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Abstract

For each oriented surface ¥ of genus g we study a limit of quantum representations of the
mapping class group arising in TQFT derived from the Kauffman bracket. We determine that
these representations converge in the Fell topology to the representation of the mapping class
group on H(X), the space of regular functions on the SL(2,C)-representation variety with
its hermitian structure coming from the symplectic structure of the SU(2)-representation
variety. As a corollary, we give a new proof of the asymptotic faithfulness of quantum
representations.

1 Introduction

A topological quantum field theory in dimension 241 is an algebraic structure very close to
topology: roughly speaking, it associates to each surface a finite dimensional vector space and
to each cobordism a linear map between the vector spaces associated to the boundaries. Such
theories have physical origins: they were introduced by Witten [Wit89] in the eighties from
Chern-Simons actions and generated very rich mathematical developments. There are various
rigorous constructions coming from geometric quantization, quantum groups and many other
areas. Unfortunately, such constructions remain complicated and it is hard to make concrete
computations.

In this paper, we preferred the approach of [BHMV95] which defines TQFTs in a purely
combinatorial way: using skein theory and the Kauffman bracket, the authors defined a family
of hermitian TQFTs (V}, (-,-)p) corresponding for p = 2r to the SU(2)-theory at level r — 2.
Despite the simple and very beautiful structure of these combinatorial TQFTs, the connection
with geometry is less clear than from other approaches. In this article, we show that some
connections can be found in a simple and direct way. From the axioms, a TQFT generates
for any closed surface ¥ a family of representations of the extended mapping class group of 3,
a central extension of the mapping class group by Z coming from pi-structures (see [MR95]).
In some sense, these representations carry the main topological meaning of TQFTs. Hence we
would like to link them with some geometrical representation. The basic idea for this comes
from a general belief that when p goes to infinity, things become classical, by which we mean
geometrical. This belief is based on the so-called semi-classical approximation. Hence we propose
to study the limit of p,, the quantum representations of I'; on V,,(X) .

For this purpose, let us describe two classical spaces on which the mapping class group acts.

Fix a closed oriented surface 3 of genus g. We call multicurve an isotopy class of 1-dimensional
submanifold of ¥ without component bounding a disc (the empty set is also considered as a
multicurve). The mapping class group of I'; acts on the set of multicurves in a natural way.
Call C(X) the C-vector space generated by multicurves: we obtain a representation of I'y on
C(X). This fundamental representation carries almost all information about the structure of I',.



For instance, no non-trivial element of I'; acts trivially on multicurves, except for the elliptic
and hyperelliptic involutions in genus 1 and 2.

Another very natural space on which the mapping class group acts is hom(71(X), G)/G, the
G-character variety of m1(X) for a fixed Lie group G. Let us denote it by S(X,G). Any element
of the mapping class group of ¥ may be represented as an automorphism of 71 (X): its action on
S(X,G) is then obtained by left composition on hom(71(X), G). In that way, we also obtain an
action of the mapping class group on any space of functions defined on the G-character variety.

We are interested here in the cases G = SU(2) and G = SL(2,C). These spaces have a rich
structure: we will use the natural symplectic structure w on the smooth part of S(X,SU(2))
(see [Gol84]) and the structure of an algebraic variety on S(X,SL(2,C)). We define H(X) as
the ring of regular functions on S(X, SL(2,C)).

Using the natural inclusion of (X, SU(2)) in S(3, SL(2,C)), we can define a hermitian form
on H(X) by the formula

()= [ foav
S(2,5U(2))
Here, dV is the volume form on §(3, SU(2)) induced by the symplectic form w.

The following theorem can be interpreted in terms of Fell topology. For convenience, let us
recall this notion briefly. Let G be a discrete group and py : G — U(V}) a sequence of unitary
representations of G into Vi. One says that this sequence converges to the representation
p: G — U(V) in the Fell topology if for any unit vector v € V and any finite subset S C G
there is a sequence of unit vectors vy € Vi such that for all g € S, the sequence (pi(g)vk, vg)
converges to (p(g)v,v).

