (t− l + 1).

We get that the coefficient of f(γi1 · · · γik) is equal to (−1)k+1n(n − 1) · · · k, but we have to
divide by k because the cycle (i1, . . . , ik) appears k times in the first sum of the proof. Dividing
by −n! on both sides yields the result. �

1.3. Further remarks. 1. We choose to state our results with coefficients in C for simplicity.
We can replace it mutatis mutandis with any algebraically closed field of characteristic 0. In
fact, many statements are true on Q or even Z[1

2 ], as the diligent reader may notice.
2. It is well-known (see e.g. [25]) that the Zariski-tangent space of R(Γ) at the trivial repre-

sentation is the space Z1(Γ, sl2(C)) which happens to be isomorphic to H1(Γ, sl2(C)) and that
all obstructions for deforming the trivial representation live in H2(Γ, sl2(C)). In this perspective,
experts in deformations should not be surprised by the appearance of H2(Γ,C) in Theorem 1.1.

3. The results of the present article apply to any central character. Indeed, the group
H1(Γ,Z/2Z) acts on the character variety by mapping tγ to ε(γ)tγ where ε ∈ Hom(Γ,Z/2Z).
This action reduces the study of central characters to the study of the trivial one.

Acknowledgements We are grateful to Louis Funar and Gwénaël Massuyeau for their inter-
est, their careful reading and their encouraging comments. We would also like to thank Gaëtan
Chenevier for his interest and for pointing out to us the beautiful theory of pseudo-characters.
Finally we thank the anonymous referees for their useful comments and suggestions.

2. Solving the parallelogram identity

We may start to play with Equation (1) and make the following first observations.

Lemma 2.1. Any function f ∈ P(Γ) satisfies the following identities for any γ, δ ∈ Γ:

(1) f(γn) = n2f(γ) for all n ∈ Z,
(2) f(γδ) = f(δγ),
(3) f(γδγ−1δ−1) = 0.

Lemma 2.2. The map f : F3 = 〈a, b, c〉 → Z ⊂ C of Section 1.1 is in P(F3).

We leave the proof of Lemma 2.1 as an exercise, and now sketch a proof of Lemma 2.2.

Proof. First note that a word w in a, a−1, b, b−1, c, c−1 does not need to be reduced for f(w) to
make sense, and inserting a letter and its inverse in w does not change f(w). Note also that for
all w, we have f(w−1) = f(w). Indeed, every pick of aε1bε2cε3 in w, for instance, corresponds to
a pick of c−ε3b−ε2a−ε1 in w−1: this reverses the sign but also reverses the cyclic order in which
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the letters appear, hence the contributions to f(w) and f(w−1) are equal. Finally if w1, w2 are
two words in a, a−1, b, b−1, c, c−1 then f(w1w2) + f(w1w

−1
2 ) − 2f(w1) − 2f(w2) counts exactly

the terms of type aε1bε2cε3 (or permutations) that use letters in both w1 and w2 (or w−1
2 ), as

the others cancel in the difference. Terms for which two letters are in w1 cancel in the sum
f(w1w2) + f(w1w

−1
2 ) because of the change of sign of the power in the third letter, while those

for which two letters are in w2 cancel because the cyclic order in which the letters appear changes
between the two terms, while the product of signs of the powers does not. �

Other identities as in Lemma 2.1 can be obtained directly, but in the next section we develop
a more systematic approach which will give us information not only on parallelogram functions
but also on the functions fn involved in their deformations.

2.1. The map p and powers of the augmentation ideal. Let us start by analyzing Equa-
tion (4). Suppose it is solved up to the order n− 1: solving it to the order n is the problem of
finding a map fn : Γ→ C, such that the map

(γ, δ) 7→ fn(γδ) + fn(γδ−1)− 2fn(γ)− 2fn(δ)

is a prescribed function, in terms of a solution (f1, . . . , fn−1) of Equation (4) to the order n− 1.
This suggests to study the operator which sends a map f : Γ → C to the map Γ2 → C defined
by (γ, δ) 7→ f(γδ) + f(γδ−1) − 2f(γ) − 2f(δ). By linearizing all maps on Γ, we consider this
operator as the adjoint of p : C[Γ]⊗ C[Γ]→ C[Γ] defined for all γ, δ ∈ Γ by

p(γ ⊗ δ) = γδ + γδ−1 − 2γ − 2δ.

Depending on the context, this map can also be viewed as a map p : Γ× Γ→ C[Γ] and we will
call it the parallelogram map. More generally, we will often replace the symbol ⊗ by a (less
cumbersome) coma when we evaluate on basis elements, maps defined on tensor products. With
this notation, Equation (4) becomes:

(6) fn ◦ p(γ ⊗ δ) =
n−1∑
k=1

fk(γ)fn−k(δ).

Let εn : C[Γ]⊗n → C[Γ] be the linear map defined by

εn(γ1 ⊗ · · · ⊗ γn) = (γ1 − 1) · · · (γn − 1).

Recall for instance from [19] that the augmentation ideal I is the kernel of the map C[Γ] → C
sending every γ ∈ Γ to 1. One sees that the range of the map εn is the ideal In. Dually, the
elements of (C[Γ])∗ vanishing on In+1 are the polynomial maps of order 6 n. These maps ε
combine well together, in the sense that for all suitable k, j and n we have

εn(γ1, · · · , γj , εk(γj+1, · · · , γj+k), · · · , γn+k−1) = εn+k−1(γ1, · · · , γn+k−1).

Note also that if f : Γ→ C vanishes at 1, then f ◦ε2(a⊗b) = f(ab)−f(a)−f(b) measures how
far is f from being a morphism. More generally, we will repeatedly use the following observation:

(7) f ◦ εn+1 = 0 =⇒ (γ1, . . . , γn) 7→ f((γ1 − 1) · · · (γn − 1)) is a morphism in each variable.

2.2. Parallelogram functions are cubic. We will denote by C(Γ) the set of maps f : Γ→ C
satisfying f(1) = 0, f(γ) = f(γ−1) and f(γδ) = f(δγ) for all γ, δ ∈ Γ. As the generators

tγ ∈ A(Γ)SL2(C) satisfy the same relations, all functions fn involved in Equation (4) are elements
of C(Γ); of course this also follows from Equation (4) by induction on n (the inductive step
follows by using Equation (6) with the elements 1⊗ 1, 1⊗ γ and then γ ⊗ δ − δ ⊗ γ).

