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Abstract: This article is devoted to the Toeplitz Operators [4] in the context
of the geometric quantization [11], [15]. We propose an ansatz for their Schwartz
kernel. From this, we deduce the main known properties of the principal sym-
bol of these operators and obtain new results : we define their covariant and
contravariant symbols, which are full symbol, and compute the product of these
symbols in terms of the Kähler metric. This gives canonical star products on
the Kählerian manifolds. This ansatz is also useful to introduce the notion of
microsupport.

1. Introduction

Let M be a compact Kähler manifold with fundamental 2-form ω ∈ Ω2(M,R).
Assume that there exists an Hermitian line bundle L → M with a covariant
derivation ∇ of curvature 1

i
ω. M and L are the data of geometric quantization

introduced by Kostant [11] and Souriau [15] : the symplectic manifold (M,ω) is
the classical phase space and the space H consisting of the holomorphic sections
of L is the quantum space. The set of classical observables is the Poisson algebra
C∞(M). The quantum observables are the linear operators of H.

To relate the classical and quantum observables, Berezin introduced in [2]
the notions of covariant symbol and contravariant symbol. To describe this,
introduce the space L2(M,L) which consists of the sections of L → M with
finite L2 norm, endowed with the scalar product

(s1, s2) =

∫

M

h(s1, s2) µM

where h is the Hermitian metric and µM is the Liouville measure 1
n!

∣

∣ω∧n
∣

∣. Since

M is compact, H is finite dimensional subspace of L2(M,L). Denote by Π the
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orthogonal projector of L2(M,L) onto H. From now on, we identify a quantum
observable T with the bounded operator of L2(M,L) which vanishes on H⊥

and which restricts on H to T . So the quantum observables are the operators
T : L2(M,L)→ L2(M,L) such that ΠTΠ = T .

A contravariant symbol is a function f ∈ C∞(M) to which we associate the
operator ΠMfΠ , where Mf : L2(M,L)→ L2(M,L) is the multiplication by f .

f
contravariant
−−−−−−−−−→ ΠMfΠ

On the covariant side, we start from a quantum observable T . We denote by
T (xl, xr) its Schwartz kernel. It is the section of L� L−1 →M2 such that

(Ts)(xl) =

∫

M

T (xl, xr).s(xr) µM

Since L⊗L−1 ' C, T (xl, xr) restricts on the diagonal to a function. Assume that
Π(x, x) does not vanish. The covariant symbol of T is f(x) = T (x, x)/Π(x, x).

T (x, x)

Π(x, x)

covariant
←−−−−−−− T

It is natural to ask if one can find products on C∞(M) corresponding to the
product of the operators. Using the covariant symbol, Moreno and Ortega [13]
defined star products on the projective space CP and the Poincaré disc. When
M is a coadjoint orbit of a compact Lie group, similar results were obtained by
Cahen, Rawnsley and Gutt [6]. More generally when M is a Kähler manifold,
Bordemann, Meinrenken, Schlichenmaier [3] and Guillemin [9] deduced from the
theory of Toeplitz operators of Boutet de Monvel and Guillemin [4] that the
product of contravariant symbol is a star product.

These results involves the semi-classical limit defined in the following way.
For every positive integer k, we replace in the previous constructions the line
bundle L by Lk. We obtain a sequence of Hilbert spaces Hk. The semi-classical
limit is k → ∞. Furthermore, we restrict our attention to a family of quantum
observables called Toeplitz operators. By definition, a Toeplitz operator is a
sequence (Tk) such that for every k,

Tk : L2(M,Lk)→ L2(M,Lk), Tk = ΠkMf(.,k)Πk +Rk (1)

where

– f(., k) is a sequence of C∞(M) which admits an asymptotic expansion of the
form

∑∞
`=0 k

−`f` for the C∞ topology with f0, f1,.. C
∞ functions.

– (Rk) is a negligible operator, that is ΠkRkΠk = Rk and its uniform norm
||Rk|| is O(k−∞).

The interest to consider these operators is that the contravariant map of Berezin
leads to a bijection between C∞(M)[[~]] and the set T of the Toeplitz operators
modulo the negligible operators.
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Theorem 1 ([3], [9]). The product of two Toeplitz operators is a Toeplitz op-
erator, so T is an algebra. The contravariant symbol map

σcont : T → C∞(M)[[~]]

which sends the operator (Tk) defined by (1) into
∑

` ~`f` is well-defined. It is
onto and its kernel is the set of negligible Toeplitz operators. Furthermore, if
σcont(Tk) = f0 +O(~) and σcont(Uk) = g0 +O(~), then

σcont(TkUk) = f0.g0 +O(~),

σcont(TkUk − UkTk) =
~

i
{f0, g0}+O(~2),

||Tk|| = O(k−N ) iff σcont(Tk) = O(~N ),

||Tk|| ∼ Sup |f0| if f0 6= 0.

The principal symbol of a Toeplitz operator (Tk) is the function f0 such that
σcont(Tk) = f0 +O(~). Observe that the map σcont is a full symbol in the sense
that σcont(Tk) = 0 if and only if ||Tk|| = O(k−∞).

Our main result is an ansatz for the Schwartz kernel of a Toeplitz operator.

Theorem 2. Let E be a section of L�L−1 such that E(x, x) = 1, |E(xl, xr)| < 1
if xl 6= xr and

∇∂
z̄i

l

E(xl, xr) = ∇∂
zi

r

E(xl, xr) = 0 +O(|xr − xl|
∞)

for any complex coordinates system (zi) of M . If (Tk) is a Toeplitz operator, its
Schwartz kernel is of the form

Tk(xl, xr) =
( k

2π

)n

Ek(xl, xr)a(xl, xr, k) +Rk(xl, xr) (2)

where
(

a(., k)
)

k
is a sequence of C∞(M2) which admits an asymptotic expansion

∑∞
`=0 k

−`a` for the C∞ topology whose coefficients satisfy

∂
z̄

j

l

.a`(xl, xr) = ∂
z

j
r
.a`(xl, xr) = 0 +O(|xr − xl|

∞)

for any complex coordinates system (zi) of M . (Rk) is negligible, that is Rk is
uniformly O(k−∞) and the same holds for its successive covariant derivatives.

Conversely, if (Tk) is a sequence of operators whose Schwartz kernels are given
by (2), then ||ΠkTkΠk − Tk|| = O(k−∞) and (ΠkTkΠk) is a Toeplitz operator.

For the projector (Πk), this ansatz follows from a theorem of Boutet de Mon-
vel and Sjöstrand about the Szegö kernel of a strictly pseudoconvex domain.
This representation of the Schwartz kernel is actually similar to the representa-
tion of the Schwartz kernel of an ~-pseudodifferential operator as an oscillatory
integral.

From this theorem, we can give a direct proof of theorem 1 and deduce many
other properties of Toeplitz operators : if (Tk) is a Toeplitz operator, the sequence
(Tk(x, x)) admits an asymptotic expansion

Tk(x, x) =
( k

2π

)n ∑

`

k−`a`(x, x) +O(k−∞)
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We set

σ(Tk) =
∑

`

~
`a`(x, x) and σcov(Tk) = σ(Tk).σ(Πk)

−1.

So we obtain three full symbol maps

D D�
ψ̃

D-
ψ

T

σ
�

�
�

�	 ?

σcont σcov

@
@

@
@R

with D = C∞(M)[[~]]

that is σ, σcov and σcont are onto, their kernel is the set O(k−∞) ∩ T of the
negligible Toeplitz operators.

Since T is an algebra whoseO(k−∞)∩T is an ideal, we obtain three associative
products ∗, ∗cov and ∗cont on C∞(M)[[~]]. We prove that these are star products.

Furthermore, the maps ψ̃ and ψ are equivalences of star product. We compute
these products modulo O(~2) : if f and g ∈ C∞(M), then

f ∗ g =f.g + ~
(

Gij(∂zif)(∂z̄jg)− 1
2 r.f.g

)

+O(~2)

Ψ(f) =f + ~Gij∂zi∂z̄jf +O(~2)

f ∗cov g =f.g + ~Gij(∂zif)(∂z̄jg) +O(~2)

f ∗cont g =f.g − ~Gij(∂zif)(∂z̄jg) +O(~2)

where r is the scalar curvature of M , and the functions Gi,j are defined by
Gi,j .Gk,j = δi,k and ω = iGj,kdz

j ∧ dzk.
In fact, we can also compute the remainders O(~2). We prove that the bidif-

ferential operators B` associated to the star product ∗ are of the form

B`(f, g) =
∑

α,β

B̃`α,β
(

[det(Gij)]
−1, Gα′,β′

)

∂βz̄ f.∂
α
z g

if f ∗ g =
∑

~
`B`(f, g), ∀ f, g ∈ C∞(M)

(3)

where the functions Gα,β are the derivatives of the Gi,j and B̃`α,β are polyno-

mials in [det(Gij)]
−1 and Gα′,β′ . These polynomials are universal, that is they

do neither depend on the choice of the complex coordinates system nor on the
Kähler metric. Furthermore these formulas define a canonical star product on
every Kähler manifold, that is on Kähler manifold which are neither necessar-
ily compact and which nor have a prequantization bundle. We prove similar
properties for the star products ∗cov et ∗cont.

These results are connected with a theorem of Lu about the projector Πk.
The unit σ(Πk) of (C∞(M)[[~]], ∗) is not the formal series 1, but a formal series
1∗ =

∑

l ~
lSl, with S0 = 1 and S1 = r

2 , such that

Πk(x, x) =
( k

2π

)n ∑

`

k−`S`(x) +O(k−∞) (4)
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The existence of this asymptotic expansion was proved by Zelditch [17], by using
the result of Boutet de Monvel and Sjöstrand. In [12], Lu computed S0, S1, S2,
S3 and S4 and with his method we can also compute the other coefficients. Since
1∗ is the unit of (C∞(M)[[~]], ∗), we can also compute it from the formulas for
the star product ∗.