We obtain the following result:

Theorem. Let ¥ be a closed oriented surface of genus g. For all even integers p, there is a
I'g-equivariant map ¢, : H(X) — End(V,(X)) such that:

d(g)
(v,w) = lim <g> (op(v), ep(w))p for all v,w € H(X).

p—oo \ p
Here, we have set d(1) =1 and d(g) = 39 — 3 for g > 1. The hermitian form on End(V,(X)) is
defined by (x,y), = Tr(xy*). This implies in particular that the quantum representations p, @ pp,

converge in the Fell topology to p : T'y — U(H(X)), the natural representation coming from the
action of T'y on S(3,SL(2,C)).

As a corollary, we obtain a new proof of the result of [And06] (see also [FWWO02]) about
asymptotic faithfulness of quantum representations.

Corollary. Let ¥ be a closed oriented surface of genus g. For any non-trivial h in I'y which
is not the elliptic (9 = 1) or hyperelliptic (g = 2) involution, there is some even pgy such that
pp(h) #1d for all even p > py.

Proof. One can associate to any curve v on 3 a regular function f, on S(X,SL(2,C)) by the
formula f,(p) = —Trp(y). For a disjoint union of curves, we associate the product of the
functions associated to each component. In this way, we construct a map f from C(X) to H(X).
By a result of [Bul97] and [PS00], the map f is an isomorphism of vector spaces. Therefore, we
can think of a regular function on S(3,SL(2,C)) as a linear combination of multicurves.



Recall that no element of I'y acts trivially on C(X) except the identity and the elliptic and
hyperelliptic involutions in genus 1 and 2. Hence, we can suppose that there is some v in
C(X) ~ H(X) such that w = hv — v is non-zero. This implies that (w,w) is non-zero, because
the form (-,-) is non-degenerate.

In fact, if (w,w) = 0, then the regular function on S(X, SL(2,C)) associated to w satisfies

/ lw|?dV = 0.
S8(%,5U(2))

As w is continuous, it must vanish on S(X, SU(2)). Moreover, as it is holomorphic on the space
S(2,SL(2,C)) and 0 on S(X,SU(2)), it vanishes identically. (See proof of Theorem 1.4.1 in
[Gol04]).

Due to the equality (w,w) = I}Lngo(%)d(g) (ppw, ppw),, we can find even py such that for all

even p > po, ppw # 0. Hence ¢, (hv) # ¢,(v) and p,(h) cannot be the identity. O

1.1 Plan of the proof of the theorem

The heart of the proof is the construction of the map ¢,, which is almost obvious, but is
fundamental. As the space H(X) is isomorphic to C'(X), to define the map ¢, it is sufficient to
construct ¢, (7v) € V,(X) ® V,(X)* for any multicurve ~.

For such a multicurve, we consider the cobordism ¥ x [0, 1] with the multicurve embedded as
vx{3}. The TQFT naturally induces an element Z,(£x[0,1],7) in V,(SLI-%) = V,(X)@V,(X)*.
We call this element ¢, (). We remark that it defines a self-adjoint element of End(V},(X) as the
cobordism ¥ x [0, 1] with the curve 7 inside is isomorphic to the same cobordism with opposite
orientation and exchanged boundaries. This gives our fundamental map ¢,, which is clearly
equivariant because of the naturality of the construction.

To prove the theorem, one has to compute the limit of the expression (%)d(9)<g0p('y), ©p(6))p
for two multicurves v and §.

We do this in two steps. In the first step, we assume that ¢ is empty. Using combinatorial
techniques from [BHMV95], we obtain for (¢, (), 1), an explicit formula ressembling a Riemann
sum. When we normalize it, it converges to an integral over a subspace of R49): we denote its
value by (7). By linearity, we extend (-) to a map from C(X) to C.

In the second step, we use the connection between the TQFT V), and the Kauffman skein

module at A = —e». We find easily that (%)d(9)<g0p(’y),g0p((5))p converges to (v -¢), where -
is the multiplication induced on C(X) by its identification with the Kauffman skein algebra of
¥ x[0,1] at A= —1 (see [PS00]).

On the other hand, it is well-known that this multiplication on C(X) is isomorphic to the
natural multiplication on H(X), the space of regular functions on S(X,SL(2,C)) (see [Bul97,
PS00)).