The objective of this paragraph is to prove the following statement.
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Lemma 2.3. For every map f ∈ C(Γ) and every a, b, c, d ∈ Γ, we have
(8)

2f ◦ ε4(a, b, c, d) = f ◦ p
(
ε3(a, b, c)⊗ d+ ε3(b, c, d)⊗ a+ ε3(a, b, d)⊗ c+ ε3(c, a, d−1)⊗ b
−ε2(a, d−1)⊗ ε2(b, c)− ε2(b, d)⊗ ε2(c, a)− ε2(d, c−1)⊗ ε2(a, b)

)
.

Also, for all f ∈ P(Γ) and every a, b, c ∈ Γ, we have f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = 0 and

(9) f(a[b, c])− f(a) = 2f ◦ ε3(a, b, c).

It follows that for all f ∈ P(Γ), the map f ◦ε3 is an alternate trimorphism on Γ×Γ×Γ. Also,
the right hand side of Equation (8) will be useful for studying higher order jets, and Equation (9)
will be used in the next paragraph.

Proof. Observe that for all a, b, c ∈ Γ we have

abc+ acb = 2ab+ 2ac+ 2bc− 2a− 2b− 2c+ p(ab⊗ c+ ac⊗ b− a⊗ bc−1 − 2b⊗ c).
This yields for every map f :

(10) f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = f ◦ p(ε2(a, b)⊗ c+ ε2(a, c)⊗ b− ε2(b, c−1)⊗ a).

In particular if f ∈ P(Γ) then f ◦ ε3(a, b, c) + f ◦ ε3(a, c, b) = 0. Now for every f ∈ C(Γ), the left
hand side of Equation (10) is invariant under permutations of (a, b, c). It follows that its right
hand side has the same symmetries: for example, permuting b and c gives that for all f ∈ C(Γ),
the map f ◦p vanishes on ε2(b, c−1)⊗a− ε2(c, b−1)⊗a. We may obtain similarly other elements
of C[Γ]⊗ C[Γ] on which f ◦ p vanishes for any f ∈ C(Γ), including

(11)
ε2(a, b)⊗ c+ ε2(a, b−1)⊗ c− ε2(c, a)⊗ b− ε2(c−1, a)⊗ b, or

ε2(b, c)⊗ a− ε2(c, b)⊗ a+ ε2(b, a)⊗ c− ε2(a, b)⊗ c− ε2(a, c−1)⊗ b+ ε2(c−1, a)⊗ b.
Now, we apply Equation (10) successively to (a, bc, d), (ca, d, b) and (ab, d, c) to get:

f ◦ ε3(a⊗ bc⊗ d+ a⊗ d⊗ bc) = f ◦ p(ε2(bc, a)⊗ d+ ε2(bc, d)⊗ a− ε2(a, d−1)⊗ bc),
f ◦ ε3(ca⊗ d⊗ b+ ca⊗ b⊗ d) = f ◦ p(ε2(b, ca)⊗ d+ ε2(b, d)⊗ ca− ε2(ca, d−1)⊗ b),
f ◦ ε3(ab⊗ d⊗ c+ ab⊗ c⊗ d) = f ◦ p(ε2(ab, d)⊗ c+ ε2(ab, c)⊗ d− ε2(d, c−1)⊗ ab).

The alternating sum of these three identities leads to the equation we are after. The left part
yields 2f ◦ ε4(a, b, c, d) + 2f ◦ ε3(a, c, d) + 2f ◦ ε3(a, d, c). Substracting the term 2f ◦ ε3(a, c, d) +
2f ◦ε3(a, d, c) to the right-hand side, expanding it by linearity, and using the relations from (11)
we finally obtain our main formula, Equation (8).

Let us turn to the proof of Equation (9). For all a, b, c ∈ Γ, we have a[b, c] = abc · b−1 · c−1,
while a = abc · c−1 · b−1. Hence we have a[b, c]− a ≡ ε3(abc, b−1, c−1)− ε3(abc, c−1, b−1), where
we denote by ≡, in C[Γ], the equality modulo the subspace generated by all γδ− δγ for γ, δ ∈ Γ.
Hence if f ∈ P(Γ) we conclude by using the multilinearity and antisymmetry of f ◦ ε3. �

2.3. The parallelogram exact sequence. In this section, we prove Theorem 1.1. By Lemma 2.3,
if f ∈ P(Γ) then f ◦ ε3 is an alternate trimorphism on Γ × Γ × Γ. If f ◦ ε3 = 0 then set-
ting b(γ, δ) = 1

2(f(γδ) − f(γ) − f(δ)) we observe that b is a symmetric bimorphism, that is,
f(γ) = b(γ, γ) is quadratic. Summing up, we obtain the exact sequence (2) and our remaining
task is to determine the range of the map ε∗3 : P(Γ)→ Λ3H1(Γ,C)∗.

We will start by recalling the basics of homology that we need. We may write Γ as a quotient
F/R, where F is finitely generated free group and R is a normal subgroup. For any group Γ,

set Γ(1) = Γ and let Γ(k+1) = [Γ(k),Γ] be the subgroup of Γ generated by commutators [a, b]

with a ∈ Γ(k) and b ∈ Γ. The Hopf formula asserts then that H2(Γ,Z) = [F, F ] ∩ R/[F,R].
If we further denote by R′ (resp. R′′) the subgroup generated by R and [F, F ] (resp. R and
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[F, [F, F ]]), we observe the inclusions [F,R] ⊂ [F,R′] ⊂ R′′, yielding the following maps, where
the first one mixes an inclusion and a quotient:

[F, F ] ∩R/[F,R]→ [F, F ]/[F,R′]→ [F, F ]/R′′ ∩ [F, F ]→ 1.

It is an easy exercise to check that the sequence above is exact, and the Hopf formula applied
first to Γ = F/R and then to its abelianization F/R′, enable to rewrite the sequence above as:

(12) H2(Γ,Z)→ H2(Γ/Γ(2),Z)→ Γ(2)/Γ(3) → 1.

This exact sequence is due to Hopf, and we learned it from [24]. Now, for the abelian group

Γ/Γ(2) = H1(Γ,Z), we have the classical identification, H2(H1(Γ,Z),Z) ' Λ2H1(Γ,Z), which
identifies commutators [a, b] from the Hopf formula (in the relations defining H1(Γ,Z)) with the
corresponding wedges a∧ b. We denote by c : H2(Γ,Z)→ Λ2H1(Γ,Z) the composition map, and
still denote c : H2(Γ,C)→ Λ2H1(Γ,C) after tensoring with C.

