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Abstract

Chern-Simons bundles are prequantum bundles for moduli spaces
of flat principal bundles over a compact surface. We recall their con-
struction by gauge theory in the case where the surface has a boundary.
We discuss their equivariance with respect to the mapping class group
of the surface.

1 Introduction

Let Σ be a compact connected oriented surface with n boundary compo-
nents. Consider a compact simple simply-connected Lie group G. Choose a
conjugacy class Ci, i = 1, . . . , n for each boundary component. The moduli
space M(Σ, G, (Ci)) is by definition the space of gauge isomorphism classes
of flat G-principal bundles whose holonomy around the i-th boundary com-
ponent belongs to Ci.

The subset Ms(Σ, G, (Ci)) of M(Σ, G, (Ci)) consisting of classes of irre-
ducible bundles, is a smooth symplectic manifold, cf. [AB83], [Gol84]. When
the conjugacy classes Ci satisfy some integrality condition, Ms(Σ, G, (Ci))
has a canonical prequantum bundle, that is a Hermitian line bundle endowed
with a connection whose curvature is the symplectic form, cf. [RSW89],
[Fre95], [DW97]. This bundle is sometimes called the Chern-Simons bun-
dle, because in the case Σ is closed and X is a three dimensional oriented
manifold with boundary Σ, the Chern-Simons invariant of a flat G-principal
bundle F → X is an element of the fiber of the Chern-Simons bundle at
F |Σ.
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The pure modular group of Σ acts on the moduli space Ms(Σ, G, (Ci)).
It is not a priori clear whether this action is compatible with the geometric
structures of the moduli space. For instance, does the pure modular group
act by symplectomorphisms ? Can we lift this action to the Chern-Simons
bundle ? These are the questions we adress in this note.

Our motivation is to understand the semi-classical limit of the quan-
tum representation of the mapping class group. In [Cha10], the results of
this note will be used in the proof of the Witten asymptotic conjecture for
mapping tori.

First let us state the integrality condition for the existence of the Chern-
Simons bundle. Consider a maximal torus of G with Lie algebra t and denote
by Λ the integral lattice ker(exp |t) and P∨ the dual lattice to the root lattice.
Choose λi ∈ t such that Ci is the class of exp(λi), for i = 1, . . . , r. Let k ∈ Z∗.
Then if the λi’s satisfy

∀i, ∀ξ ∈ Λ, 〈λi, ξ〉 ∈ k−1Z, and

∀ξ ∈ 2iπP∨, 〈λ1 + . . .+ λr, ξ〉 ∈ k−1Z.

the moduli space Ms(Σ, G, (Ci)) has a canonical prequantum bundle LkCS

with curvature k times the symplectic form
Recall that the pure modular group, denoted by PMod(Σ), is the group

of orientation preserving diffeomorphisms of Σ fixing each boundary com-
ponent as a set, up to isotopy. PMod(Σ) has a natural extension

0→ Zπ0(∂Σ) → Mod(Σ)→ PMod(Σ)→ 0

Here Mod(Σ) is the group of preserving orientation diffeomorphisms of Σ
relative to the boundary up to isotopy and Zπ0(Σ) is sent isomorphically to
the subgroup of Mod(Σ) generated by the Dehn twists around the boundary
components of Σ.

Theorem 1.1. The action of PMod(Σ) on Ms(Σ, G, (Ci)) preserves the
symplectic form. When (Ci) satisfies the previous integrality condition, there
is a natural action by prequantum bundle automorphisms of Mod(Σ) on the
Chern-Simons bundle LkCS, which lifts the action of PMod(Σ) on the base.
The Dehn twist around the i-th boundary component acts by multiplication
by exp(ikπ|λi|2).