In a next article, we will explain how we can generalize the ansatz for the ker-
nel of Toeplitz operators to define Lagrangian sections similar to the Lagrangian
distributions of the theory of ~-pseudodifferential operators. We will deduce from
this the Bohr-Sommerfeld conditions for a Toeplitz operator. To prepare this, we
introduce the notion of microsupport. This is fairly easy, because the quantum
states are defined on the phase space.

The paper is organized as follows. The second section is devoted to introduce
our notations. In the third one, we consider an algebra F , which contains as a
subalgebra the set of the Toeplitz operators. We prove that (Πk) belongs to this
algebra, introduce the full symbol of its operators and compute the product of
the symbols. In the following section, we derive from this the properties of the
Toeplitz operator. Finally we define the notion of microsupport and consider the
functional calculus of Toeplitz operators.

This article is a part of our PHD-thesis [7]. It is self-contained, expect that we
use the essential result of Boutet de Monvel and Sjöstrand on the Szegö kernel
and we apply the stationary phase lemma of Hörmander.

2. Notations

2.1. Geometric objects. First if L → M is a Hermitian fiber bundle, we denote

by h(u, v) the scalar product of u, v ∈ Lx and by |u| = h(u, u)
1
2 the norm of u.

When L is endowed with a connection, we denote by ∇ : C∞(M,L)→ Ω1(M,L)
the covariant derivation. We use the same notation for the induced Hermitian
structure and covariant derivation on Lk →M and Lk � L−k →M ×M .

If D : C∞(M,Lk) → C∞(M,Lk) is a differential operator, we define the
differential operators Dl and Dr by

Dl = D ⊗ Id : C∞(M ×M,Lk � L−k)→ C∞(M ×M,Lk � L−k),

Dr = Id⊗D : C∞(M ×M,Lk � L−k)→ C∞(M ×M,Lk � L−k).

2.2. Negligible terms. First, if (f(, .k))k is a sequence of C∞(X), we say that
(f(., k)) is negligible if for every integers `,N , for every vector fields X1, ..., X`

and for every compact K ⊂ X , there exists C such that
∣

∣(X1...X`.f)(x, k)
∣

∣ 6 Ck−N , ∀x ∈ K.

Consider now a line bundle L→ X endowed with a Hermitian structure. Let
(sk)k be a sequence such that sk ∈ C

∞(M,Lk) for all k. Introduce a covariant
derivation ∇ : C∞(M,L)→ Ω1(M,L). We say that (sk) is negligible if for every
integers `,N , for every vector fields X1, ..., X` and for every compact K ⊂ X ,
there exists C such that

∣

∣∇X1
...∇X`

sk(x)
∣

∣ 6 Ck−N , ∀x ∈ K.
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It is easy to see that this definition depends on the choice of h, but does not
depend of ∇. Locally, if t : U → L is a unitary gauge (i.e. |t(x)| = 1, ∀x ∈ U)
and sk = f(., k)tk on U , the fact that (sk) is negligible means that the sequence
(f(., k)) is negligible.

Let (Tk) be a sequence such that for every k, Tk is an operator C∞(X,Lk)→
C∞(X,Lk) with a smooth Schwartz kernel. Using a density µ ∈ C∞(X, |Ω|(X)),
the kernel Tk(xl, xr) can be viewed as a section of Lk�L−k. We say that (Tk) is
a smoothing operator if (Tk(xl, xr)) is a negligible sequence. This definition does
not depend on the choice of µ.

We will denote by O(k−∞) a negligible sequence of functions or the set of
the negligible sequences of functions. We use the same notation for sequences of
sections or for smoothing operators.

2.3. Symbols. A symbol of order N is a sequence of functions (f(., k)) in C∞(X)
which admits an asymptotic expansion

f(., k) =

∞
∑

`=N

k−`f` +O(k−∞)

in the C∞ topology. We denote by SN (X) the set of the symbols of order N
defined on X . We associate to (f(., k)) ∈ S0(X) the formal symbol

∑

` ~`f`.
This defines a map

S0(X)→ C∞(X)[[~]]

By Borel lemma, this map is onto, its kernel is O(k−∞).

2.4. Taylor expansions. We say that a function f ∈ C∞(X) vanishes to order k
along a submanifold Y ⊂ X , if for every differential operator D of order k − 1,

D.f
∣

∣

Y
= 0.

We say that a function f ∈ C∞(X) vanishes to order ∞ along Y , if it vanishes
to order k along Y for every k. We denote by Ik(Y ) the ideal of C∞(M) which
is the set of the functions which vanish to order k along Y . The Taylor series of
f ∈ C∞(M) along Y is the class of f in C∞(M)/I∞(Y ).

Lemma 1. Let X be a submanifold of an open set Ω of Rk. Let d ∈ C∞(Ω,R+)
be a non negative function which vanishes along X to order 2, does not vanishes
outside of X and whose kernel of its Hessian is TxX for all x in X. Let

(

a(., k)
)

be a sequence of C∞(Ω) which has an asymptotic expansion
∑∞

i=0 ai(x)k
−i in

the C0 topology. Let N be a non negative integer. The following assertions are
equivalent.

i. ∀ compact K of Ω, ∃ C such that
∣

∣ e−kd(x)a(x, k)
∣

∣ 6 C k−
N
2 on K.

ii. ai ∈ I
N−2i(X), ∀i such that N > 2i.
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Proof. Let ` be some integer larger than N
2 . We have

∣

∣ a(x, k)−
∑`

i=0 ai(x)k
−i

∣

∣6

CK k−
N
2
−1 on every compact K of Ω. Consequently, i. is equivalent to

∣

∣

∣
e−kd(x)

∑̀

i=0

ai(x)k
−i

∣

∣

∣
6 CK τ−

N
2 . (5)

Moreover, assertion ii. is equivalent to
∣

∣ai(x)
∣

∣6 Cδ(x)
N
2 −i on every compact K

of Ω. The function y → yme−y is bounded on R+. It follows that

∣

∣

∣
e−kδ(x)ai(x)k

−i
∣

∣

∣
6 Cai(x)d(x)

− N
2

+i k−
N
2 .

This prove that ii. implies i.. Conversely, we introduce the set D = {x ∈
Ω / d(x)−1 ∈ N}. Consider an integer j between 1 and ` + 1 and we use the
inequality (5) where x ∈ D and k = j/d(x). We obtain that the function

bj(x) = j`a0(x)d(x)
− N

2 + j`−1a1(x)d(x)
− N

2
+1 + ...+ j0a`(x)d(x)

− N
2

+`

is bounded on K ∩D if K is a compact of Ω. The functions bj(x) are obtained

from the functions aj(x)d(x)
− N

2
+j by a linear equations system of Vandermonde

type. By solving this system, we obtain that aj(x)d(x)
− N

2
+j is bounded onK∩D

if K is a compact of Ω. Using the Taylor expansions of aj and d along X , i.
follows. ut

3. The algebra F

This section is devoted to an algebra of operators defined in the following way.

Definition 1. F is the space of operators
(

Qk : C∞(M,Lk)→ C∞(M,Lk)
)

k>0
,

whose kernel is of the form

Qk(xl, xr) =
( k

2π

)n

Ek(xl, xr) a(xl, xr, k) +O(k−∞) (6)

where

– E satisfies the same assumptions as in theorem 2
– (a(., k)) is a symbol in S0(M2).

Our basic interest in this algebra is that it contains as a subalgebra the set of
Toeplitz operators. In the next section we will derive many properties of the
Toeplitz operators from those of operators of F . The first subsection is devoted
to the section E defined in theorem 2. We prove its existence and give its main
properties. In the following two subsections, we prove that (Πk) is an operator
of F . In the last subsections we define the full symbol of an operator of F , prove
that F is an algebra and compute the product of symbols.
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3.1. The section E. In the following, g denote the Riemannian metric of M
defined by g(X,Y ) = ω(X, JY ).

Proposition 1. There exists a section E of L� L−1 such that

E
∣

∣

diag(M)
= 1

∇Z̄l
E ≡ ∇Zr

E ≡ 0 mod I∞(diag(M))
(7)

for all holomorphic vector field Z of M . This section is unique modulo a section
which vanishes, with all its derivatives, along diag(M). The function

δ = −2 ln |E|

of C∞(M ×M) vanishes, with its first derivatives, along diag(M). If x ∈ M ,
the Hessian at (x, x) of δ is the quadratic form, whose kernel is diag(TxM) and
restriction on TxM × (0) ⊂ TxM × TxM is 1

2g. Furthermore,

∇E ≡ −E ⊗ (∂l + ∂̄r)δ mod I∞(diag(M)). (8)

On a neighborhood of diag(M), we have δ(xl, xr) < 0 if xl 6= xr . By modifying
E outside this neighborhood, we may assume that δ(xl, xr) < 0 if xl 6= xr for
all (xl, xr) ∈M ×M .

Remark 1. Let t : U → L be a holomorphic gauge. Let ρ ∈ C∞(U) be such that
|t| = e−ρ and introduce the unitary gauge s = eρt. Then we will prove that

E = eiψ s⊗ s−1 with ψ(xl, xr) = i(ρ(xl) + ρ(xr)) + ψ̃(xl, xr) (9)

where ψ̃ is such that

ψ̃(x, x) = −2iρ(x) and ∂z̄i
l
ψ̃ ≡ ∂zi

r
ψ̃ ≡ 0 mod I∞(diag(U)). (10)

This local expression will be useful, especially to apply the stationary phase
lemma for the composition of operators. ut

Proof. We introduce the same local data as in the previous remark and look
for a section E verifying (9). Then equations (7) are equivalent to (10). There

is a unique function ψ̃ satisfying (10) modulo I∞(diag(U)). Using the local
uniqueness, we can construct with a partition of unity the global section E
required. We have

δ(xl, xr) = 2ρ(xl) + 2ρ(xr)− iψ̃(xl, xr)− iψ̃(xr , xl) mod I∞(diag(M)).