Recall that we denoted by E(Γ) the space of linear maps Φ : Λ3H1(Γ,Z) → C such that
Φ(x ∧ c(y)) = 0 for all x ∈ H1(Γ,C) and y ∈ H2(Γ,C).

Lemma 2.4. If f ∈ P(Γ) then f ◦ ε3 ∈ E(Γ).

Proof. Let x ∈ H1(Γ,Z) and y ∈ H2(Γ,Z); it suffices to prove that f ◦ ε3(x ∧ c(y)) = 0. Let
a ∈ Γ be an element whose abelianization is x, and let r ∈ [F, F ] ∩ R represent y; let us write
r =

∏
i[bi, ci]. As r maps to 1 in Γ, we have f(ar)−f(a) = 0, and by repeated use of Formula (9)

this yields 2
∑

i f ◦ ε3(a, bi, ci) = 0, ie, f ◦ ε3(x ∧ c(y)) = 0. �

This proves the condition of Theorem 1.1 and it remains to prove that any Φ ∈ E may be
written f ◦ ε3 for some f ∈ P(Γ). We have two proofs for it, an explicit and a more conceptual
one. We present first the explicit formula, leaving the tedious details to the reader and then
move to the conceptual proof.

Let Φ ∈ E(Γ). The abelianization of Γ has the form H1(Γ,Z) = Zr ⊕
⊕d

i=1 Z/piZ. We choose
generators a1, . . . , ar, t1, . . . , td of H1(Γ,Z) corresponding to the above decomposition, lift them
to Γ, and, abusively, still denote them by the same letter. Every element γ ∈ Γ can be written
in the form

(13) γ = an1
1 · · · a

nr
r t

α1
1 · · · t

αd
d

q∏
i=1

[hi, ki],

with, for i ∈ {1, . . . , d}, αi ∈ {0, . . . , pi − 1}. We then put

(14) f(γ) =
∑
i<j<k

ninjnkΦ(ai ∧ aj ∧ ak) + 2

q∑
i=1

Φ(u ∧ hi ∧ ki),

where u = an1
1 · · · anr

r , and hi, ki still (abusively) denote their images in H1(Γ,C). As announced,
we encourage the reader to check that this formula is well-defined, satisfies the parallelogram
identity and the equation f ◦ ε3 = Φ.

Let us avoid these tedious verifications and move to a more conceptual proof. First, observe
that all elements of P(Γ) factor through Γ/Γ(3), as a consequence of Equation (9). Thus, the

parallelogram equation we have to solve is an equation on the group Γ/Γ(3), which sits in the

central extension 0 → Γ(2)/Γ(3) → Γ/Γ(3) → Γ/Γ(2) → 0. Let us set A = Γ(2)/Γ(3) ⊗ C
and B = H1(Γ,Z). In order to solve the parallelogram equation, it is convenient to introduce
a different central extension 0 → A → U → B → 0 related to Γ, defined as follows. The
commutator map Γ2 → Γ induces an antisymmetric bilinear map : H1(Γ,Z)2 → Γ(2)/Γ(3)

which, after tensoring with C, gives an antisymmetric map : H1(Γ,C)2 → A; we denote (without
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distinction) these maps by σ. With this notation, the Hopf exact sequence (12) becomes the
exact sequence

H2(Γ,C)
c // Λ2H1(Γ,C)

σ // A // 0 .

The map σ is a cocycle, that is, the set U = A × B endowed with the product (a, x)(b, y) =
(a+ b+ σ(x, y), x+ y) is a group which fits into a central extension as above. The advantage of
U is that it comes with a “canonical” parallelogram function as follows.

Lemma 2.5. Let Ω = Λ3H1(Γ,C)/ Span{c(u)∧ v, u ∈ H2(Γ,C), v ∈ H1(Γ,C)} and let F : U →
Ω be defined by F (a, x) = α ∧ x, where α is any element of Λ2H1(Γ,C) such that σ(α) = a.
Then F is well-defined, and satisfies the parallelogram identity.

Proof. Since the Hopf sequence above is exact, different choices of α differ by elements of the
form c(u) with u ∈ H2(Γ,C); and by definition of Ω these do not impact the value of F (a, x).
Now, if (a, x), (b, y) ∈ U we have (b, y)−1 = (−b,−y), so

F ((a, x)(b, y)) + F ((a, x)(b, y)−1) = (α+ β + x ∧ y) ∧ (x+ y) + (α− β − x ∧ y) ∧ (x− y),

where α, β are lifts of a, b to Λ2H1(Γ,C). Expanding this expression and simplifying, we get
2α ∧ x+ 2β ∧ y as expected. �

Let us relate Γ with U . A map Θ: Γ → U , γ 7→ (θ(γ), γ) (where the overline stands for
the abelianization) is a morphism if and only if for all γ, δ ∈ Γ we have θ(γδ) − θ(γ) − θ(δ) =
σ(γ, δ) ∈ A. Such a map exists if and only if the class of σ is zero in H2(Γ, A), and we claim that
this holds tautologically. As A is a divisible group, the universal coefficients theorem tells us
that the evaluation map H2(Γ, A)→ Hom(H2(Γ,Z), A) is an isomorphism. Hence it is sufficient
to show that σ vanishes on generators of H2(Γ,Z). By the Hopf formula, elements of H2(Γ,Z)
are expressions of the form r =

∏
i[xi, yi] which vanish in Γ. By definition, the value of σ on r is

the class of r in A which is trivial by definition of r. This proves the existence of such a map θ.
Alternatively, and more explicitly, we may define two set-theoretic sections s1, s2 : Γ0 → Γ

of the projection p : Γ → Γ0, where Γ0 is the quotient of H1(Γ,Z) by its torsion, by letting
s1(an1

1 · · · anr
r ) = an1

1 · · · anr
r and s2(an1

1 · · · anr
r ) = anr

r · · · a
n1
1 with the notation of Equation (13).

Then for i = 1, 2, the map θi : x 7→ xsi(p(x))−1 may be viewed as a map from Γ to A, and it
turns out θ = θ1 + θ2 is a solution.

Up to linearizing the map F ◦Θ: Γ→ Ω as we did for all parallelogram maps, we may compose
it with the map ε3, and the following observation shows that F is a “universal” solution to the
parallelogram problem.