It remains to identify the linear form on H(X) defined by f, — (7). Suppose that v is a
multicurve. We choose curves C; on ¥ which decompose the surface into pants such that all
components of v are parallel to some C;. It is well known that the maps f; = f¢, form a system
of Poisson commuting functions on S(X, SU(2)).

As shown in [JW94], the maps (f;) : S(%,SU(2)) — RU9) are the moment map for an ac-
tion of a torus of dimension d(g) on a dense open subset of S(X,SU(2)). The authors use



the Duistermaat-Heckman theorem to give an explicit formula for the volume form dV on
S(X,SU(2)). From their result, we deduce the following striking formula:

n=/ frav.
S(=,5U(2))

The theorem follows from this formula.

1.2 Remarks and perspectives

The main motivation for this work came from the article [FK] about the asymptotics of quantum
representations of the mapping class group of the torus. Our approach is different in the sense
that we study the limit of V}, ® V' instead of simply V},. We were also inspired by the ideas
contained in the paper [Fre03] and [Mas03]. Our work is of course related to the article [And06]
where similar ideas appear, and has also some intersection with [BFKBO03].

There are many questions naturally linked to our results:

- How can we link our asymptotic result to the asymptotics considered in [FK]?

- Can we apply our result or some refinements to the problem of [AMU]? The Nielsen-
Thurston classification of the elements of the mapping class group is directly related to
their action on multicurves. As the quantum representations converge to this action, can
we find some trace of this classification in quantum representations at finite level?

- In [BHMV95], one can choose any primitive 4r-root of unity to construct a TQFT. We
have chosen roots converging to —1. Is it possible to develop the same asymptotics for
roots of unity converging to different complex numbers?

- Can we obtain a stronger convergence for the sequence involved in the theorem? For
instance, what is the expansion of this sequence into powers of %?

We would like to thank Gregor Masbaum for his remarks, encouragements and his simplifica-
tion of the proof of lemma 3.3. The results of this article were recovered and generalized to the
SU (n)-case via the theory of Toeplitz operators in a purely geometric framework (see [And06]).

2 Review of TQFT

This part is a quick and formal review of the TQFT constructed in [BHMV95] which we give
to fix notations and settings, and to recall results that will be used in this paper. We refer the
interested reader to the beautiful original paper.

Fix an even integer p = 2r. The complex number A = —e™/?" is a primitive 4r-th root of

unity. One can construct from it a 2+1 topological quantum field theory.

_am _im(2r41)

In the notations of [BHMV95], we set kK = e 2~ 1z and n = \/gsin(g). We define
C, ={0,1,--- ;7 — 2} which will be called the set of colors.

A triple (a, b, ) of elements of C, is called r-admissible if a+b+c is even, the triangle inequality
la —b| < ¢ < a+bis satisfied and moreover we have a + b+ ¢ < 2r — 2.



sin( %L
sin(

$|§!

)) and the quantum factorial by the

Define the quantum integer [j] by the formula [j] =

313

formula [5]! = [T}_, [&].

2.1 The cobordism category

A TQFT is a linear representation of a cobordism category. In our settings, the objects of our
category are oriented surfaces with marked points and pi-structures.

- A marking of a surface ¥ is a finite family (zj,c¢;j)jes where (z;) is a family of distinct
points in ¥ with for all j € J a non zero tangent direction v; at z; on X. For all j € J, ¢;
is a color in C).

- A py-structure is a somewhat complicated object, used to solve the so-called “framing
anomaly”. Consider the map p; : BO — K(Z,4) corresponding to the first Pontryagin
class. Let X be its homotopy fiber, i.e. the set of couples (z,v) € BO x C([0,1], K(Z,4))
satisfying v(0) = *, and v(1) = p1(x). Let E be the universal stable bundle over BO, and
Ex its pull-back over X. A pi-structure on a manifold M is a fiber map from the stable
tangent bundle of M to Fx.

In the notation of an object (X, z, ¢), we do not mention the directions v; and the pi-structure,
although they are present.