From ∂zj

l
.ψ̃ ≡ (∂zj

l
+ ∂zj

r
)ψ̃ modulo I∞(diag(U)) it follows that ∂zj

l
δ(x, x) van-

ishes. Similarly we show that the other derivatives of δ vanish along diag(M).
To compute the Hessian of δ, observe that

∂zj

l
∂zk

r
δ
∣

∣

(x,x)
= ∂z̄j

l
∂z̄k

r
δ
∣

∣

(x,x)
=0 ∂zj

l
∂z̄k

l
δ
∣

∣

(x,x)
= ∂zj

r
∂z̄k

r
δ
∣

∣

(x,x)
=Gj,k (11)

with Gj,k = ∂zj∂z̄k (ρ+ ρ̄). Let X and Y be two vectors in TxM .

(X, 0) = (Z,Z) + (Z̄,−Z) with Z = 1
2 (X − iJX) ∈ T 1,0

x M

(Y, 0) = (W̄ , W̄ ) + (W,−W̄ ) with W = 1
2 (Y − iJY ) ∈ T 1,0

x M
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Since the kernel of Hess δ
∣

∣

(x,x)
contains certainly diag TxM , we have

Hess δ
∣

∣

(x,x)

(

(X, 0), (Y, 0)
)

=Hess δ
∣

∣

(x,x)

(

(Z̄,−Z), (W,−W̄ ))

= 1
2iω(W, Z̄) + 1

2iω(Z, W̄ )

using (11) and since ω = i∂∂̄(ρ+ ρ̄) = i
∑

Gj,kdz
j ∧ dz̄k, we have

Hess δ
∣

∣

(x,x)

(

(X, 0), (Y, 0)
)

=1
2g(X,Y ).

By derivating h(E,E) = exp(−δ) we obtain (8). ut

3.2. The Szegö projector. We recall first the result of Boutet de Monvel and
Sjöstrand that we will apply. Let Y be a complex manifold of dimension k + 1.
Let D be a domain of Y with compact C∞ boundary. Let E → ∂D be the
complex subbundle of T (∂D)⊗ C, which consists of the holomorphic vectors of
Y tangent to ∂D. The complex dimension of E is k. Let r : Y → R be a defining
function for the boundary of D, i.e. D = {r 6 0} and r′(y) 6= 0 if y ∈ ∂D.
Assume that D is strictly pseudoconvexe, i.e. the sesquilinear form of E

∣

∣

y

(X,Y )→ 〈∂∂̄r,X ∧ Ȳ 〉 X,Y ∈ E
∣

∣

y

is positive definite at every point y ∈ ∂D. Then the restriction of −i∂r at the
boundary ∂D is a contact form.

Let µ ∈ C∞(∂D, |Ω|(∂D)) be a volume form. Hence L2(∂D) is endowed with
a Hilbertian structure. H is the set of the functions of L2(∂D) satisfying induced
Cauchy-Riemann equations:

H =
{

f ∈ L2(∂D) / Z̄.f = 0, ∀Z ∈ C∞(∂D,E)
}

The Szegö projector Π : L2(∂D) → L2(∂D) is the orthogonal projection onto
H.

Let φ ∈ C∞(Y × Y ) be a function such that

φ(y, y) =
1

i
r(y) and Z̄lφ ≡ Zrφ ≡ 0 mod I∞(diag(Y )) (12)

for all holomorphic vector field Z. Define ϕ ∈ C∞(∂D × ∂D) by ϕ(ul, ur) =
φ(ul, ur). dϕ doesn’t vanish on diag(∂D). dIm ϕ vanishes identically on diag(∂D)
and the Hessian of Im ϕ at (u, u) is negative with kernel diag(Tu∂D). So by
modifying ϕ outside a neighborhood of diag(∂D), we may assume that Im
ϕ(ul, ur) < 0 if ul 6= ur. The map

R
+ × ∂D × ∂D→ C, (τ, ul, ur)→ τϕ(ul, ur)

is a non-degenerate phase function of positive type (cf. [10]) and parametrizes a
positive canonical ideal C. Let F0(C) be the set of the Fourier integral operators
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of order 0 associated with C. It consists of the operators T : C∞(∂D)→ C∞(∂D)
whose Schwartz kernel is the sum of an oscillatory integral and a C∞ function :

T (ul, ur) =

∫

R+

eiτϕ(ul,ur)s(ul, ur, τ)|dτ | + f(ul, ur) (13)

where s is a classical symbol of Sn1,0(∂D×∂D×R
+) which admits an asymptotic

expansion

s(ul, ur, τ) ∼

∞
∑

`=0

τn−`s`(ul, ur).

These operators are continuous L2(P )→ L2(P ).

Theorem 3 (Boutet de Monvel, Sjöstrand [5]). Π is an elliptic Fourier
integral operator of order 0 associated with the canonical ideal C.

To apply this result, we introduce the principal bundle π : P → M with
structural group T = R/2πZ such that Lk ' P ×sk

C, where sk : T → Gl(C) is
the representation defined by sk(θ).v = e−ikθv. Consider the embedding i of the
principal bundle P into L∗ ' P ×s−1

C defined by

i(u) = [u, 1] ∈ P ×t C, ∀ u ∈ P

The covariant derivation∇ induces a connection 1-form α ∈ Ω1(P ). Let Hor1,0 →
P denote the subbundle of TP ⊗C, which consists of the horizontal lifts of holo-
morphic vectors. Let H : L∗ −→ R denote the function sending u ∈ L∗ into |u|2.
The following result is well-known.

Proposition 2. D = {H 6 1} is a strictly pseudoconvex domains of L∗ with
boundary i(P ). The fiber bundle of holomorphic vectors of L∗ tangent to i(P ) is
i∗ Hor1,0. Moreover i∗∂ lnH = iα.

µP = 1
2πn!

∣

∣α∧(dα)∧n
∣

∣ is a volume form. So we obtain a scalar product on L2(P ),

a Szegö projector Π and a subspace H = Im Π ⊂ L2(P ).
Since Lk ' P ×sk

C, we have an identification between sections of Lk and
functions f ∈ C∞(P ) such that R∗

θf = eikθf . If s : M → Lk is associated to
f ∈ C∞(P ), then∇Xs is associated toXhor.f , whereXhor denotes the horizontal
lift of the vector field X . So s is holomorphic if and only if f satisfies induced
Cauchy-Riemann equations. Furthermore, this identification is compatible with
scalar products, that is (s1, s2) = (f1, f2) if s1 and s2 are respectively associated
to f1 and f2. By Fourier decomposition, we obtain

L2(P ) '
k=∞
⊕

k=−∞

L2(M,Lk) and H '
k=∞
⊕

k=0

Hk.

Using the first sum, we associate to a bounded family (Tk)k∈Z of bounded op-
erators of L2(M,Lk) a bounded operator T of L2(P ) which commutes with the
action of T, and conversely. The sequence (Tk)k>0 is called the sequence of pos-
itive Fourier coefficients of T . In particular, the sequence of positive Fourier
coefficients of the Szegö projector Π is the sequence (Πk). In the next section
we will prove the following theorem.
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Theorem 4. The operators of F are the sequences of positive Fourier coeffi-
cients of the Fourier integral operators of F0(C) which commute with the ac-
tion of T. Furthermore if (Tk) is the sequence of positive Fourier coefficients of
T ∈ F0(C), then T is smoothing if and only if (Tk) is smoothing.

Applying the theorem of Boutet de Monvel and Sjöstrand, we obtain the

Corollary 1. The projector (Πk) belongs to F .

3.3. Proof of theorem 4. First, we prove that the section E of L � L−1 deter-
mines a non degenerate phase function of positive type which parametrizes the
canonical ideal C. P × P →M ×M is a T

2-principal bundle and

L� L−1 ' (P × P )×s C,

where s : T
2 → Gl(C) is the representation defined by s(θl, θr).v = ei(θl−θr).v.

In this way the section E is associated to a function Ẽ ∈ C∞(P × P ) such that

R∗
(θl,θr)Ẽ = ei(θl−θr)Ẽ.

E(x, x) = 1 implies Ẽ(u, u) = 1. Let V be the neighborhood of diagP given by

V = {|Ẽ − 1| 6 1
2}. Define the function ϕ = 1

i
ln Ẽ on V .

Lemma 2. The function τϕ(ul, ur) defined on R+×V is a non degenerate phase
function of positive type which parametrizes the canonical ideal C.

Proof. Introduce the same notation as in remark 1. We identify U ×C with L−1

over U , by sending (x, z) into zs−1(x). In the same way, the bundle P over U
can be identified with U × T in such a way that i(x, θ) = eiθs−1(x). Introduce
a complex coordinates system (zj) over U . Recall that eρs−1 is a holomorphic
gauge and let w denote the linear holomorphic coordinate of L−1 such that
w

(

eρs−1
)

= 1. Then H = ww̄eρ+ρ̄ and the embedding i is given by

U × T −→ U × C (z, θ) −→ (z, w = eiθ−ρ).

The function ϕ is given by ϕ = θl − θr + i(ρ(xl) + ρ(xr)) + ψ̃(xl, xr). It extends
to a function φ defined on a neighborhood of diag(L−1) ⊂ L−1 × L−1 by

φ = −i ln(wlw̄r) + ψ̃(xl, xr).

From equations (10) which determine ψ̃, it follows that φ satisfies equations (12),
where the function r is lnH . ut

To prove theorem 4, we will apply the stationary phase lemma to obtain
expression (6) from expression (13). By the previous lemma, the oscillatory
term eiτϕ(ul,ur) becomes Ek(xl, xr). The amplitude s(ul, ur, τ) gives the sym-
bol a(xl, xr, k).