Lemma 2.6. The composition F ◦Θ ◦ ε3 : Ω→ Ω is the identity.

This concludes the proof of Theorem 1.1, as for any map Φ ∈ E(Γ), it suffices to set f =
Φ ◦ F ◦Θ to get a map f ∈ P(Γ) such that f ◦ ε3 = Φ.

Proof of Lemma 2.6. Formally, ε3 is defined only on C[Γ]⊗3. But since F ◦ Θ satisfies the
parallelogram identity, all the properties of parallelogram maps established above apply to it.
In particular, F ◦Θ ◦ ε3 reduces to a map Ω→ Ω, and we have, for all x, y, z ∈ Γ,

2F ◦Θ ◦ ε3(x, y, z) = F ◦Θ(x[y, z])− F ◦Θ(x) =
(
θ̂(x[y, z])− θ̂(x)

)
∧ x,

where θ̂(γ) is any lift of θ(γ) to Λ2H1(Γ,Z). Now, it follows from the defining formula of θ that
θ(x[y, z]) = θ(x) + 2σ(y, z); it follows that 2F ◦Θ ◦ ε3(x, y, z) = 2y ∧ z ∧ x = 2x ∧ y ∧ z. �
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Now that the proof of Theorem 1.1 is complete, let us add a few words to mention that this
description of E(Γ), or dually, of the space Ω above can be computed effectively given a finite
presentation of Γ. Suppose Γ = F/R where F is the free group on the letters a1, . . . , ar and R
its normal subgroup generated by the words r1, . . . , rk. Up to simple operations on the rj , we
may suppose that for some ` their images r1, . . . , r` in the abelianization of F freely generate
an abelian subgroup, and that rj = 0 for all j > `. All elements of R, resp. R ∩ [F, F ], are
equivalent, modulo [R,F ], to products of the form rn1

1 · · · r
nk
k , resp. r

n`+1

`+1 · · · r
nk
k . In other words,

the abelian group H2(Γ,Z) is finitely generated by the elements r`+1, . . . , rk, although in general
it may be difficult to know if these elements satisfy some relations in H2(Γ,Z). Nevertheless Ω
is the (computable) quotient of Λ3H1(Γ,C) by all elements of the form c(rj)∧am with j > `+ 1
and where am are generators of H1(Γ,C).

2.4. Examples. For every n ∈ N, we have two opposite examples. The first one is Fn for
which H2(Fn,Z) = 0 and hence E(Fn) = Λ3H1(Fn,C)∗, it is generated by the maps raised
in the introduction, for each choice of three generators. The other example is Zn for which
H2(Zn,Z) = Λ2Zn and c : H2(Zn,Z)→ Λ2Zn is an isomorphism. Hence E(Zn) = 0.

More interesting examples lie in between the previous ones. Let us give some detail on the
case of the fundamental group of closed orientable surfaces of genus g > 2, denoting by Σg this
surface and by Γg its fundamental group. Then H2(Γg,Z) = H2(Σg,Z) = Z is generated by the
fundamental class [Σg]. Moreover, if we have the presentation

Γg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1〉

then c([Σg]) =
∑g

i=1 ai ∧ bi. This gives the description of E(Γg) as the space of linear forms
Φ : Λ3H1(Γg,Z) → C such that

∑g
i=1 Φ(x ∧ ai ∧ bi) = 0 for all x ∈ H1(Γg,Z). This is trivial

when g = 2, as, for example, a1 ∧ a2 ∧ b2 equals −a1 ∧ a1 ∧ b1 in the quotient Ω of Λ3H1(Γ,C)
by H2 ∧H1, but it is nontrival as soon as g > 3.

The group Aut(Γg) acts on Hom(Γg, SL2(C)) by precomposition. The induced action on
X(Γg) factors through the group Out(Γg) of outer automorphism also known as the (extended)
mapping class group. This action has been extensively studied as it extends the action of the
mapping class group of the Teichmüller space, a connected component of the real part of X(Γg).
Goldman popularized many questions around the dynamics of this action, see e.g. [12]. In some
cases, understanding the neighbourhood of the trivial representation may be useful, as in [11]
where the Torelli group (i.e., the subgroup Ig of Out(Γg) acting trivially on the abelianization
H1(Γg,Z)) is shown to act ergodically on some component of the real part of X(Γg). Let us show
that the tangent action of Out(Γg) at the trivial character in X(Σg) is related to the Johnson
homomorphism.

The group Aut(Γg) also acts on P(Γg) by precomposition and because parallelogram functions
are invariant by conjugation this action also factors through the group Out(Γg). By restriction,
Ig acts on the exact sequence (2), and its action is trivial on the extreme terms. This defines a
morphism q : Ig → Hom(E(Γ),Q(Γ)), such that for all φ ∈ Ig,

f ◦ φ = f + q(φ)(f ◦ ε3).

Recall from [10, Chap. 6] that the Johnson morphism τ : Ig → Hom(H1(Γg,Z),Γ
(2)
g /Γ

(3)
g ) is

defined by the formula τ(φ)(x) = φ(x)x−1 for x ∈ Γg. Then, for any x ∈ Γg we get

f(φ(x)) = f(x · φ(x)x−1) = f(x) + 2f ◦ ε3(x ∧ y),

by formula (9), where y is a lift of τ(φ)(x) in Λ2H1(Γg,Z) (as in the Hopf exact sequence (12)).
This yields the simple formula, q(φ)(Φ)(x) = 2Φ(x ∧ τ(φ)(x)): the action of the Torelli group
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Ig on parallelogram functions is similar to the Johnson homomorphism. This is of course valid
for any group, the case of surface groups being more classical.

The mix of binary and ternary elements in the same space P(Γ), and the constant interplay
between them, for example by this Johnson morphism, evokes to us a genre of latino-american
folk music.

3. Obstructions and smoothness

The description of parallelogram functions being done, we know completely the Zariski-
tangent space of X(Γ) at the trivial representation. We now turn to the jets of higher order.

3.1. Proof of Theorem 1.6. As noticed from Formula (8), whenever (f1, . . . , fn) is a solution
of Equation (4) up to order n, we have fi ∈ C(Γ) for all i ∈ N and f1 ◦ ε4 = 0. Equation (6)
gives f2 ◦ p = f1 ⊗ f1. By evaluating f2 ◦ ε4 at an element of (I4)4 in Formula (8), we deduce
that f2 ◦ ε16 = 0, and, by immediate induction, fn ◦ ε4n = 0: all solutions to any order to the
higher parallelogram equation (4) are polynomial. In the upcoming subsections we will obtain
better bounds for their orders; for now we deduce Theorem 1.6.