Here | · | is the norm for the basic inner product. So the action of the
modular group on LkCS factors through an action of the pure modular group
only for particular values of k and λi.
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Let Σ̄ be the closed surface obtained from Σ by filling each boundary
component by a disk. When each conjugacy class Ci consists of one el-
ement ci of the center of G, the moduli space Ms(Σ, G, ({ci})) is very
close to a moduli space of bundles on Σ̄. Indeed Ms(Σ, G, ({ci})) and
Ms(Σ̄, G) have the same dimension. Furthermore the tangent space at F to
Ms(Σ, G, ({ci})) is isomorphic with H1(Σ̄,AdF ), where AdF → Σ̄ is the
flat vector bundle whose restriction to Σ is the vector bundle associated to F
throught the adjoint representation. For some choices of ci, the moduli space
has the advantage of being closed: Ms(Σ, G, ({ci})) =M(Σ, G, ({ci})), that
is any G-principal flat bundles on Σ satisfying the holonomy condition on
the boundary is irreducible. To the contrary, Ms(Σ̄, G) is never closed be-
cause the trivial bundle is not irreducible. For these reasons, in some paper,
Ms(Σ, G, ({ci})) is used as a smooth replacement of M(Σ̄, G).

We would like to know whether the action of PMod(Σ) in these cases
factors through an action of Mod(Σ̄). We will prove it is not true in some
very simple case. Let us assume that the boundary of Σ has only one
connected component. Recall the Birman exact sequence

0→ π1(Σ̄)→ PMod(Σ)→ Mod(Σ̄)→ 0

We aim to compute the action of π1(Σ̄) on M(Σ, G, {c}) where c is an
element of the center Z(G).

There is a natural action of H1(Σ̄, Z(G)) onM(Σ, G, {c}) considered by
Goldman in [Gol84]: identifying the moduli space with conjugacy classes of
morphisms π1(Σ)→ G, the action is the pointwise multiplication.

Theorem 1.2. The action of π1(Σ̄) on M(Σ, G, {c}) factors through the
action of H1(Σ̄, Z(G)) by the morphism Φ : π1(Σ̄) → H1(Σ̄, Z(G)) defined
by:

Φ(γ)(α) = ci(γ,α), ∀α ∈ π1(Σ̄).

where i is the algebraic intersection number of π1(Σ̄).

When c is a generator of the center, the morphism Φ is onto. So the
action of PMod(Σ) factors through an action of Mod(Σ̄) if and only if the
action of H1(Σ̄, Z(G)) is trivial. We will prove that for G = SU(2), c = − id
and Σ of genus > 2, the action of H1(Σ̄, Z(G)) is not trivial.

In the first part of the paper, we will recall a construction of the Chern-
Simons bundle. Following Meinrenken and Woodward [MW98], we will in-
troduce a prequantum bundle on the moduli space of flat bundles of Σ.
When the boundary of Σ is not empty, a central extension of the gauge
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group of the boundary acts on the prequantum bundle. Doing a symplec-
tic reduction at a level corresponding to an integral coadjoint orbit of this
central extension, we obtain the Chern-Simons bundle.

There exists alternative construction of the Chern-Simons bundle, for
instance [Kre08] based on the holonomy description of the moduli space.
This method has the advantage of avoiding the infinite dimensional geom-
etry, but it uses a particular presentation of the fondamental group of the
surface, and so it does not seem to be convenient for describing the mapping
class group action.

Acknowledgements — I am grateful to Takahiko Yoshida for sending
me his thesis.

2 Symplectic Preliminaries

In the first section we recall some general well-known facts on Hamiltonian
spaces, their prequantizations, their automorphisms and their reductions.

Then we discuss an extension of this theory where the group action
admits a momentum which is not necessarily equivariant. The basic example
is the group of affine symplectomorphisms acting on a symplectic vector
space. In these cases, the action may not lift to the prequantum bundle,
but the action of a convenient central extension by the structure group of
the prequantum bundle does. Then we can perform symplectic reduction in
this setting.

2.1 Prequantum bundle and symplectic reduction

2.1.1 Prequantum bundle

Let (M,ω) be a symplectic manifold. Denote by T the group R/Z. A
prequantum bundle of (M,ω) is a principal bundle P over M with structure
group T endowed with a connection β ∈ Ω1(P,R) whose curvature is ω. Our
sign convention for the curvature is dβ + π∗ω = 0, with π the projection
from P to M .