In connection with negligible terms, observe that if T : C∞(P )→ C∞(P ) is a
smoothing operator (i.e. its kernel is C∞) which commutes with the action of T,
then the family (Tk)k∈Z of its Fourier coefficients is smoothing (i.e. the kernels



12 Laurent CHARLES

Tk(xl, xr) are C∞, |Tk(xl, xr)| = O(|k|−∞) as k → ±∞ and the same holds for
their successive covariant derivatives), and conversely.

Proof of theorem 4. Consider an operator T ∈ F0(C) which commutes with the
action of T. Its kernel is of the form

T (ul, ur) =

∫

R+

eiτϕ(ul,ur)s(ul, ur, τ)|dτ | + f(ul, ur)

where ϕ is defined as in lemma 2 and the classical symbol s ∈ Sn1,0 has support

in V × R+ and asymptotic expansion

s(ul, ur, τ) ∼

∞
∑

`=0

τn−`s`(ul, ur). (14)

We compute the Fourier coefficients of T (ul, ur). We may assume f = 0 since
its Fourier coefficients are negligible. Since T commutes with the action of T, its
kernel is T-invariant, i.e. T (Rθ.ul, Rθ.ur) = T (ul, ur). So by averaging, we may
assume that s and the coefficients s` of its asymptotic expansion are T-invariant.
Let Q denote the quotient of P × P by the diagonal action and p : P × P → Q
the associated projection. The push-forward of T (ul, ur) by p : P × P → Q is

p∗T (q) =

∫

R+

eiτϕ̃(q)s̃(q, τ)|dτ |

where s̃ and ϕ̃ are such that p∗s̃ = s and p∗ϕ̃ = ϕ. Furthermore s̃ ∼
∑∞

`=0 τ
n−`s̃`

where the functions s̃` are defined by p∗s̃` = s`. Q is a T-principal bundle with
base M ×M . The action of θ ∈ T is given by

Rθ.p(ul, ur) = p(Rθ.ul, ur).

We have to compute the positive Fourier coefficients of p∗T for this action. We
may assume that P ' U × T 3 (x, θ) and Q ' U × U × T 3 (xl, xr, γ) with
p∗γ = θl − θr. Using the same notation as in the proof of lemma 2, we have
ϕ̃(xl, xr, γ) = γ + ψ(xl, xr). The Fourier coefficients of p∗T are

Ik(xl, xr, γ) = eikγ
∫

T×R+

e−ikθeiτ(θ+Ψ(xl,xr))s̃(xl, xr, θ, τ)|dθ||dτ |.

The support of s̃ is included in p(V )×R+ ⊂ U×U×(−α, α)×R+ with 0 < α < π.
We replace τ by kτ .

Ik(xl, xr, γ) = eikγ
∫

T×R+

e−i|k|φ(θ,τ,xl,xr)s̃(xl, xr , θ, kτ)k|dθ||dτ |

with φ(θ, τ, xl, xr) =

{

θ + τθ + τΨ(xl, xr) if k > 0

−θ − τθ − τΨ(xl, xr) if k < 0

To estimate this as |k| tends to ∞, we follow the method of stationary phase
([10], section 7.7). First observe that if k < 0, the phase φ does not have critical
point, so |Ik(xl, xr, γ)| is uniformly O(|k|−∞) as k → −∞ and the same holds
for its successive derivatives. Consequently, T is a smoothing operator iff the
sequence (Tk) of its positive Fourier coefficients is smoothing.
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Assume now that k > 0. The first step is to restrict the integral at a small
neighborhood of the critical locus of the phase φ by integrating by parts.

(∂τφ = ∂θφ = 0) iff (xl = xr , θ = 0 et τ = 1)

Recall that the imaginary part of ψ(xl, xr) is positive if xl 6= xr . We obtain

Ik(xl, xr, γ) = eikγ
∫

D

e−ikφ(θ,xl,xr,τ)s̃(xl, xr, θ, kτ)k|dθ||dτ | + eikγgk(xl, xr)

where D = (−ε, ε)× (1− ε, 1 + ε) and the semi-norms C0(K) of gk are O(k−∞)
if K is compact. We now apply theorem 7.7.12 of [10]. Observe that φ = ψ +
(∂τφ)(∂θφ). Hence

Ik(xl, xr, γ) =
( k

2π

)n

eik(γ+ψ(xl,xr))a(xl, xr, k) + eikγg′k(xl, xr)

where
(

a(., k)
)

admits an asymptotic expansion
∑`=∞
`=0 k−`a` in the C∞ topology

and the semi-norms C0(K) of g′k are O(k−∞). Actually it follows from theorem
7.7.12 of [10] that Ik has an asymptotic expansion in the C0 topology, but the
coefficients al are C∞ and by Borel process there exists a sequence

(

a(., k)
)

as above. Using the identification between the functions Ik and the sections of
Lk � L−k, we express the kernels of the positive Fourier coefficients of T in the
form

Tk(xl, xr) =
( k

2π

)n

Ek a(xl, xr, k) +Rk(xl, xr) (15)

where |Rk(xl, xr)| is uniformly O(k−∞). We have to improve this, that is to
show that

∣

∣∇X1
...∇X`

Rk
∣

∣ 6 CK,Nk
−N on every compact K and for all N . The

sections ∇X1
...∇X`

Fk are the positive Fourier coefficients of Xhor
1 ...Xhor

` T . We
can estimate them in the same way as the Fourier coefficients of T . Consequently
their norm is O(kN ) on every compact with N sufficiently large. The derivatives
of Eka(., k) satisfy the same estimate, so the same holds for ∇X1

...∇X`
Rk. By

applying lemma 3.2 of [14], we obtain that (Rk) is smoothing.
Conversely, we have to show that for every sequence (ak) of C∞(M×M) which

admits an asymptotic expansion
∑

k−`a` in the C∞ topology, there exists a
symbol s ∈ Sn1,0(P×P×R+) which admits an asymptotic expansion

∑

τ `s` such

that (15) is satisfied. Assume that s0 is locally T2-invariant on a neighborhood
of diagP . We can easily compute (cf theorem 7.7.2 [10]) the first coefficient a0

of the asymptotic expansion. It is such that p̃∗a0 = s0 on a neighborhood of
diag(P ), where p̃ is the projection of P × P onto M ×M . So we can choose the
convenient s0, and by successive iterations the other coefficients sl. Finally we
obtain s by Borel process. ut

3.4. Symbol of the operators of F . Let us define the full symbol of an operator
of F . Let J denote the space C∞(M2)/I∞(diagM) which consists of the Taylor
expansions along diag(M) of the functions in C∞(M2).
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Definition 2. The symbol S(Tk) of an operator (Tk) ∈ F is the formal series

S(Tk) =
∑

~
`[a`] ∈ J [[~]]

where the kernel of (Tk) is given by (6) and the symbol (a(., k)) ∈ S0(M2) has
the asymptotic expansion

∑∞
`=0 k

−`a`(xl, xr).

From lemma 1, we deduce that S(Tk) is well-defined, i.e. it does not depend on
the choice of the section E nor on the choice of the symbol (a(., k)). Furthermore,
Borel process and lemma 1 imply that

Lemma 3. The map S : F → J [[~]] is onto and its kernel is the set of smoothing
operators.

Since M is compact and the kernel Tk(xl, xr) is C∞, Tk is a bounded operator
of L2(M,Lk) for every k. Furthermore the sequence (T ∗

k ) of adjoints belongs to
F and

S(T ∗
k )(xl, xr) = S(Tk)(xr , xl).

For every k, Tk is trace class and we have the asymptotic expansion

TrTk =
( k

2π

)n ∑

`

k−`
∫

M

f`(x, x) µM (x) +O(k−∞) if S(Tk) =
∑

`

~
`f`.

3.5. Symbolic calculus. We discuss now the composition of the operators of F .
We will prove that the product of two operators of F belongs to F . The set of
smoothing operators is an ideal of F , so that S induced a product in J [[~]]. We
will also compute this product.

Let us introduce some notations. Let (zi) be a complex coordinates system
defined on an open set U of M . Using these coordinates the Taylor expansion
along the diagonal of a function f ∈ C∞(U2) can be seen as a formal series of
C∞(U)[[Z̄l, Zr]].

Lemma 4. The map D2 : C∞(U2)→ C∞(U)[[Z̄l, Zr]] defined by

[D2f ](x, Z̄l, Zr) =
∑

α,β

fα,β(x)Z̄
α
l Z

β
r where fα,β(x) = 1

α!β! ∂
α
z̄l
∂βzr

f(xl, xr)
∣

∣

x=xl=xr

induces an algebra isomorphism from C∞(U2)/I∞(diagU) onto C∞(U)[[Z̄l, Zr]].

We need also to consider Taylor expansions of functions in C∞(U3) along the
set trig(U) = {(x, x, x) / x ∈ U}. We use the indices l,m, r for the first, second
and third factors of U3.

Lemma 5. The map D3 : C∞(U3)→ C∞(U)[[Z̄l, Zm, Z̄m, Zr]] defined by

[D3f ](x, Z̄l, Zm, Z̄m, Zr) =
∑

α,γ,δ,β

fα,γ,δ,β(x)Z̄
α
l Z

γ
mZ̄

δ
mZ

β
r

where fα,γ,δ,β(x) = 1
α!γ!δ!β! ∂

α
z̄l
∂γzm

∂δz̄m
∂βzr

f(xl, xm, xr)
∣

∣

x=xl=xm=xr

induces an algebra isomorphism from C∞(U3)/I∞(trigU) onto the algebra of
formal series C∞(U)[[Z̄l, Zm, Z̄m, Zr]]
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Let us define the functions Gij , G
ij and Gα,β associated to the Kähler metric.

The functions Gij are given by

ω = i
∑

i,j

Gijdz
i ∧ dz̄j .