We define now morphisms : let (X1, 21,¢1) and (X2, 22, c2) be two objects as defined above. A
morphism is

- An oriented 3-manifold M whose boundary is decomposed as M = —311135, where —%
means Y with opposite orientation.

- A colored banded trivalent graph G embedded in M whose restriction to the boundary is
compatible with the marked points.

- A pi-structure on M extending the pi-structure given on the boundary.

A banded trivalent graph G in M is a 1-3-valent graph contained in an oriented surface
SG C M such that

(i) G meets OM transversally on the set of 1-valent vertices of G noted 0G.

(ii) The surface SG is a regular neighborhood of G in SG, and SG N IM is a regular neigh-
borhood of GNOM in SGNIOM.

A coloring of G is a map o from the set of edges of G to C, such that the colors of the edges
meeting at each vertex are r-admissible. The restriction of a banded graph G C M on OM gives
marked points (z;);es with tangent directions (v;);e.s, whereas the restriction of a coloring gives
colors (¢j)jes-

Two morphisms are called equivalent if the corresponding manifolds are isomorphic, the banded
graphs are isotopic and the pi-structures are homotopic relative to the boundary.



2.2 Main properties of TQFT

The theorem proved in [BHMV95] states that for each integer p, there is a functor (V},, Z,,) from
the precedent cobordism category to the category of finite dimensional C-vector spaces.

This means that to every object (3, z,¢) we can associate a vector space V, (2, z,¢) and to
any morphism (M,G) between two objects a linear map Z,(M,G) between the vector spaces
corresponding to the objects. By convention, V() = C, hence any closed manifold (M, G) acts
as a scalar (M, G), which is a 3-manifold invariant. Moreover, there is natural hermitian form
(-,-)p on V,(X, 2, ¢) such that for any two morphisms (M1, G1) and (M2, G2) from 0 to (X, z, ¢),
we have <Zp(M1, Gl), Zp(Mg, G2)>p = <M1 U (—Mg), G U G2>p.

We give here some important results related to this construction:

Theorem 2.1 (BHMV). Let (X, z,¢) be a surface with marked points and p1-structure. Let H
be a handlebody whose boundary is % and with a pi-structure extending that of . Let G be a
1-8-valent banded graph in H such that OG = z and such that H is a tubular neighborhood of
G. For each coloring o of G compatible with the coloring of the boundary, we denote by u, the
element induced by Z,, in V,(X, 2, c).

Then the elements u, form an orthogonal basis of V,(X,2,c¢), and if G does not contain any
closed loop, we have
(Ug, Ug)p = U#v_#eLU<UU>
[1c(oe)
In this formula, v ranges over the set of vertices of G and e over the set of edges. Moreover,
for any trivalent vertex v, o, is the triple of colors of the edges adjacent to this vertex and for
any monovalent vertex v, o, is the color of the edge incoming to it.

We set () = (~1)7[j + 1] and (a,b,¢) = (~1)@++7 Lt MBBIOY ypere o, 5 and 5 are
defined by the equations a =3+ v, b=a+v,c=a+f.

If G is reduced to a closed loop, then the formula is simply (Ue, ug)p = 1.

Remark 2.2. We check that for our choice of root of unity A and for a surface X without
marked points, the hermitian pairing on V,(X) is positive definite.

2.3 Kauffman Bracket and TQFT

We define K (M) as the usual skein module of any oriented 3-manifold M. We refer to [PS00]
for a complete account, but we will recall here what we need. Let A be some indeterminate.
The Z[A, A~']-module K (M) is the free module generated by isotopy class of banded links in
M including the empty link, (), quotiented by the submodule generated by the local relations of
figure 1.

For any u € C\ {0}, we set K (M, u) = K(M)®z4 4-1]C where A acts on C by multiplication
by u.

The following proposition is a consequence of the construction of the TQFT.

Proposition 2.3 (Proposition 1.9 in [BHMV95]). Let M be an oriented connected 3-manifold
with p-structure and boundary ¥ (without boundary or marked points). Then there is a surjec-
tive map from K(M,—e™/P) to V,(X).