The Lie algebra aut(P, β) of infinitesimal automorphisms of the prequan-
tum bundle (P, β) consists of the vector fields Y of P which are T-invariant
and satisfy LY β = 0. It is well-known that aut(P, β) is isomorphic to the
Poisson Lie algebra of (M,ω). Indeed, a vector field Y of P belongs to
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aut(P, β) if and only if

Y = Xhor
f + (π∗f)∂θ (1)

where f ∈ C∞(M). Here we denote by Xf ∈ C∞(M,TM) the Hamiltonian
vector field of f ,

ω(Xf , ·) = df,

by Xhor
f ∈ C∞(P, TP ) the horizontal lift of Xf and by ∂θ ∈ C∞(P, TP ) the

infinitesimal generator of the T-action. So Y is determined by the function
f and conversely π∗f = β(Y ). Furthermore the Lie bracket of vector fields
corresponds to minus the Poisson bracket of functions.

Let ρ be the character

ρ : T→ U(1), ρ(t) = e−2iπt.

For any prequantum bundle (P, β), the associated bundle L := P ×ρ C is a
Hermitian line bundle with a covariant derivation ∇ of curvature −2πiω. In
particular if P = M×T with β = −α+dt, then L is isomorphic to the trivial
complex line bundle with base M and covariant derivative ∇ = d + 2π

i α.
Conversely one may start from (L,∇) and define (P, β) as the subbundle of
L which consists of the vectors with norm 1.

2.1.2 Hamiltonian spaces and symplectic reduction

A Hamiltonian space (M,ω,G, µ) is a symplectic manifold (M,ω) with an
action of a Lie group G and an equivariant momentum µ : Lie(G)→M . So

dµY = ω(Y ]M , ·), ∀ Y ∈ Lie(G)

where Y ]M is the infinitesimal action of Y ∈ Lie(G). Let H be a closed
normal subgroup of G whose action on

{x ∈M/〈µ(x), Y 〉 = 0, ∀ Y ∈ Lie(H)}

is free and proper. Then the symplectic quotient M//H is a smooth manifold
and we obtain a Hamiltonian space (M//H,G/H, µG/H).

Let (P, β) be a prequantum bundle of a symplectic manifold M . Assume
that a Lie group G acts on P by prequantum bundle automorphisms, that
is by diffeomorphisms commuting with the T-action and preserving β. By
(1), the action of G on the base M has a natural momentum µ defined by
the condition that for any Y ∈ Lie(G),

π∗µY = β(Y ]P ) (2)
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with π the projection from P to M . This momentum is equivariant 1.
Assume that H is a closed normal subgroup of G satisfying the same

assumptions as above. Then P descends to a prequantum bundle of M//H
on which G/H acts by prequantum bundle automorphisms.

2.1.3 Lifting the action

We have seen that when a group acts on a prequantum bundle (P, β), the
infinitesimal action defines a momentum for the action on the base. We have
the following converse.

Theorem 2.1. Let (P, β) be a prequantum bundle with base M and curva-
ture ω. Assume G is a connected and simply connected Lie group acting on
(M,ω) with an equivariant momentum µ. Then there exists a unique lift to
Aut(P, β) of the action on M such that the corresponding momentum is µ.

Proof. By Section 2.1.1, the map sending Y ∈ Lie(G) into the vector field
of P

Y ]P := (Y ]M )hor + (π∗µY )∂θ

is a Lie algebra anti-morphism. Furthermore, Y ]P is complete for any Y ∈
lie(G). Indeed, its flow at time t is given by

ϕt(y) = θt(π(y)).Tt(y) (3)

where Tt is the T-equivariant diffeomorphism of P obtained by lifting the
flow of Y ]M by parallel transport, and θt(x) = tµY (x) modulo Z.

By Palais’ theorem (Theorem 10.5.1 of [HN12]), G being simply connec-
ted, there exists an action of G on P with infinitesimal action Y → Y ]P .

2.1.4 Automorphisms

A Hamiltonian space automorphism is a pair (ϕM , ϕG) consisting of a sym-
plectomorphism of M and an automorphism of G such that

• ϕM (g.x) = ϕG(g).ϕM (x) for all g ∈ G and x ∈M

• 〈µ(ϕM (x)), TeϕG(ξ)〉 = 〈µ(x), ξ〉 for all x ∈M and ξ ∈ Lie(G).