As observed in the end of the proof of Lemma 2.3, for all a, b, c ∈ Γ the term a[b, c] − a is
equivalent to an element of I3, modulo elements of the form γδ − δγ in C[Γ]. More explicitely,

a[b, c]− a ≡ (abc− 1)
(
(b−1 − 1)(c−1 − 1)− (c−1 − 1)(b−1 − 1)

)
.

By induction this formula gives that for all a1, . . . , an ∈ Γ, we have a1[a2, [a3, · · · [an−1, an] · ··]] ≡
a1 modulo In. It follows that for any solution (f1, . . . , fn) of Equation (4), and for all γ ∈ Γ,

the value of fk(γ), for k ∈ {1, . . . , n} depends only on the image of γ in Γ/Γ(4n−1). Now if

φ : Γ1 → Γ2 is a morphism inducing an isomorphism between Γ1/Γ
(n)
1 → Γ2/Γ

(n)
2 for all n > 0,

then it induces a bijection between the set of solutions of the functional equation (4) at any
order. It follows that φ∗ : X(Γ2) → X(Γ1) induces an isomorphism between the spaces of
Zariski-jets at the trivial character at any order. With this in head, Theorem 1.6 follows from
the following theorem of Stallings.

Theorem 3.1 (Stallings, Theorem 3.4 in [24]). Let φ : Γ1 → Γ2 be a morphism, that induces an
isomorphism between H1(Γ1,Z) and H1(Γ2,Z) and an epimorphism from H2(Γ1,Z) to H2(Γ2,Z).

Then φ induces an isomorphism between Γ1/Γ
(n)
1 and Γ2/Γ

(n)
2 for all n > 1.

3.2. First obstruction. Now we turn to the proof of Theorem 1.4. Suppose (f1, f2) is a solution
of Equation (4) up to order 2. In other words, we suppose that f1 ∈ P(Γ) and f2 ◦ p(a, b) =
f1(a)f1(b) for all a, b ∈ Γ. We will prove in this section that this forces f1 to be a quadratic
form.

Take a1, . . . , a6 ∈ Γ. We have, using linearity and Formula (8),

2f2 ◦ ε6(a1, . . . , a6) = 2f2 ◦ ε4(ε3(a1, a2, a3), a4, a5, a6)

= f2 ◦ p


ε5(a1, a2, a3, a4, a5)⊗ a6 + ε3(a4, a5, a6)⊗ ε3(a1, a2, a3)
+ε5(a1, a2, a3, a4, a6)⊗ a5 + ε5(a5, a1, a2, a3, a

−1
6 )⊗ a4

−ε4(a1, a2, a3, a
−1
6 )⊗ ε2(a4, a5)− ε2(a4, a6)⊗ ε4(a5, a1, a2, a3)
−ε2(a6, a

−1
5 )⊗ ε4(a1, a2, a3, a4)

 .

Since f1 vanishes on I4, this simplifies to

2f2 ◦ ε6(a1, . . . , a6) = f1 ◦ ε3(a1, a2, a3)f1 ◦ ε3(a4, a5, a6).

As f1 ∈ P(Γ), the right hand side of this expression changes sign upon exchanging a5 with a6,
while the left hand side remains equal upon permuting cyclically the ai because f2 is invariant
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by conjugation. In other words, the permutation (5 6) changes the sign of this complex number,
while the permutation (2 3 4 5 6 1) leaves it invariant. As the latter has signature −1, it follows
that for all a1, . . . , a6 we have f2 ◦ ε6(a1, . . . , a6) = 0, and that f1 ◦ ε3 = 0, ie, f1 ∈ Q(Γ).

Note also that from all the above relations, we get that the map Γ2 → C defined by 〈a, b〉 =
f1◦ε2(a, b) is bilinear and symmetric, and that, for all a, b, c, d ∈ Γ, by applying again Formula (8)
we have

(15) f2 ◦ ε4(a, b, c, d) = 〈a, b〉〈c, d〉+ 〈a, d〉〈b, c〉 − 〈a, c〉〈b, d〉.

This expression being linear in each variable, we get that f2◦ε5 vanishes, hence f2 is a polynomial
function of order 6 4.

3.3. Second obstruction. Now let (f1, f2, f3) be a solution to the order 3. Then f2◦ε4 satisfies
Equation (15). We may write different formulas for f3 ◦ ε6, by using the equalities

ε6(a1, . . . , a6) = ε4(ε3(a1, a2, a3), a4, a5, a6) = ε4(ε2(a1, a2), ε2(a3, a4), a5, a6).

The first equality, together with Formula (8) and the facts that f1 ◦ ε3 and f2 ◦ ε5 vanish, gives

2f3 ◦ ε6(a1, . . . , a6) =f1 ◦ ε2(a4, a5)f2 ◦ ε4(a1, a2, a3, a6)− f1 ◦ ε2(a4, a6)f2 ◦ ε4(a5, a1, a2, a3)

+ f1 ◦ ε2(a5, a6)f2 ◦ ε4(a1, a2, a3, a4),

while the second gives

2f3 ◦ ε6(a1, . . . , a6) =f1 ◦ ε2(a1, a2)f2 ◦ ε4(a3, a4, a5, a6) + f1 ◦ ε2(a5, a6)f2 ◦ ε4(a1, a2, a3, a4)

− f1 ◦ ε2(a3, a4)f2 ◦ ε4(a1, a2, a6, a5).

Now by expanding both these expressions, by using Equation (15) and by writing the equality
between the two, we get an equality that fits in the following determinant:∣∣∣∣∣∣

〈a1, a3〉 〈a4, a3〉 〈a2, a3〉
〈a1, a5〉 〈a4, a5〉 〈a2, a5〉
〈a1, a6〉 〈a4, a6〉 〈a2, a6〉

∣∣∣∣∣∣ = 0.

It follows that the induced bilinear form 〈·, ·〉 on H1(Γ,C) cannot have a family of three orthonor-
mal vectors: its rank cannot exceed 2. This is a non-trivial condition as soon as dimH1(Γ,C) > 3.

3.4. No other universal obstructions. First, let us observe that there are no other “univer-
sal” – i.e. valid for any group – obstructions of higher order.