This map is defined by sending the element L ® 1 to Z,(M,L) where L is considered as a
banded link with color 1.
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Figure 1: Kauffman relations

3 Convergence of TQFT

3.1 Settings

Let X be a closed oriented surface of genus g with pi-structure. We denote by I'y the mapping
class group of X. Fix p = 2r.

If b is an element of I'y, we can construct a cobordism C}, from ¥ to itself as ¥ x [0, 1] where
we identify the first boundary component with X using the identity and the second one using h.
If ' is another element of T'y, the cobordisms C}, o Cys and Cjy are diffeomorphic. We should
obtain a representation of I'j on V,(X) by considering the linear map Z,(C}). The problem is
that we have not chosen any pi-structure on C}, and we cannot make a canonical choice.

One way to get rid of this annoying fact is to consider the action of I'y on V,(X) ® V,(X)* =
Vp(3II — X). This action of h on this space is given by Z,(CpII — C}) where we choose any
p1-structure on C}, and put the same one on —C),. The action does not depend any more on the
pi1-structure: in fact, if we change the pi-structure in a cobordism M, the linear map Z,(M)
is changed by a multiple of k, a root of unity. When we take the dual, the root becomes its
conjugate. Hence, the two “anomalies” cancel and we get a true representation of I'y.

We thus obtain a sequence of representations (V,,(X) @ Vj,(2)*, Z, ® Z;) of I'y, and want to
find their limit in some sense. The problem is that the spaces on which the mapping class group
acts are a priori completely different. We need a way to compare them which is suggested by
Proposition 2.3.

Given a multicurve v in X, one can give it a banded structure by taking a neighborhood of it
in ¥. We can consider the curve 7 as a banded link in ¥ x [0, 1] by sending it to v x {1/2}. We
use the same notation for the multicurve on 3 and its associated banded link in ¥ x [0, 1].

In [PS00], it is shown that the Kauffman skein module K (X x [0, 1]) is a free Z[A, A~!]-module
with basis the isotopy classes of multicurves. It provides an isomorphism of vector spaces between
C(X) and K (X x [0,1],u) for any w in C\ {0}. In particular, using Proposition 2.3, we get a
surjective map

0 C(X) S K(Z x [0,1],—€™/P) — V(311 — %).

Theorem 3.1. Let 3 be a closed oriented surface of genus g. There is a hermitian pairing (-, -)
on C(X) such that for all x and y in C(X), the following holds, where d(1) =1 and d(g) = 3g—3
for g > 1.
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Figure 2: Action of a curve in TQFT

3.2 The trace function

Definition 3.2. Let ¥ be a closed oriented surface of genus g and v be a multicurve on X.
We set Trp(v) = (X x S1,v),. Here, v is seen as a banded link with color 1 lying in the slice
Y x {1/2} of ¥ x St.

Lemma 3.3. Suppose that a surface X is presented as the boundary of a handlebody H which
retracts on a trivalent banded graph G as in Theorem 2.1. We choose meridian disks D. trans-
verse to each edge of G and define Co = 0D, : the curves C. are disjoint on . We choose a
non-negative integer me for each edge of G.

Then we define v as the multicurve on X obtained by taking m. parallel copies of C¢ for each

edge of G. We have .
Try(y) = ZH [—2 cos <@>] .

Here o ranges over r-admissible colorings of G and e ranges over edges of G.

Proof. The proof is an easy consequence of the following fact from skein theory: a trivial curve
colored with 1 and making a Hopf link with a curve colored with j may be removed and replaced
by a factor —A2/ 12— A=272 = 2 cos((H—l)W). We refer for instance to Lemma 3.2 of [BHMV92].

T
We use the general trace formula of TQFT, see for instance formula 1.2 in [BHMV95]: let M
be a cobordism from X to 3 and I' be a colored banded graph in M. Let My be the closed
manifold obtained from M by identifying the two copies of ¥. Then, (Mx,I"), = Tr Z,(M,T).

Consider the basis u, = Z,(H, G,) of V,(X) involved in Theorem 2.1. For each curve C¢, the
cobordism (X x [0,1],C,) acts on u, by multiplication with —2 cos(we%l)ﬁ)

in figure 2.

, as it is suggested
Then the cobordism (3 x [0, 1],) acts on u, by multiplication with [], (—2 cos(@))me

The formula for Tr, () comes now from the trace formula of TQFT.