1Indeed the action of any g ∈ G preserves β and sends Y ]P into (AdgY )]P so that

〈µ(x), Y 〉 = 〈β|x, Y ]P (x)〉 = 〈β|gx, (Adg Y )]P (gx)〉 = 〈µ(gx),Adg Y 〉.
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If furthermore ϕG(H) ⊂ H, then (ϕM , ϕG) induces an automorphism of
the reduced Hamiltonian space (M//H,G/H).

An automorphism of (P, β,G) is a pair (ϕP , ϕG) consisting of a prequan-
tum bundle automorphism of P and an automorphism of G such that

ϕP (g.z) = ϕG(g).ϕP (z) for all g ∈ G and z ∈ P.

Such an automorphism induces an automorphism of the associated Hamilto-
nian space. If ϕG(H) ⊂ H, then the pair (ϕP , ϕG) induces an automorphism
of (P//H,G/H).

2.2 Non-equivariant momentum

2.2.1 Central extension and prequantum bundle

Consider a Lie group G with a central extension

1→ T→ Ĝ→ G→ 1.

Since the extension is central, the adjoint action of any element in the image
of T→ Ĝ is trivial. Hence the adjoint and the coadjoint action of Ĝ factor
through actions of G.

Denote by j the injection from R = Lie(T) into Lie(Ĝ) and by

p : Lie(Ĝ)→ R

the adjoint map. Since the extension is central, for any g ∈ Ĝ, Adg j = j
and consequently Ad∗g p = p. So the coadjoint action of Ĝ preserves the level
sets of p.

Let (P, β) be a prequantum bundle of a symplectic manifold M . Assume
that Ĝ acts on P by prequantum bundle automorphisms in such a way
that the kernel of the projection Ĝ → G acts as the structure group of P .
Under this asumption, the action of Ĝ on M factors through an action of
G. Observe also that the momentum µ of the Ĝ-action defined by Equation
(2) takes its value in p−1(1).

Remark. Introduce a section of the projection Lie(Ĝ)→ Lie(G) so that the
Lie algebra of Ĝ identifies with Lie(G) ⊕ R and its dual with Lie(G)∗ ⊕ R.
Then

µ = (µM , 1) ∈ Lie(G)∗ ⊕ R.

The map µM is a momentum of the G-action on M not necessarily equiv-
ariant. Actually, µM is infinitesimally equivariant if and only if the section
of Lie(Ĝ)→ Lie(G) we consider is a Lie algebra morphism.
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2.2.2 Lifting the action

The current setting with central extension is convenient to lift the actions
admitting a momentum non equivariant. Indeed we have the following

Theorem 2.2. Let (P, β) be a prequantum bundle with a connected base
M . Assume that G is a connected Lie group acting on M by Hamiltonian
symplectomorphisms. Then the group Ĝ, consisting of the pairs (ϕ, g) ∈
Aut(P, β) × G such that ϕ lifts the action of g, is a central extension of G
by the structure group T of P .

Proof. The only difficulty is to show the existence of a pair (ϕ, g) for any g.
Let (gt, t ∈ [0, 1]) be a path of G from 1 to g. We are going to lift the action
of gt on M to the prequantum bundle. Let ξt := ġtg

−1
t ∈ Lie(G). Choose a

momentum µ : M → Lie(G) of the action. Then the flow ϕt at time t of the

non-autonomous vector field (ξ]Mt )hor + π∗µξt∂θ is well-defined and has the
form (3) with

θt(x) =

∫ t

0
µξs(gs.x) ds.

Furthermore ϕt ∈ Aut(P, β) and lifts gt.

It is not difficult to see that Ĝ has a unique structure of Lie group such
that the morphisms T → Ĝ and Ĝ → G are Lie group morphisms. So we
are exactly in the situation considered in Section 2.2.1

We do not need Theorem 2.2 for our application to gauge theory. Ac-
tually we will only consider the case of a (infinite dimensionnal) symplectic
vector space acted on by affine symplectomorphisms.

2.2.3 Symplectic reduction

Consider as in Section 2.2.1 a Lie group G with a central extension Ĝ by
T. Recall that the coadjoint action preserves the level sets of the projec-
tion p : Lie(Ĝ)∗ → R. Let O be a coadjoint orbit of Ĝ on the level set
p−1(1) endowed with the Kostant-Souriau form ωO. Then (O, ωO, Ĝ, jO) is
a Hamiltonian space, where the momentum is the injection jO from O into
Lie(Ĝ)∗. Denote by O− the coadjoint orbit O with the same action but with
opposite symplectic form and momentum.