The functions Gij are such that (Gji)i,j is the inverse of (Gij)i,j . To define the
functions Gα,β , observe that dω = 0 implies ∂zkGij = ∂ziGkj and ∂z̄kGij =
∂z̄jGik . Consequently

∂zi1∂zi2 ...∂z̄j1 ∂z̄j2 ...Gi0j0

is symmetric with respect to i0, i1, i2, ... and j0, j1, j2, ..... Let Gα,β denote this
function where α (resp. β) is the multiindice such that α(l) (resp. β(l)) is the
number of indices ik (resp. jk) equal to l.

Theorem 5. If (Pk) and (Qk) are operators in F , then the same holds for (Pk ◦
Qk). The product

A : J [[~]]×J [[~]]→ J [[~]], A
(

S(Pk), S(Qk)
)

= S(Pk ◦Qk)

is associative and C[[~]]-bilinear. The operators A` defined by

A` : J × J → J , A(F,G) =
∑

~
`A`(F,G) ∀ F,G ∈ J

are given with the previous notations by

A`(F,G) = [det(Gij)]
−1

3l
∑

k=`

(−1)`−k

k!(k − `)!

[

∆k(Rk−`H.D)
]

Zm=Z̄m=0

where R, D and H are the formal series of C∞(U)[[Z̄l, Zm, Z̄m, Zr]] defined by

R =
∑

|α|>0,|β|>0,
|α|+|β|>3

Gα,β(x)

α!β!
ZαmZ̄

β
m, D =

∑

α,β

∂αz ∂
β
z̄ [det(Gij)](x)

α!β!
ZαmZ̄

β
m

H = [D3(f(xl, xm).g(xm, xr))](x, Z̄l, Zm, Z̄m, Zr)

and ∆ is the operator
∑

Gij(x)∂Zi
m
∂Z̄j

m
which acts on C∞(U)[[Z̄l, Zm, Z̄m, Zr]].

Remark 2. If
∑

~`f` is the full symbol of (Tk), its principal symbol is f0. The
formula for the composition of principal symbols is

J × J → J , F (x, Z̄l, Zr), G(x, Z̄l, Zr)→ F (x, Z̄l, 0).G(x, 0, Zr)

Proof. We compute the kernel Tk(xl, xr) of the product of two operators in F
whose symbols F and G belong to J . We will estimate this kernel by applying
the stationary phase lemma.

Tk(xl, xr) =
( k

2π

)2n
∫

M

Ek(xl, xm, xr)F (xl, xm)G(xm, xr)µM (xm)
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where E(xl, xm, xr) ∈ L∗
xl
⊗ Lxr

is the contraction of E(xl, xm) ∈ L∗
xl
⊗ Lxm

with E(xm, xr) ∈ L
∗
xm
⊗ Lxr

. |E(xl, xm, xr)| < 1 if (xl, xm, xr) /∈ trig(M). So
the sequence Tk(., k) is negligible on every open set which does not meet the
diagonal {xl = xr}, and to estimate Tk on the neighborhood of (x, x) modulo a
negligible sequence it suffices to integrate on a small neighborhood of (x, x, x).
So we may assume that M is an open set U and use the notations introduced in
remark 1. Then

Ek(xl, xm, xr) = eikφ(xl,xm,xr) s(xl)⊗ s
−1(xr)

where φ(xl, xm, xr) = ψ(xl, xm) + ψ(xm, xr).

Lemma 6. The formal series [D3φ(xl, xm, xr)−D3ψ(xl, xr)](x, Z̄l, Zm, Z̄m, Zr)
is equal to

∑

|α|>0,|β|>0

i
Gα,β(x)

α!β!
ZαmZ̄

β
m = iR(x, Zm, Z̄m) + i

∑

j,k

Gj,kZ
j
mZ̄

k
m (16)

where R is the formal series defined in theorem 5.

Proof. Set G(x) = ρ(x) + ρ̄(x). Since ∂zi∂z̄j = Gi,j , we have Gα,β = ∂αz ∂
β
z̄G if

|α|, |β| > 0. Define the functions G0,β = ∂βz̄G and Gα,0 = ∂αz G. From remark 1,

φ(xl, xm, xr)− ψ(xl, xr) = i
(

G(xm)− ψ̃(xl, xm)− ψ̃(xm, xr) + ψ̃(xl, xr)
)

To compute the successive derivatives of ψ̃(xl, xr) with respect to zkl or z̄kr ,

observe that
(

∂zk
l
ψ̃

)

(x, x) = ∂zkG(x) and

∂z̄j

l
∂zk

l
ψ̃(xl, xr) ≡ ∂zj

r
∂zk

l
ψ̃(xl, xr) ≡ 0 mod I∞({xl = xr}).

By iterating this and doing the same with z̄kr , we obtain
(

∂αzl
ψ̃

)

(x, x) = Gα,0,
(

∂βz̄r
ψ̃

)

(x, x) = G0,β.

It follows that

[D3ψ̃(xl, xm)] =
∑ G0,β(x)

β!
Z̄βm, [D3ψ̃(xm, xr)] =

∑ Gα,0(x)

α!
Zαm.

Moreover, we have

[D3ψ̃(xl, xr)] = G(x), [D3G(xm)] =
∑ Gα,β(x)

α!β!
ZαmZ̄

β
m.

By adding up these series, we obtain the result. ut

To apply the stationary phase lemma, we show that d2
xm
φ is non-degenerate at

(x, x, x). By lemma 6, the matrix of d2
xm
φ is written

(

0 −iGjk(x)
−iGkj(x) 0

)

(17)

in terms of the basis (∂zi
m
, ∂z̄i

m
), and the result follows. Let us determine the

ideal J of C∞(U3) generated by ∂zj
m
φ, ∂z̄j

m
φ.
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Lemma 7. A function f ∈ C∞(U3) belongs to J if and only if [D3f ] belongs to
the ideal generated by Zjm, Z̄

j
m.

Proof. By lemma 6, [D3∂zj
m
φ] and [D3∂z̄j

m
φ] belong to the ideal generated by

Zjm, Z̄
j
m, so the same holds for every function of J . Conversely, consider the ideal

J ′ generated by the functions uj = zjm − z
j
l and vj = z̄jm − z̄

j
r . The function

uj ūj + vj v̄j vanishes on trigU to order 2, its Hessian is non-degenerate in the
directions transversal to trigU . So I∞(trigU) ⊂ J ′. Moreover [D3u

j ] = Zjm and
[D3v

j ] = Z̄jm. We obtain that

f ∈ J ′ ⇔ [D3f ] ∈ 〈Zjm, Z̄
j
m〉.

From lemma 6, we see that the functions ∂zj
m
φ, ∂z̄j

m
φ belong to J ′, that is they

are linear combinations of the functions uj and vj with C∞ coefficients. This
gives a linear system which is inversible on a neighborhood of trigU since the
coefficients along trigU are those of the matrix (17). We obtain that J ′ ⊂ J
and the result follows. ut

If f ∈ C∞(U3), let fr ∈ C∞(U2) denote a function such that f(xl, xm, xr) ≡
fr(xl, xr) modulo I. By lemma 7, such a function exists, is unique modulo
I∞(diagU) and

[D2f
r](x, Z̄l, Zr) = [D3f ](x, Z̄l, 0, 0, Zr).

Lemma 6 implies that φr = ψ. The final result follows then from theorem 7.7.12
of [10] by using that µM = det(Gij)|dz

1...dzn.dz̄1...dz̄n| , (17) and (16). ut

4. Toeplitz Operators

In this chapter we prove theorem 2 and give the properties of the full symbol σ,
the covariant symbol and the contravariant one.

The fist task is to compute the symbol of the projector (Πk). To do this we

consider the set T̃ of the operators (Tk) ∈ F such that

∀Z ∈ C∞(M,T 1,0M), ∇Z̄ ◦ Tk ≡ Tk ◦ ∇Z ≡ 0 mod O(k−∞)

where O(k−∞) is the set of smoothing operators. T̃ is a subalgebra of F and

(Πk) is an operator of T̃ . As we shall see, T̃ = T + O(k−∞), that is every

operator of T̃ is the sum of a Toeplitz operator and a smoothing operator, and
conversely.

Lemma 8. Let (Tk) be an operator of F with symbol S(Tk) =
∑

~l[fl]. Then

(Tk) belongs to T̃ if and only if

Z̄l.f`(xl, xr) ≡ Zr.f`(xl, xr) ≡ 0 mod I∞(diagM) (18)

for every integer ` and holomorphic vector field Z ∈ C∞(M,T 1,0M)

Proof. If (Tk) is an operator in F with symbol
∑

~`[f`] and Z is a holomorphic
vector field, then (∇Z̄ ◦ Tk) and (Tk ◦ ∇Z) are operators in F with symbol
∑

~`[Z̄l.f`(xl, xr)] and
∑

~`[Z̄r.f`(xl, xr)]. ut
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Let us define the full symbol map σ̃ : T̃ → C∞(M)[[~]] by

F
S

−−−−→ J [[~]]
x





r





y

T̃
σ̃

−−−−→ C∞(M)[[~]]

where r is the restriction

r
(
∑

~`f`(xl, xr)
)

=
∑

~`f`(x, x)

From the properties of S and lemma 8, it follows that the map σ̃ is onto
and its kernel is the set O(k−∞) which consists of the smoothing operators.

Since O(k−∞) is an ideal of T̃ , we obtain an associative product C∞(M)[[~]]×
C∞(M)[[~]]→ C∞(M)[[~]], (f, g)→ f ∗ g.

Lemma 9. The product ∗ is C[[~]]-bilinear. The operators

B` : C∞(M)× C∞(M)→ C∞(M)

defined by f∗g =
∑

~`B`(f, g) for every f, g ∈ C∞(M) are bidifferential. Locally,
they are given by

B`(f, g) = [det(Gij)]
−1

3
∑̀

k=`

(−1)`−k

k!(k − `)!