Proposition 3.2. Let Γ = Fn be a free group. Let 〈·, ·〉 be a symmetric bilinear product of rank
6 2 on H1(Fn,C). Then there exists a smooth deformation of the trivial character, [ρt], such
that

Tr(ρt(γ)) = 2 + t〈γ, γ〉+ o(t), for all γ ∈ Γ.

Proof. Let Fn = 〈a1, . . . , an〉 be a free group of rank n. Being of rank 6 2, the quadratic form
associated to 〈·, ·〉 can be written as the product of two linear forms `1, `2 on H1(Fn,C) (observe
that `21 + `22 = (`1 + i`2)(`1 − i`2)).

Now we construct ρt as follows. We simply put

ρt(ai) =

(
1 `1(ai)
0 1

)(
1 0

t`2(ai) 1

)
.

We check that Tr ρt(aiaj) = 2 + t〈ai, aj〉+ o(t), for all i, j. �
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3.5. Lifting deformations. The proof of Proposition 3.2 suggests that deformations of char-
acters can be lifted to deformations of representations; this is the content of Theorem 1.5,
that we will prove now. Thus, let us consider a function f : Γ → C[[t]] satisfying f(γδ) +
f(γδ−1) = f(γ)f(δ) for all γ, δ ∈ Γ. By Theorem 1.2, f can be viewed as an algebra morphism

φ : A(Γ)SL2(C) → C[[t]], which maps the function tγ to f(γ). We want to prove that there exists
a morphism ρ : Γ→ SL2(C[[t]]) such that Tr(ρ(γ)) = f(γ) for all γ ∈ Γ.

Let K be the field of fractions of C[[t]], i.e., the field of formal Laurent series in t, and let K
be its algebraic closure. By invariant theory over K, the map R(Γ) → X(Γ) is surjective (see
e.g. [16, Theorem 5.9]). In particular, there exists an algebra morphism φ : A(Γ)→ K extending
φ. This defines a representation ρ : Γ→ SL2(K) by sending the generator γl to the matrix with
entries φ(ali,j) in the notation of Subsection 1.2. In particular, for all γ, Tr(ρ(γ)) = f(γ). We

want to prove that ρ can be conjugated to a representation in SL2(C[[t]]). In fact, it suffices to
conjugate it into SL2(K), as the following observation shows.

Lemma 3.3. Let Γ be a finitely generated group. Let K be the field of fractions of C[[t]]. Let
ρ : Γ → SL2(K) and suppose that for all γ ∈ Γ, Tr(ρ(γ)) ∈ C[[t]]. Then ρ is conjugate, in
SL2(K), to a representation in SL2(C[[t]]).

Proof. Let v be the valuation on K defined by v(t) = 1. Then Γ acts on the Bass-Serre tree T
associated to (K, v). See e.g. [23, Chap. 2]. For any γ ∈ Γ, we have Tr(ρ(γ)) ∈ C[[t]], and it
follows that ρ is conjugate to an element of SL2(C[[t]]): hence, ρ(γ) fixes a vertex of T . Thus,
Γ acts on T by isometry, in such a way that every element of Γ fixes a point. Therefore, Γ has
a global fixed point, see e.g. [23, Chap. I.6.5, Corollaire 3]. This means that ρ is conjugate to a
representation in the stabilizer of a point of T , i.e., conjugate to a representation in SL2(C[[t]]).

�

A similar statement is true in the more general case of n×n-matrices but with the additional
assumption of absolute irreducibility, see [7, Lemma 1.4.3].

It remains to conjugate our representation ρ into SL2(K). We suppose first that it is (abso-
lutely) irreducible, and leave the (easier) reducible case to the end of the proof. Experts would
notice that the result follows from the fact that there are no non-trivial quaternion algebras over
K (see [15]). We prefer to give a down-to-earth proof. The irreducibility condition is catched
by pairs of elements of Γ, by two classical observations that we recall now.

Lemma 3.4 (Corollary 1.2.2 in [7]). Let k be an algebraically closed field of characteristic zero,
let Γ be any group, and let ρ : Γ→ SL2(k) be a representation. Then ρ is irreducible if and only
if there exist α, β ∈ Γ such that Tr ρ([α, β]) 6= 2.

Lemma 3.5. Let k be any field and let A,B ∈ SL2(k). Then the determinant of the Gram
matrix of the family (Id, A,B,AB) ∈ M2(k)4, with respect to the non-degenerate bilinear form

(M,N) 7→ Tr(MN) is equal to − (Tr[A,B]− 2)2.

This classical identity which we learned from [22] may be checked by a direct computation.
Fix α, β ∈ Γ given by Lemma 3.4, and set A = ρ(α) and B = ρ(β). Now we seek to conjugate
A and B to the respective forms(

0 −1
1 TrA

)
and

(
a b
c d

)
with a, b, c, d in K as follows. For A it is just a matter of finding a vector v which is not an

eigenvector of A and considering the basis (v,Av) of K
2
. The entries of B in this basis then
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satisfy the system:

(S) a+ d = TrB, b− c+ dTrA = TrAB, ad− bc = 1;

it will follow from Lemma 3.6 below that this system actually has solutions in K. Reciprocally,
given a solution of (S), a simple computation shows that the matrix X = B − aId − cA has
rank 1 (indeed we have TrX2 = (TrX)2, and X 6= 0 as A and B do not commute). Then for
any non-zero vector v ∈ kerX, we may check that (v,Av) is a basis in which A and B have the
desired form.

By Lemma 3.5, the matrices Id, A,B,AB generate M2(K). Hence, for any element γ ∈ Γ,
ρ(γ) is a linear combination of Id, A,B,AB whose coefficients are a priori in K. The values of
f(γ), f(γα), f(γβ) and f(γαβ) yield a system of four equations that enable to retrieve these
four coefficients, as its determinant is the Gram determinant of Lemma 3.5. Hence, it follows
from the Cramer formula that these coefficients are in K. Hence ρ takes values in SL2(K).

To conclude with the proof of Theorem 1.5 in this case, we need to check that the system (S)
above has solutions inK. This is the content of next lemma where we have set x = TrA, y = TrB
and z = TrAB. Recall from trace formulas that in this notation Tr[A,B] = x2+y2+z2−xyz−2 6=
2.

Lemma 3.6. Let x, y, z be in K such that x2 + y2 + z2 − xyz 6= 4. Then there exists a solution
(a, b, c, d) ∈ K4 to the system

a+ d = y, b− c+ dx = z, ad− bc = 1.