Let (M,ω, Ĝ, µ) be a Hamiltonian space whose momentum takes its val-
ues in p−1(1). Consider the symplectic product M ×O−, with the diagonal
action of Ĝ. This action factors through an action of G. In addition, the mo-
mentum of this diagonal action takes its value in p−1(0) = ker p ' Lie(G)∗.
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So we obtain a Hamiltonian G-action on M ×O− with an equivariant mo-
mentum

ν : M ×O− → Lie(G)∗.

Under the assumption that G acts freely and properly on the null level-set
of ν, we may perform the symplectic quotient

(M ×O−)//G := ν−1(0)/G.

It has the alternative presentation µ−1(O)/G or µ−1(λ)/Gλ where λ ∈ O.

2.2.4 Reduction of prequantum bundle

Consider a prequantum bundle P of the coadjoint orbit (O, ωO, Ĝ, jO). Let
Ĝλ be the isotropy subgroup in Ĝ of λ ∈ O. Ĝλ preserves the fiber Pλ and
acts on it through a character Ĝλ → T with derivative

ĝλ → R, ξ → λ(ξ).

This follows from Equations (1) and (2). By Kostant Theorem [Kos70], this
defines a one to one correspondence between prequantizations of (O, ωO, Ĝ, jO)
and the characters of Ĝλ whose derivative is (11).

Given a prequantization of the coadjoint orbit and the same data as in
Section 2.2.3, we obtain a prequantum bundle over M ×O− with an action
of G. To describe this it is more convenient to use complex line bundles
instead of T-principal bundle: the prequantum bundle of O− is the dual
of the prequantum bundle LO of O, the prequantum bundle of M × O− is
the external tensor product L� L−1

O . Since the momentum of the diagonal
action takes its values in p−1(0), the action on L� L−1

O factors through an
action of G. So we are in the usual situation without central extension.
Hence, under the assumption that G acts freely and properly on ν−1(0), the
restriction of L� L−1

O to ν−1(0) descends to a prequantum bundle over the
symplectic quotient (M ×O−)//G.

Alternatively, we obtain this bundle by restricting L to µ−1(λ), tensor-
ing it by L−1

O |λ, and dividing out by Gλ. Observe that L|µ−1(λ) ⊗ L−1
O |λ is

isomorphic to L|µ−1(λ) as a bundle with connection, but not as a Gλ-bundle.

Actually the action of Ĝλ on LO|λ is given by a character whose deriva-
tive is the restriction of λ, so it doesn’t even descend to an action of Gλ.
Nevertheless if Gλ is connected, the action on L|µ−1(λ) ⊗ L−1

O |λ is uniquely
determined by the connection since its momentum vanishes. In this way we
can recover the prequantum bundle on the quotient without knowing LO,
but only its existence.
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We shall also consider powers of prequantum bundles. Let k be any non-
vanishing integer. Assume that (O, kωO) is endowed with a Ĝ-equivariant
prequantum bundle with associated momentum kjO. Then we may apply
the same construction by replacing L with Lk and we obtain a prequantum
bundle over the symplectic quotient (M×O−)//G whose curvature is k times
the symplectic form.

2.3 Affine symplectomorphisms

Let (E,ω) be a symplectic vector space and let G be the group EoSymp(E)
of affine symplectomorphisms. Assume that P is the trivial T-principal
bundle over E with connection −α+ dt where αx(ẋ) = 1

2ω(x, ẋ).

By Theorem 2.2, G has a central extension Ĝ acting on P . It is explicitely
given by Ĝ = G× T, the action being

(u,A, s).(x, t) =
(
u+Ax, t+ s+ 1

2ω(u,Ax)
)
, (u,A, s) ∈ Ĝ, (x, t) ∈ P

The product of Ĝ is (g, t).(h, s) = (gh, t+ s+ C(g, h)) where the cocycle is

C((u,A), (v,B)) = 1
2ω(u,Av).