[

∆k(Rk−`H.D)
]

Zm=Z̄m=0
(19)

where ∆, R and D are defined as in theorem 5 and

H =
(

∑

β

1
β!∂

β
z̄ g(x)Z̄

β
m

)

.
(

∑

α

1
α!∂

α
z f(x)Zαm

)

.

Proof. This follows from theorem 5. It suffices to compute [D3F (xl, xm)], where
F (x, x) = f(x) and Z̄l.F (xl, xr) and Zr.F (xl, xr) vanish to order∞ along {xl =
xr} if Z is a holomorphic vector field. This computation can be done as in the
proof of lemma 6. We compute in the same way [D3G(xm, xr)]. ut

We obtain that B0(f, g) = f.g. Consequently ∗ has a unit and it is determined as
being the unique formal series 1∗ =

∑

` ~`S` such that 1∗ 6= 0 and 1∗ ∗ 1∗ = 1∗.
The symbol σ̃(Πk) satisfies σ̃(Πk) ∗ σ̃(Πk) = σ̃(Πk). Furthermore σ̃(Πk) 6= 0,
because (Πk) is not a smoothing operator. So σ̃(Πk) = 1∗. To compute it, we
can use that 1∗ ∗ 1 = 1, which gives

S0 = 1, S` = −
i=`−1
∑

i=0

B`−i(Si, 1). (20)

Let (Tk) be an operator of F . Using that (Πk) is the unit of T̃ /R, we obtain

that (Tk) ∈ T̃ if and only if ΠkTkΠk ≡ Tk mod O(k−∞).
We now come to the Toeplitz operators.

Proposition 3. The following assertions are equivalent and define the set T of
the Toeplitz operators (Tk):

i. (Tk) ∈ F et ΠkTkΠk = Tk

ii. ∃
∑

~`f` ∈ C
∞(M)[[~]] such that Tk ≡ ΠkMf(.,k)Πk +O(k−∞)

where f(., k) =
∑

k−`f` +O(k−∞) and ΠkTkΠk = Tk
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T is a ∗-algebra, that is if (Rk) and (Sk) belong to T , then the same holds for
(Rk ◦ Sk) and (R∗

k).
Define the full symbol map σ : T → C∞(M)[[~]] by

F
S

−−−−→ J [[~]]
x





r





y

T
σ

−−−−→ C∞(M)[[~]]

or equivalently σ is the restriction

σ : T → T̃
σ̃
−→ C∞(M)[[~]]

Then σ is onto and its kernel is T ∩ O(k−∞). Since T ∩O(k−∞) is an ideal of
T , we obtain an associative product C∞(M)[[~]] × C∞(M)[[~]] → C∞(M)[[~]].
It is the same as the product ∗ described in lemma 9.

The map σcont : T → C∞(M)[[~]] such that σcont(Tk) =
∑

~`f` if

Tk ≡ ΠkMf(.,k)Πk +O(k−∞) and f(., k) =
∑

k−`f` +O(k−∞)

is well-defined. It is onto and its kernel is T ∩O(k−∞).

The map Ψ̃ : C∞(M)[[~]] → C∞(M)[[~]], which sends σcont(Tk) into σ(Tk)

if (Tk) ∈ T , is C[[~]]-linear. The operators Ψ̃` such that Ψ̃(f) =
∑

~`Ψ̃`(f) for

every f ∈ C∞(M), are differential of order 2`. Furthermore Ψ̃0(f) = f .

Remark 3. Recall that T̃ is the set of the operators (Tk) ∈ F which satisfy
ΠkTkΠk ≡ Tk mod O(k−∞). Using the definition i. of a Toeplitz operator, we

obtain that T̃ = T + O(k−∞). Now theorem 2 of the introduction follows from
lemma 8.

Proof. First define a Toeplitz operator by assertion i. The properties of σ follow
from those of σ̃ and the fact that T̃ = T + O(k−∞). To prove that ii. ⇒ i.,
observe that Mf(.,k)Πk ∈ F and so ΠkMf(.,k)Πk ∈ F . To prove the converse,
we compute σ(ΠkMf(.,k)Πk). We have

S(Mf(.,k)Πk)(xl, xr, ~) =
∑

~
`f`(xl).S(Πk)(xl, xr, ~)

and by applying theorem 5, we obtain that

σ(ΠkMf(.,k)Πk) =
∑

~
`+mΨ̃ ′

`(fm)

where the operators Ψ̃ ′
` are differential of order 2` and Ψ̃ ′

0 is the identity. This

defines a map Ψ̃ ′ =
∑

~`ψ′
`, which is bijective. We obtain that i.⇒ ii.. Now by

definition σcont = Ψ̃
′−1 ◦ σ and the properties of σcont follow from those of σ.

Finally, observe that Ψ̃ = Ψ̃ ′ and this completes the proof. ut

In the last proposition, we defined the symbol σ and the contravariant symbol.
The third full symbol is the covariant symbol.

Definition 3. The covariant symbol map σcov : T → C∞(M)[[~]] is the map

(Tk)→ σcov(Tk) = σ(Tk)
(
∑

~`S`
)−1
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We denote by Ψ the map C∞(M)[[~]] → C∞(M)[[~]], which sends σcont(Tk)

into σcov(Tk). It satisfies the same properties as Ψ̃ . So we have the following
commutative diagram

D D�
ψ̃

D-
ψ

T /O(k−∞)

σ
�

�
�

�	 ?

σcont σcov

@
@

@
@R

with D = C∞(M)[[~]]

where each map is a bijection. Using the symbol maps σcov and σcont, we define
the products ∗cov and ∗cont of C∞(M)[[~]]. These are associative product with
unit 1.

We describe the symbolic calculus modulo O(h2). To do this, we introduce
the bivector G−1 ∈ C∞(M,T 1,0M ⊗ T 0,1M) and the Laplacian ∆ : C∞(M) →
C∞(M) defined locally by

G−1 =
∑

i,j

Gij∂zi ⊗ ∂z̄j , ∆ = Gij∂zi∂z̄j

where (zi) are complex coordinates. We denote by r ∈ C∞(M) the scalar cur-
vature of (M, g).

Proposition 4. If f and g ∈ C∞(M), we have

f ∗ g =f.g + ~
(

〈dg ⊗ df,G−1〉 − 1
2 r.f.g

)

+O(~2),

Ψ(f) =f + ~∆f +O(~2),

f ∗cov g =f.g + ~〈dg ⊗ df,G−1〉+O(~2),

f ∗cont g =f.g − ~〈df ⊗ dg,G−1〉+O(~2).

Consequently, we have f ∗g = f.g+O(~), f ∗g−g ∗f = ~

i
{f, g}+O(~2) and the

same holds for ∗cov and ∗cont. Furthermore, if (Tk) is a Toeplitz operator then
σ(Tk) = σcov(Tk) +O(~) = σcont(Tk) +O(~).

We say that the function f ∈ C∞(M) such that σ(Tk) = f+O(~) is the principal
symbol of (Tk).

Proof. Let x be a point of M and (zi) a complex coordinates system such that
zi(x) = 0 and

Gi,j(x) = δi,j Gi,α(x) = Gα,i(x) = 0 if |α| = 2.

We have to show that the operator B1 defined in lemma 9 is given by

B1(f, g)
∣

∣

x
=

∑

i

(∂z̄if)(∂zig) +
1

2

∑

i,j

Gij,ij .f.g
∣

∣

x
(21)

with Gij,kl = Gα,β where α(s) = δsi+δsj and β(s) = δsk +δsl. The formula (19)
gives for B1(f, g)

[

∆(F.G.D) −
1

2
∆2(R.F.G.D) +

1

12
∆3(R2.F.G.D)

]

∣

∣

Zm=Z̄m=0



Berezin-Toeplitz Operators, a semi-classical approach. 21

Since R vanishes to order 4 at x, the third term of the sum vanishes at x. We
have

D ≡ 1 +
∑

i,j,k

Gij,ik(x)Z
j
mZ̄

k
m

modulo some terms of order larger than 3. So, at x, ∆(F.G.D)
∣

∣

Zm=Z̄m=0
is equal

to
[

∆
(

∑

i,j

(∂z̄if)(∂zjg)ZjmZ̄
i
m + f.g

∑

i,j,k

Gij,ik(x)Z
j
mZ̄

k
m

)]

∣

∣

Zm=Z̄m=0

=
∑

i

(∂z̄if)(∂zig) + f.g
∑

i,j

Gij,ij .

On the other hand

R
∣

∣

x
≡

1

4

∑

i,j,k,`

Gij,k`(x)Z
i
mZ

j
mZ̄

k
mZ̄

`
m

modulo some terms of order larger than 5. So, at x

∆2(R.F.G.D)
∣

∣

Zm=Z̄m=0
=

[

∆2
(

f.g.
∑

i,j,k,`

Gij,k`(x)Z
i
mZ

j
mZ̄

k
mZ̄

`
m

)]

∣

∣

Zm=Z̄m=0

=f.g
∑

i,j

Gij,ij .

By adding up, we obtain (21). In the same way, we compute

Ψ̃(f)
∣

∣

x
= f + ~

∑

i

(∂z̄i∂zif + 1
2

∑

i,j

Gij,ij .f.g
∣

∣

x

)

+O(~2)

And we obtain the formulas of the proposition. ut

By applying equation (20), we compute σ(Πk) modulo O(~2)

Corollary 2. σ(Πk) = 1 + ~

2 r +O(~2).

From this we obtain the first and second terms of Riemann-Roch-Hirzebruch
formula

dim Hk =
( k

2π

)n
∫

M

(1 + 1
2k r)

ωn

n! +O(kn−2).

Applying Lemma 9, proposition 3 and proposition 4, we obtain :

Proposition 5. The products ∗, ∗cov and ∗cont are equivalent star products.