Proof. Eliminating d and c from the first two equations we get a2+b2−abx−ay+b(yx−z)+1 = 0.
We complete the square by setting a′ = a− bx/2− y/2 to get

a′2 + b2(1− x2/4) + b(xy/2− z) + 1− y2/4 = 0.

If x = ±2, we can easy solve the equation in b unless z = ±y, but this is forbidden by our
assumptions. Hence, we factorize 1−x2/4 and complete the square in b to get a′2+(1−x2/4)b′2 =
x2+y2+z2−xyz−4

4−x2 . We can conclude from the following nice exercise: in K, any equation of the

form ax2 + by2 = 1 for a, b ∈ K r {0} has a solution (hint: any non-zero element of K has the
form x2 or tx2). �

Now suppose finally that ρ is reducible. This implies that ρ has the same character than a
diagonal representation in SL2(K), so we will suppose that ρ is diagonal. So ρ factors through the
abelianization of Γ. If f(γ) = ±2 for all γ ∈ Γ then we may as well take ρ to be the corresponding
representation in {±Id}. Thus, let us assume there exists γ0 such that f(γ0) 6= ±2. Again, we
may consider a vector v ∈ SL2(K) which is not an eigenvector of ρ(γ0) and conjugate ρ into the

basis (v, ρ(γ0)v), by some element g ∈ SL2(K). This yields gρ(γ0)g−1 =

(
0 −1
1 f(γ0)

)
, and, for

all γ ∈ Γ, gρ(γ)g−1 =

(
x y
−y x− yf(γ0)

)
, as ρ(γ) and ρ(γ0) commute. Now, the equations

f(γ) = Tr ρ(γ) and f(γ0γ) = Tr(ρ(γ0)ρ(γ)) yield the system{
2x − f(γ0)y = f(γ)

f(γ0)x + (2− f(γ0)2)y = f(γ0γ)

whose determinant equals 4 − f(γ0)2, which is nonzero by hypothesis. Hence, again by the
Cramer formula, x and y lie in K, in other words, gρg−1 takes values in SL2(K) once again.
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3.6. Smoothness. Let us begin by recalling some basics of algebraic geometry. The dimension
of a (Zariski) open set U ⊂ X(Γ) is the maximal length of a chain of irreducible closed subsets
Z0 ( Z1 · · · ( Zn ⊂ U . The dimension of X(Γ) at the trivial character χ is by definition

dimχX(Γ) = inf{dimU, χ ∈ U ⊂ X(Γ)}.
It is known that dimχX(Γ) 6 dimTχX(Γ), and X(Γ) is said to be smooth at χ if the equality
holds. The meaning of this smoothness condition is that there are no obstructions to interpolate
any Zariski-tangent vector by an actual deformation of the character, as we recall now.

Let m ⊂ A(Γ)SL2(C) be the maximal ideal corresponding to χ. The smoothness of X(Γ) at

χ is equivalent to the regularity of the localisation of A(Γ)SL2(C) at m that we denote by R,

see [14, Chap. 4.2]. This property implies that the completion R̂ ofR with respect to the filtration
by powers of m is an algebra of power series in dimm/m2 variables (see [14, Proposition 2.27]).

Suppose that X(Γ) is smooth at χ. Any tangent vector f1 ∈ TχX(Γ) = P(Γ) can be viewed

as a map f1 : A(Γ)SL2(C) → C[t]/t2 mapping uγ to tf1. This map extends to the localisation R

and maps m2 to 0. As R̂ is an algebra of power series, it is easy to extend the map f1 to a full
series f =

∑
i>1 t

ifi as in the following diagram:

R
f1 //� _

��

C[t]/t2

R̂
f // C[[t]].

OO

The existence of f shows that there are no obstructions for any tangent vector f1.

Proposition 3.7. Let Γ be a finitely generated group and set n = dimH1(Γ,C). If n < 2 then
X(Γ) is smooth at the trivial character if n > 2, it is not.

Proof. If n = 0 then we computed that P(Γ) = 0. This proves that the trivial character is
an isolated (and smooth) point of X(Γ). If n = 1 then dimP(Γ) = 1. Moreover, there is a
surjection Γ→ Z which induces an injection X(Z)→ X(Γ). The variety X(Z) is isomorphic to
C (map [ρ] to Tr ρ(1)) hence is 1-dimensional and contains the trivial character. It follows that
dimχX(Γ) > 1 and again X(Γ) is smooth at χ.

Suppose now that n > 3. Any non-degenerate quadratic form q ∈ Q(Γ) is a tangent vector
at χ. If X(Γ) is smooth at χ, it cannot be obstructed, but it follows from Theorem 1.4 that q
must have rank 6 2 and we get a contradiction. �

The remaining case where dimH1(Γ,C) = 2 appears to be more subtle, and we will prove
that the trivial character is smooth provided that H2(Γ,C) = 0. Before doing so, let us observe
that Theorem 1.6 already proves this statement under slightly stronger hypothesis.

Lemma 3.8. Suppose H1(Γ,Z) ' Z2 and H2(Γ,Z) = 0. Then X(Γ) is smooth at the trivial
character.

Proof. We may choose a morphism φ : F2 → Γ that induces an isomorphism of the abelianiza-
tions. Then φ satisfies the hypothesis of Theorem 1.6. Now, it is classical that X(F2) ' C3 is
smooth at the trivial character; it follows that all Zariski-tangent vectors to the trivial character
in X(Γ,SL2(C)) are unobstructed, and hence, this is a smooth point. �

For example, if H1(Γ,Z) ' Z2 and Γ admits a finite presentation with two more generators
than relations (such a presentation is said to be of deficiency two), then we may check that
H2(Γ,Z) = 0, following the comments after Lemma 2.6 above. This also follows from the



16 JULIEN MARCHÉ AND MAXIME WOLFF

Epstein inequality, which states that the minimal number of generators of H2(Γ,Z) is less than
the rank of H1(Γ,C) minus the deficiency of Γ, see [9]. This gives many examples of groups with
smooth trival character, as an application of Theorem 1.6.

Now we will extend this result to homology with complex coefficients. To this end let us start
with the observation that smoothness can be read in the representation variety.

Lemma 3.9. Let Γ be a group such that dimH1(Γ,C) = 2. Then, X(Γ) is smooth at the trivial
character if and only if R(Γ) is smooth at the trivial representation.