The adjoint action is Ad(g,t)(X, s) = (AdgX, s+Dg(X)) with Dg given by

D(u,A)(v̇, Ḃ) = ω(u,Av̇)− 1
2ω(u, (AdA Ḃ)u)

The Lie bracket is [(X, t), (Y, s)] = ([X,Y ], c(X,Y )) with the cocycle

c((u̇, Ȧ), (v̇, Ḃ)) = ω(u̇, v̇).

Finally the momentum of (u̇, Ȧ, ṫ) is µ(u̇,Ȧ) + ṫ where

µ(u̇,Ȧ)(x) = ω(u̇, x) + 1
2ω(Ȧx, x).

µ is a momentum of the G-action which is not equivariant. Indeed

{µX , µY } = µ[X,Y ] + ω(u̇, v̇)

where X and Y are respectively (u̇, Ȧ) and (v̇, Ḃ).
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3 Chern-Simons bundle

In the following we apply the construction of the previous section to a space
of a connections acted on by a gauge group. We will treat these infinite di-
mensional manifold in a formal way. Nevertheless this can be made rigorous
by introducing the appropriate Sobolev completions as in [AB83], [Don92],
[MW98] and [Woo06].

The construction of the Chern-Simons bundle we present is mainly in-
spired from [MW98]. We start with the symplectic vector space of connec-
tions and the gauge group action. We do a first symplectic quotient and
obtain a Hamiltonian space with a prequantum bundle acted on by a cen-
tral extension of the gauge group of the boundary. After a second quotient
we get our moduli space and the Chern-Simons bundle.

Lie group notations

Let g be a compact simple Lie algebra, and G the corresponding compact
connected and simply-connected Lie group. Choose a maximal torus T of
G and denote by t its Lie algebra. The integral lattice Λ of t is defined
as the kernel of the restriction of the exponential map to t. Since G is
simply-connected, the coroot lattice and (2iπ)−1Λ are equal. The basic
inner product 〈·, ·〉 is the unique invariant inner product on g such that for
each long root α, its coroot satisfies 〈2iπα∨, 2iπα∨〉 = 2. Let P∨ be the dual
lattice of the root lattice. Recall that Λ ⊂ 2iπP∨ and that the exponential
map induces an isomorphism from 2iπP∨/Λ to the center of G.

We denote by θ, θ̄ ∈ Ω1(G, g) the left and right Maurer-Cartan forms.
Define the Cartan three-form

χ =
1

12
〈[θ, θ], θ〉 =

1

12
〈([θ̄, θ̄], θ̄〉

The cohomology class of χ is integral and is a generator of H3(G,Z).

3.1 The space of connections

Let Σ be an oriented compact surface with boundary possibly empty. Con-
sider the vector space Ω1(Σ, g) endowed with the symplectic product

ω(a, b) =

∫
Σ
〈a, b〉 (4)

Viewing the elements of Ω1(Σ, g) as connections on the trivial G-principal
bundle with base Σ, the gauge group G(Σ) = C∞(Σ, G) acts on Ω1(Σ, g).
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The action is explicitly given by

ag = Adg .a− g∗θ̄, a ∈ Ω1(Σ, G), g ∈ G(Σ)

Observe that each g acts as an affine symplectomorphism. So we can apply
the construction of section 2.3. Let P be the trivial principal bundle over
Ω1(Σ, g) with structure group T and connection form −C + dt where

Ca(ȧ) =
1

2
ω(a, ȧ). (5)

The group of automorphisms of P preserving the connection and lifting the
action of the gauge group is G(Σ)× T with product

(g, t).(h, s) =
(
gh, t+ s+

1

2

∫
Σ
〈g∗θ, h∗θ〉

)
. (6)

The action on P is

(g, t).(a, s) =
(
ag, s+ t− 1

2

∫
Σ
〈g∗θ, a〉

)
(7)

Let g(Σ) = C∞(Σ, g) be the Lie algebra of the gauge group. The adjoint
action and the Lie bracket of G(Σ)× T are given by

Ad(g,t)(ξ, s) =
(

Adg ξ, s−
∫
∂Σ
〈ξ, g∗θ〉

)
(8)[

(ξ, t), (η, s)
]

=
(

[ξ, η],

∫
∂Σ
〈ξ, dη〉

)
(9)

And the momentum of (ξ, 0) ∈ g(Σ)⊕ R is

µξ(a) =

∫
Σ
〈F (a), ξ〉 −

∫
∂Σ
〈a, ξ〉 (10)

where F (a) = da + 1
2 [a, a] is the curvature of a. The moment is not equiv-

ariant because of the boundary term. The previous formulas (6), (7), (8),
(9) and (10) follow from the corresponding ones in section 2.3.