Let V`, N` : C∞(M2)→ C∞(M) denote the bidifferential operators such that

f ∗cov g =
∑

~
`V`(f, g), f ∗cont g =

∑

~
`N`(f, g)

and Ψ`, Ψ
−1
` the differential operators such that

Ψ(f) =
∑

~
`Ψ`(f), Ψ−1(f) =

∑

~
`Ψ−1
` (f)



22 Laurent CHARLES

where Ψ−1 is the inverse of Ψ . The operators V` may be easily computed using
the following equation

V`(f, g) =
∑

`1+`2+`3+`4=`

S−1
`1
B`2(S`3f, S`4g) (22)

where
∑

` ~`S−1
` is the inverse of

∑

~`S` for the usual product. Then we can

deduce N`, Ψ` and Ψ−1
` from the following proposition.

Proposition 6. Let U be an open set of M endowed with a system of complex

coordinates. Denote by (aα,β) the family of C∞(U) such that Ψ` = aα,β∂
α
z ∂

β
z̄ ,

then

V`(f, g) =
∑

α,β

aα,β(∂
α
z g)(∂

β
z̄ f). (23)

In a similar way, if we denote by bα,β the functions of C∞(U) such that Ψ−1
` =

∑

α,β bα,β∂
α
z ∂

β
z̄ , then N`(f, g) =

∑

α,β bα,β(∂
α
z f)(∂βz̄ g).

Using this, we may deduce that the functions aα,β, bα,β are given by universal
polynomials in [det(Gi,j)]

−1 and Gα′,β′ .

Proof. From (22), we deduce that the operators V` act by antiholomorphic
derivations on the first factor and holomorphic derivations on the second factor.
Observe that Ψ(f) = f and Ψ(f̄) = f̄ over an open set V , if f is holomorphic
on V . Indeed, since S(MfΠk)(xl, xr) = f(xl)S(Πk)(xl, xr) satisfies equations
(18) over V , we have A(S(Πk), S(MfΠk)) = S(ΠkMfΠk) over V which leads to
Ψ(f) = f . Ψ(f̄) = f̄ can be proved in the same way. Let us prove that the oper-
ators N` act by holomorphic derivations on the first factor and antiholomorphic
derivations on the second factor. It suffices to prove that f ∗cont g = f.g and
ḡ ∗cont f̄ = ḡ ∗cont f̄ on V if g is holomorphic on V . The second equation follows
from the first one by considering adjoints. f ∗cont g = f.g is a consequence of

S(ΠkMfΠkMgΠk)
∣

∣

V
=A(S(ΠkMf ), S(ΠkMgΠk))

∣

∣

V

=A(S(ΠkMf ), S(MgΠk))
∣

∣

V

Finally, if f and g are holomorphic over V , then

Ψ(f̄ .g)
∣

∣

V
= Ψ(f̄ ∗cont g)

∣

∣

V
= Ψ(f̄) ∗cov Ψ(g)

∣

∣

V
= f̄ ∗cov g

∣

∣

V

that is Ψ`(f̄g) = V`(f̄ , g) over V , which proves (23). In the same way, we obtain
that N`(f, ḡ) = Ψ−1

` (f.ḡ) on V . ut

Let us explain how we can define the symbolic calculus on a Kähler manifold
which is not necessarily compact or which does not admit a prequantization
bundle.

Observe that the star products ∗, ∗cov, ∗cont and the equivalence maps do not
depend on the choice of the prequantization bundle L. Indeed, this is clear for
∗ because the formula (19) depends only on the Kähler metric. So the unit 1∗

of (C∞(M)[[~]], ∗) does not depend on L and consequently the same holds for
the covariant star product. Finally, we compute the contravariant symbol by the
formulas given in proposition 6, which do not depend on L.
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Now assume that M is a Kähler manifold endowed with a prequantization
bundle which is not necessarily compact. We can define the algebra F in the
following way : it consists of the operators which satisfy the assumptions of
definition 1 and whose kernel is properly supported. Then we define as previously
the subalgebra T̃ and introduce the symbol σ, the covariant symbol and the
contravariant symbol. Their products still define the star products ∗, ∗cov, ∗cont

and all the formulas are the same as in the compact case.
Finally, if M does not admit a prequantization bundle, we can not construct

an algebra of operators. Using complex coordinate systems, we can still define the
products ∗, ∗cov, ∗cont and the equivalence maps. We have to prove that these
definitions do not depend on the choice of coordinates and that the products
obtained are associative. But it suffices to prove this locally and for every x ∈M
there exists a neighborhood U of x endowed with a prequantization bundle
L→ U . So we can apply the previous observations on the non compact case.

5. Microsupport, characterization by the coherent states and
functional calculus of Toeplitz operators

We begin with the microsupport. First we introduce the coherent states. Let
P ⊂ L be the set which consists of the vectors u ∈ L such that |u| = 1. Denote
by π : P → M the canonical projection. For every k, the map which sends
s ∈ Hk into h

(

s(π(u)), uk
)

is continuous. Let u ∈ P . By Riesz lemma, there
exists a unique vector euk of Hk such that

(s, euk) = h
(

s(π(u)), uk
)

, ∀ s ∈ Hk

that is, s(π(u)) = (s, euk)u
k, for all s ∈ Hk. e

u
k is the coherent state at u. If Tk is

an operator C∞(M,Lk)→ C∞(M,Lk) such that ΠkTkΠk = Tk, we have

Tke
u
k(x) = Tk(x, π(u)).uk (24)

(Tke
u
k , e

v
k) = v−k.Tk

(

π(v), π(u)
)

.uk (25)

where the points are contractions. These properties can be proved by writing
them in terms of an orthogonal base of Hk. By choosing Tk = Πk, we deduce
that

euk(x) = Πk(x, π(u)).uk , (euk , e
v
k) = O(k−∞) if π(u) 6= π(v)

(euk , e
u
k) =

( k

2π

)n∑

l

k−lSl(π(u)) +O(k−∞).

Proposition 7. Let (uk) be a sequence of Hk. The following assertions are
equivalent :

i. ∃N, ||uk|| = O(kN )

ii. ∃N, SupM |uk| = O(kN )

iii. ∀ l > 0, ∀ vector fields X1, ..., Xl of M, ∃ N, SupM |∇X1
...∇Xl

uk| = O(kN )

When they are satisfied, we say that (uk) is admissible.
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Proof. Obviously, iii⇒ ii⇒ i. To prove that i ⇒ iii, we introduce the vectors

(eQ,uk ) which generalize the coherent states. Let Q : C∞(M,Lk) → C∞(M,Lk)
be a differential operator of the form ∇X1

◦ ...◦∇Xl
, where X1,...,Xl are l vector

fields. Since Hk is a finite dimensional subspace of C∞(M,Lk), the map which
sends v ∈ Hk into h(Q.v

∣

∣

u
, uk) is continuous. By Riesz lemma, there exists

eu,Qk ∈ Hk such that (v, eku,Q) = h(Q.v
∣

∣

u
, uk) for all v ∈ Hk. We have

Tke
Q,u
k (x) =

(

Qr.Tk
∣

∣

(x,π(u))

)

.uk

(Tke
Q,u
k , eR,vk ) =v−l.

(

R̄l ⊗Qr.Tk
∣

∣

π(v),π(u))

)

.uk
(26)

Hence the norm of (eQ,uk )k is O(kN ) uniformly with respect to u ∈ P for some
N (which depends on the order of Q). The result follows by applying Cauchy-
Schwarz lemma. ut

Proposition 8. Let (uk) be an admissible sequence of Hk and x ∈ M . The
following assertions are equivalent.

i. ∃ a neighborhood V of x such that

∫

V

|uk|
2 µM = O(k−∞)

ii. ∃ a neighborhood V of x such that SupV |uk| = O(k−∞)

iii. ∃ a neighborhood V of x, ∀ l > 0, ∀ vector fields X1, ..., Xl of M, ∃ N

such that SupV |∇X1
...∇Xl

uk| = O(k−∞)

When they are satisfied, we say that (uk) is negligible at x.

Proof. Obviously, iii⇒ ii⇒ i. Let us prove that i⇒ iii. Choose a neighborhood
W of x such that W ⊂ V and a section f : W → P . Let us write for all y ∈W ,

|∇X1
...∇Xl

uk|(y) =
∣

∣

∫

M

h
(

uk, e
f(y),Q
k

)

µM
∣

∣

∣

∣h
(

uk, e
f(y),Q
k

)

(x)
∣

∣ is smaller than |uk(x)|.
∣

∣e
f(y),Q
k (x)

∣

∣. The first term of this prod-

uct is O(kN ) since uk is admissible and the second one is uniformly O(k−∞)
when (x, y) ∈ V c × W . Hence, the integral on the complementary set V c of
V is O(k−∞). By applying Cauchy-Schwarz lemma and assumption i, we can
estimate the integral on V . ut

Remark 4. If (sk) is a sequence of Hk, we prove in the same way that

(sk) is negligible iff ||sk|| = O(k−∞)

Remark 5. Let (Tk) be a sequence such that for every k, Tk is an operator
C∞(M,Lk) → C∞(M,Lk) and ΠkTkΠk = Tk. Note that we can apply the
previous propositions to the sequence (Tk(xl, xr)) of kernels. Indeed, Tk(xl, xr)
is a holomorphic section of Lk�L−k →M×M , M×M is a Kählerian manifold
whose fundamental 2-form is ωl−ωr and the curvature of Lk�L−k is k

i
(ωl−ωr).

We can also apply the previous remark and deduce that

(Tk) is a smoothing operator iff ||Tk|| = O(k−∞).
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Definition 4. The microsupport of an admissible sequence (uk) of Hk is the
complementary set of

{x ∈M / (uk) is negligible at x}

Let (Tk) be a sequence such that for every k, Tk is an operator C∞(M,Lk) →
C∞(M,Lk) and ΠkTkΠk = Tk. We say that (Tk) is admissible if the kernel
sequence (Tk(xl, xr)) is admissible. In this case, the microsupport of (Tk) is the
microsupport of the sequence (Tk(xl, xr)).