3.3 Limit of the trace function

As before, fix a surface 3 presented as in Theorem 2.1 as the boundary of a handlebody H
which retracts on a trivalent banded graph G.



The number of edges of G is 3¢ —3if g > 1 or 1 if g = 1. We denote this number by d(g) and
consider the subset U, of R¥9) consisting of all maps 7 from the set of edges of G' to [0, 1] such
that for all triples of incoming edges (e, f, g) of some vertex, the following relations are satisfied:

sy ST < T4

- Tet TP+ TE <2

We use the formula of Lemma 3.3 to deduce the asymptotics of the trace function.

Lemma 3.4. With the same hypothesis as in Lemma 3.3, let I, : Uy — R be the map defined
by F, (1) = [[.(=2cos(7em)) ™. Then the following formula holds:

lim (g)d(g) Tr,(y) = 29749) / F,(7)dr.

r—oo'p U,

Proof. The formula for Try(y) looks like a Riemann sum, hence the result should not be a
surprise. To obtain the precise result, we have to decompose U, into small pieces parametrized
by r-admissible colorings o.

Given a positive integer r and any coloring o from the set of edges of G to C., we define the
following set A%, = [T [2¢, 2etL) C R¥9). As o runs over r-admissible colorings of G, these sets
do not cover U, because of the parity condition. We have to pack some sets A, together, which

we do in the following way.

We denote by C'(G,Zs) the Za-vector space of 1-cochains of G with Zg coefficients. The
subspace of 1-cycles will be denoted by Z1(G,Z2). Choose a subspace S of C(G,Zz) such that
C1(G,Zs) = S® Z1(G,Z2). The subspace S has dimension d(g) — g. For an admissible coloring
o of G, we define By = J cg Ay, Here we have identified Z/2Z with the set {0,1}. The sets
B are disjoint and almost cover U,.

Let us prove that they are disjoint. Suppose we have o + p = ¢’ + p’ with ¢ and ¢’ admissible
and p, p’ in S, then consider these maps modulo 2. If we apply the boundary map, the admissible
colorings vanish by definition, and we have dp = dp’. But 9 induces a bijection from S onto its
image, hence we have p = p/, and it follows that 0 = ¢’. Hence the sets B}, are actually disjoint.

Moreover the measure of B, is %. It follows that > Fw("ejl)%;(d g()g ) converges to
o,r—admissible
Jo7. Fy(T)dr and the result is proved. O
g

3.4 Proof of the Theorem 3.1

Let ¥ be a closed oriented surface of genus g. We recall that C'(X) and K (X x [0,1],u) are
isomorphic as vector spaces for any u in C\ {0}. The stacking product induces on K (3 x [0,1])
a natural algebra structure which induces an algebra structure on C(X) for each u € C\ {0}.
We consider the algebra structure obtained for u = —1.

Fix v and ¢, two multicurves on 3. We aim to compute the limit of the sequence (%)d(g) (ep(7), 0p(0))p
as p goes to infinity. The right hand side is the quantum invariant of two thickened surfaces
> with a multicurve inside, glued along their boundary. Instead of gluing the two boundaries
simultaneously, we glue one and then the other. If we glue one boundary component, we obtain
the stacking product of v and §. In the skein module for generic A, we have a decomposition



v -6 =Y, ¢i¢; for some multicurves ¢; and some Laurent polynomials ¢; in Z[A4, A~!]. When
evaluating this combination in V,(XII — X), we have to specialize A to —e%. In formulas, we

have ¢, (v-0) = >, ci(—e%)gop(gi). Then, we glue together the remaining boundary components

and obtain (pp(7),p(9))p = 22, ci(—e? ) Try(Gi).
The asymptotic formula becomes clear if we define the following linear form on C'(%):

Definition 3.5. Let v be a multicurve on X. Then there is a pants decomposition associated
to vy such that all components of v are parallel copies of the boundary circles. We define () =
29—d(9) ng F,(t)dr where F, (1) = [[.(=2cos(rem)) ™. The expression of () as a limit shows
that this definition does not depend on the pants decomposition. We extend (-) to a linear form

on C(X).