Proof. As dimH1(Γ,C) = 2, we have Λ3H1(Γ,C) = 0, hence E(Γ) = 0. It follows that P(Γ) =
Q(Γ) has dimension 3. Also, H1(Γ, sl2(C)) i.e., the Zariski-tangent space of R(Γ) at the trivial
representation has dimension 6. Therefore, the statement of the lemma would follow if the
following inequality holds if we specialise the representation ρ to the trivial representation.

(16) dim[ρ]X(Γ) = dimρR(Γ)− 3.

This equality does not hold in general, but it does hold for an irreducible representation ρ as,
restricted to this open set, the quotient map is a “geometric quotient”, i.e., each fiber consists in
a single orbit of maximal dimension. In that case, the quotient map is flat because it is a locally
trivial PSL2(C)-principal bundle (see [17, Proposition 0.9]) and the equality (16) follows from
general properties of flat morphisms (see e.g. [14, Theorem 3.12]). Observe that one can prove
it directly by constructing local cross-sections of the quotient map in the spirit of Section 3.5.

Observe also that the space of reducible characters of Γ is isomorphic to X(Z2) hence has
dimension 2. Its preimage in R(Γ) has dimension at most 5. Suppose that R(Γ) is smooth
at the trivial representation. It follows that every neighbourhood of the trivial representation
contains an irreducible representation, at which R(Γ) still has dimension 6, and for which the
equality (16) holds. As the dimension is upper semi-continuous, the local dimension of X(Γ) at
the trivial character is at least 3. The converse holds for the same reason. �

We deduce some concrete criteria for the smoothness of the trivial character in this case.

Proposition 3.10. Let Γ be a group such that dimH1(Γ,C) = 2. If one of the following
conditions holds, then X(Γ) is smooth at the trivial character.

(1) H2(Γ,C) = 0.
(2) Γ admits a finite presentation with deficiency 2.
(3) There exists a surjection Γ→ F2.

Condition (2) holds, for example, for the fundamental group of a non-orientable surface of
genus 3. Condition (3) holds for the fundamental group Γ = π1(S3rL) of a homology boundary
link L ⊂ S3 with two components.

Proof. By Lemma 3.9 above, it suffices to prove that the trivial representation is a smooth point
of R(Γ). The first case is a standard result of deformation theory for which we refer to [18]. Let
us give a rough idea: following [25], a tangent vector to the trivial representation is a cocycle,
in our case, a morphism z1 : Γ → sl2(C). The space R(Γ) is smooth at 1 provided that any z1

gives rise to a morphism ρ = exp(
∑

n>1 t
nzn) : Γ → SL2(C[[t]]). One can prove its existence

recursively by constructing zn : Γ→ sl2(C) from the data of zk for k < n. Indeed, the equation
ρ(γδ) = ρ(γ)ρ(δ) at the order n can be written

zn(γδ)− zn(γ)− zn(δ) = Fn(γ, δ)

where Fn is a linear combination of iterated brackets of zk(γ) and zk(δ) for k < n. It may be
checked that Fn is a 2-cocycle (see [18]), hence this equation has a solution as it can be written
dzn = Fn. This proves our assumption.
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In the second case, the remark following Lemma 2.6 shows thatH2(Γ,Z) = 0 henceH2(Γ,C) =
0 and we are done. Let us mention however that in this case the smoothness of R(Γ) at
1 is much easier to prove directly from the implicit function theorem: a presentation Γ =
〈a1, . . . , an | r1, . . . , rn−2〉 gives an embedding of R(Γ) into SL2(C)n which is smooth at the trivial
representation. The reason is that (r1, . . . , rn−2) is a submersion at (1, . . . , 1) as r1, . . . , rn−2 are
linearly independent in the abelian group generated by a1, . . . , an.

In the third case, the surjection gives an inclusion R(F2) ⊂ R(Γ). As R(F2) = SL2(C)2 has
dimension 6, the conclusion follows. �

Although Proposition 3.10 covers many cases, it is not a closed statement. Let us observe that
its second condition gives a concrete strategy as one can always extract from a presentation of a
group Γ a presentation with deficiency two of a group Γ′ that surjects on Γ; then X(Γ) ⊂ X(Γ′)
is smooth at the trivial character if and only if the extra relations in Γ are superfluous in a
neighbourhood of the trivial character.

A simple example is the group Γ = 〈a, b, c, d | c3, d3, (cd)3〉, the free product of F2 with the
triangular group (3, 3, 3). Indeed, close to the identity in SL2(C), the equation w3 = 1 as the
unique solution w = 1. Hence the last relation is (locally) superfluous. Let us conclude with the
following more sophisticated example where the extra relations are globally superfluous.

Remark 3.1. Set Γ′ = 〈a, b, c, d | c4[a, b]2, d3[a, b]3〉 and set

Γ = 〈a, b, c, d | c4[a, b]2, d3[a, b]3, [[c, [a, b]], [d, [a, b]]]〉.

Let ϕ : Γ′ → Γ be the most obvious morphism, mapping a, b, c, d to a, b, c, d respectively. Then,
the associated map ϕ∗ : X(Γ)→ X(Γ′) is an isomorphism. However, ϕ is not an isomorphism.

Proof. This amounts to saying that any representation of Γ′ in SL2(C) factors through Γ. The key
property is that, whenever A,B ∈ SL2(C) are two roots of a common non-central element (i.e., if
∃C 6= ±1, and n,m such that An = Bm = C), then A and B commute. Let A,B,C,D ∈ SL2(C)
be the respective images of a, b, c, d by any morphism Γ′ → SL2(C). If [A,B] = ±1 then
[[C, [A,B]], [D, [A,B]]] = 1, obviously. If [A,B] 6= ±1, then [A,B]2 and [A,B]3 cannot be both
equal to ±1. If, say, [A,B]2 6= ±1, then C−1 and [A,B] are both roots of this nontrivial element,
hence they commute, and we have again [[C, [A,B]], [D, [A,B]]] = 1.

We still have to check that ϕ is not an isomorphism. For this, it suffices to construct a
morphism Γ′ → S6 which does not kill [[c, [a, b]], [d, [a, b]]]. One such example ψ is defined as
follows: ψ(a) = (1 2 3), ψ(b) = (1 4)(2 5)(3 6), ψ(c) = (1 6 3 5 2 4) and ψ(d) = (2 3 4). �
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anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.
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