The microsupport is a closed set. We denote it by MS(uk) or MS(Tk). We
have

MS(Tk.sk) ⊂MS(Tk).MS(sk)

=
{

x / ∃ y ∈M, y ∈ MS(sk) and (x, y) ∈ MS(Tk)
}

MS(Tk ◦ T
′
k) ⊂MS(Tk) ◦MS(T ′

k)

=
{

(x, z) / ∃ y ∈M, (x, y) ∈ MS(Tk) et (y, z) ∈ MS(T ′
k)

}

The microsupport of a Toeplitz operator (Tk) with symbol
∑

k ~kfk is a subset
of diag(M). By identifying diag(M) with M , we have

MS(Tk) = ∪k Supp fk.

We say that (Tk) is elliptic at x if f0(x) 6= 0, or equivalently if there exists a
Toeplitz operator (Sk) such that (TkSk −Πk) and (SkTk −Πk) are negligible at
(x, x).

Proposition 9. Let (sk) be an admissible sequence of Hk. A point x of M does
not belong to the microsupport of (sk) if and only if there exists a Toeplitz oper-
ator (Tk) elliptic at x such that (Tk.sk) is negligible at x.

Proof. If sk(y) is O(k−∞) on a neighborhood V of x, we introduce a Toeplitz
operator (Tk) elliptic at x and whose microsupport is a subset of V . This im-
plies that (Tksk) is negligible. Conversely, assume that Tk.sk(y) is O(k−∞) on
a neighborhood of x and (Tk) is elliptic at x. By multiplying (Tk) by a Toeplitz
operator (Sk) such that (SkTk −Πk) is negligible at (x, x), we may assume that
(Tk−Πk) is negligible at (x, x). If f is a section of P defined on a neighborhood
of x, we have

(Tksk, e
f(y)
k ) = (sk, T

∗
k e

f(y)
k ).

So it suffices to prove that when y belongs to some neighborhood of x

T ∗
k e

f(y)
k = e

f(y)
k + ryk

where ||rk|| is O(k−∞) uniformly with respect to y. This follows from (24) which
implies that

Tke
u
k(x) =

Tk(x, π(u))

Πk(x, π(u))
euk(x) (27)

and the fact that (Tk −Πk) is negligible at (x, x). ut
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The computation modulo O(k−1) of the L2-norm of a Toeplitz operator was
done in [3]. We recall the proof which is an easy consequence of the previous
results. Then we give a characterization by the coherent states of the Toeplitz
operators. We end with the functional calculus.

Proposition 10. Let (Tk) be a Toeplitz operator whose symbol is
∑

l>N ~lfl with
fN 6= 0. We have

||Tk|| ∼k
−N Sup |fN |.

Remark 6. We have the same estimation with the covariant symbol and the
contravariant one since σ(Tk) = O(~N ) implies σcov(Tk) = σ(Tk) + O(~N+1)
and σcont(Tk) = σ(Tk) +O(~N+1).

Proof. By using contravariant symbols, we can prove that

Tk = k−NΠkMfN
Πk + k−N−1ΠkMg(.,k)Πk +Rk

where (Rk) is a smoothing operator and (g(., k)) is a sequence of C∞(M) whose
norm is uniformly O(k−N−1). It follows that there exists C such that ||Tk|| 6
k−N Sup |fN |+ Ck−N−1. Let u be in P such that Sup |fN | = |fN(π(u))|. Using
that ||Tke

k
u||

2 = (T ∗
k Tke

u
k , e

u
k) and (25), we obtain

||Tke
k
u||

2

||eku||
2

= k−2N |fN (π(u))|2 +O(k−2N−1).

We deduce from this that ||Tk|| > k−N Sup |fN |+ C ′k−N−1. ut

Proposition 11. Let (Tk) be a sequence such that for every k, Tk is an operator
of C∞(M,Lk) and ΠkTkΠk = Tk. Then (Tk) is a Toeplitz operator if and only
if there exists a symbol (f(., k)) of S0(M ×M) such that

(

Tke
u
k

)

(x) = f(x, π(u), k)euk(x) + ruk (x) (28)

where (ruk ) is a uniformly negligible sequence with respect to u. In this case, the
covariant symbol of (Tk) is

∑

l ~
lfl(x, x) where f(., k) =

∑

l k
−lfl +O(k−∞).

This result can be compared with the characterisation of the ~-pseudodifferential

operators from their action on the oscillatory functions e
i
~
x.ξ (cf. [8]).

Proof. If (Tk) is Toeplitz operator, we can prove (28) by using (27) and the
expression of the kernels of (Tk) and (Πk). Conversely, if s is a section of Hk,
we have

s =

∫

P

(s, euk) e
u
k µP (u).

Consequently,

Tks =

∫

P

(s, euk) Tke
u
k µP (u).

Using (28), we obtain that

Tk(xl, xr) = f(xl, xr, k)Πk(xl, xr) + u−k.ruk (x) with π(u) = xr

Hence, (Tk) ∈ F and by assumption, ΠkTkΠk = Tk, that is (Tk) a Toeplitz
operator. ut
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Proposition 12. Let (Tk) be a selfadjoint Toeplitz operator with symbol
∑

l ~
lfl

and g be a function of C∞(R,C). Then (g(Tk)) is a Toeplitz operator with prin-
cipal symbol g(f0).

Proof. By the previous proposition, the spectrum of Tk is a subset of

[− Sup |f0| − 1, Sup |f0|+ 1]

if k is sufficiently large. By modifying g outside this interval, we may assume that
g has compact support. So g extends to a function G of C∞(C) with compact
support and such that ∂z̄G vanishes to order ∞ along R ⊂ C. Let a, b ∈ R be
such that Supp g ⊂ (a, b). Introduce the loops γε :

γε

ba

1

2
(b + a) − iε

1

2
(b + a) + iε

Since ∂z̄G vanishes to order ∞ along R,

g(Tk) =
1

2iπ
lim
ε→0

∫

γε

G(z)(z − Tk)
−1dz.

By applying Stokes theorem

g(Tk) =
1

2π

∫

C

∂z̄G(z)(z − Tk)
−1|dzdz̄|

where the integral is well-defined since ||(z−Tk)
−1|| = O(|y|−1) (y is the imagi-

nary part of z). For y 6= 0, we denote by
∑

l ~
`h`(z, x) the inverse of z−

∑

l ~
`f`

in (C∞(M)[[~]], ∗). Using that the bidifferential operators B` associated to ∗ are
of degree ` in each argument, we obtain that

h`(z, x) = P`(z, x)(z − f0)
−(`+1) (29)

where the functions P` are polynomial in z with coefficients in C∞(M). So
the functions y−1h`(z, x)∂z̄G(z) are C∞. By applying Borel process, we con-
struct a symbol H(z, xl, xr, k) in S0(C ×M ×M) with asymptotic expansion
∑

` k
−`H`(z, xl, xr) such that

H`(z, x, x) = y−1h`(z, x)∂z̄G(z)

∂z̄i
l
H` = O(|xl − xr|

∞) and ∂zi
r
H` = O(|xl − xr|

∞)
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where the estimations are uniform with respect to z. Introduce the operators Lzk
of kernel ( k2π )nEkH(z, xl, xr, k). We have

Lzk.(z − Tk) = y−1∂z̄GΠk + Szk

where ||Szk || = O(k−∞) uniformly with respect to z. We deduce from this that

∂z̄G(z − Tk)
−1 = yLzk − yS

z
k(z − Tk)

−1

and then that g(Tk) is a Toeplitz operator with symbol

∑

l

~l

2π

∫

C

∂z̄G(z)hl(z, x)|dzdz̄|. (30)

ut

The full calculus of the symbol
∑

` ~
`G` of g(Tk) can be done by the following

way : write the Taylor series
∑

p
1
p! g

(p)
(

f0(x)
)

(y − f0(x))
p of g at f0(x). Then

∑

`

~
`G`

∣

∣

x
=

∑

p

1

p!
g(p)

(

f0(x)
)(

∑

~`f`(y)− f0(x)1∗(y)
)∗p∣

∣

y=x

where 1∗ is the unit of (C∞(M)[[~]], ∗) and

(
∑

~`f`
)∗0

= 1∗,
(
∑

~`f`(y)
)∗1

=
∑

~`f`,
(
∑

~`f`(y)
)∗2

=
∑

~`f` ∗
∑

~`f`,

and so on. Indeed, the right hand side is well-defined. Then assume that g van-
ishes to order q + 1 at f0(x), we deduce from (29) and (30) that G0(x) = ... =
Gq(x) = 0. So we may replace g with its Taylor series.

In particular, if σ(Tk) = f0 + ~f1 +O(~2), then σ(g(Tk)) is equal to

g(f0) + ~
(

g(f0)
r
2 + g′(f0)(f1 −

r
2f0) + g′′(f0)G

i,j(∂zif0)(∂z̄if0)
)

+O(~2)

The same formulas apply for the covariant symbol and contravariant symbol.
Hence if σcov(Tk) = f0 + ~f1 +O(~2), then

σcov(g(Tk)) = g(f0) + ~
(

g′(f0)f1 + g′′(f0)G
i,j(∂zif0)(∂z̄if0)

)

+O(~2)

and if σcont(Tk) = f0 + ~f1 +O(~2), then

σcont(g(Tk)) = g(f0) + ~
(

g′(f0)f1 − g
′′(f0)G

i,j(∂zif0)(∂z̄if0)
)

+O(~2).
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16. G.Tian, On a set of polarized Kähler metrics on algebraic manifolds J. Diff. Geom. Vol

32, pp 99-130, 1990.
17. S. Zelditch, Szegö Kernels and a theorem of Tian, Int. Math. Research Notices , Vol 5,

1998.