Coming back to our computation, we obtain: lim (%)d(9)<g0p(’y),g0p(5)>p =Y c(=1)(G) =
p—00

(vd). Finally, we define an hermitian form on C(X) by the formula (x,y) = (zy) where the
product corresponds to the skein module product for A = —1, and the conjugation corresponds
to conjugation of coefficients in C'(X). We have proven the following result:

For all z,y € C(X), we have (z,y) = ]}LI%O(%)d(g) (ep(x), 0p(Y))p-

4 Geometric interpretation

The heart of the following geometric interpretation is the theorem of [Bul97] and [PS00] stating
that the algebra K (X x [0,1],—1) is isomorphic to H(X), the ring of regular functions on the
SL(2,C)-character variety of ¥. Recall that the isomorphism is given by f,(p) = —Tr(p(7))
when  is a connected curve on ¥ and p : m1(X) — SL(2,C) is a representation of 71 (X%).

This identifies C'(X) with its algebra structure. It remains to identify the linear form (-) of
definition 3.5.

Recall that the SL(2,C)-character variety contains the SU(2)-character variety, which carries
a natural symplectic form w defined in [AB83, Gol84]. Following [JW94], we define S, to be the
moduli space of irreducible representations of 71(X) on SU(2) and S, the moduli space of all
representations. Then it is known that S, is a smooth 2d(g) manifold with symplectic form w
obtained by symplectic reduction from the form @(a,b) = ﬁ Js Tr(anb) for a,b € Q'(, su(2)).

w(9)

We denote the volume form on Sy by dV = T

Proposition 4.1. For all multicurves v on X, we have
= [ v
Sg

Proof. We give a proof of this proposition by adapting the results of [JW94].

Fix a pants decomposition of > associated to v and denote the set of curves bounding the
pants by C.. We define the functions h. on S, with values in [0, 1] by the formula Tr p(C.) =
2 cos(mhe(p)).

Where the functions h, are not equal to 0 or 1, they Poisson commute and their Hamiltonian
flows define a torus action on §,. In fact, we have the following theorem:
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Theorem 4.2 ([JW94]). Let U™ be the interior of U, in RU9) and h = (hy, ... shagg)) =+ Sg —
RY9) be the collection of the h. functions.

For z in S, such that h(z) = y € US™, the torus action identifies h~'(y) with U(1)%9) /73972,
where an element (e,) € 23972 acts on U(1)%9) by the formula e?™e — (—1)vFew 27T yhere
v and v' are the indices of the pants bounding Cl.

If we choose a Lagrangian submanifold L of gg transverse to the fibres of the torus action and
which h maps diffeomorphically onto V- C UJ™", then we can define canonical coordinates on
h=Y(V) by setting 2¢ =0 on L and ye = he.

The volume form is given on h=1(V') by [ dye [] dze.

We come back to the integral of the function associated to v on the moduli space S,. Recall
that v was adapted to the pants decomposition. This means that ~ is the union of parallel
curves C, with multiplicity m.. The function f, is then defined by f(p) = [[.(— Tr p(Ce))™e =
[[.(=2cos(mhe(p)))™ = F,(h), where F, is the function of Lemma 3.4.

As this function only depends on the values of h, we can perform the integration on its fiber
first. The fiber is isomorphic to U(1)%9) / Zgg ~2. Hence U(1)9 is a Riemannian covering over
the fiber and has volume equal to 1. To find the volume of the fiber, it is then sufficient to
find the degree of this covering. Let G be the graph associated to the pants decomposition.
The degree of the covering is equal to the dimension of the Zg-subspace of C'(G, Zy) generated
by the family of vectors u, = e, + e, + €. for each pant v bounding circles a,b and c¢. This
subspace is the image of the coboundary map d : C°(G,Zy) — CY(G,Z3). Its dimension is
then complementary to the dimension of H!(G,Zs) which is g. We find that the dimension is
d(g) — g, hence the covering has degree 24(9)=9 and the volume of the fiber is 29-(9),

We finally obtain |, s, AV = 29-d(9) ng F,(7)dr = (7), which completes the proof.
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