Let G∂(Σ) be the normal subgroup of G(Σ) consisting of the gauge trans-
forms equal to the identity on the boundary of Σ. Its Lie algebra g∂(Σ)
consists of the ξ ∈ g(Σ) vanishing along ∂Σ. It is a subalgebra of the Lie
algebra g(Σ)⊕R with the bracket given by (9). Passing from Lie algebra to
Lie group, we obtain the following.
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Proposition 3.1. There exists a unique group morphism s : G∂(Σ) →
G(Σ)× T with differential the injection from g∂(Σ) into g(Σ)⊕R. For any
g ∈ G∂(Σ), we have s(g) = (g, t(g)) with

t(g) := −
∫

Σ×[0,1]
g̃∗χ

and g̃ a map from Σ × [0, 1] to G restricting to g on Σ × {1} and to the
identity on Σ× {0}.

Proof. Since π0(G) = π1(G) = π2(G) = 0, G∂(Σ) is connected, which proves
the uniqueness of s. This also shows the existence of the extension g̃ for any
g ∈ G∂(Σ). t(g) does not depend on the choice of g̃ because the cohomology
class of χ is integral. The fact that s is a group morphism can be directly
proved using Equation (6). Since the derivative of t vanishes at the identity,
the differential of s is the injection from g∂(Σ) into g(Σ)⊕ R.

Assume temporarily that Σ has no boundary and consider the quotient

Ms(Σ, G) := {a ∈ Ω1(Σ, g)/F (a) = 0 and a irreducible}/G(Σ)

Here a is irreducible means that the isotropy group of a consists of the
gauge transform with value in the center of G. Ms(Σ, G) is a smooth fi-
nite dimensional manifold. A proof is provided in [MW98], page 426. By
the previous consideration, Ms(Σ, G) is the smooth part of the symplectic
quotient Ω1(Σ, g)//G(Σ). It inherits by reduction a prequantum bundle, as
explained in Section 2.1.2.

3.2 Moduli space of flat bundles

Assume from now on that the boundary of Σ is not empty. The quotient

M∂ = {a ∈ Ω1(Σ, g)/F (a) = 0}/G∂(Σ)

is a smooth infinite dimensional Banach manifold, cf. [Woo06], page 317-
318. It is the symplectic quotient Ω1(Σ, g)//G∂(Σ) and has a residual action
of G(∂Σ) ' G(Σ)/G∂(Σ). Applying again the considerations of Section
2.1.2, M∂ inherits a prequantum bundle P∂ . Furthermore the group

Ĝ(∂Σ) := (G(Σ)× T)/s(G∂(Σ))

acts on P∂ by prequantum bundle automorphisms lifting the action of G(∂Σ)
on M∂ . Observe that we are exactly in the situation considered in Section
2.2.1 with the central extension:

0→ T→ Ĝ(∂Σ)→ G(∂Σ)→ 0.
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The Lie algebra of Ĝ(∂Σ) identifies with g(∂Σ)⊕ R in such a way that the
adjoint action and the Lie bracket are still given by formulas (8) and (9).
Let us identify the dual of g(∂Σ) with Ω1(∂Σ, g) through the pairing

(ξ, a)→
∫
∂Σ
〈ξ, a〉.

Then the coadjoint action factors through the following action of G(∂Σ)

g.(b, λ) = (Adg b+ λg∗θ̄, λ)

Furthermore the momentum is M∂ 3 [a]→ (−a|∂Σ, 1) ∈ Ω1(∂Σ, g)⊕ R.
The map from Ω1(∂Σ, g) to Ω1(∂Σ, g) ⊕ R sending a into (−a, 1) inter-

twins the gauge group action on the space of connection of ∂Σ with the
coadjoint action. For any connection a of ∂Σ, denote by hol∂i(a) the holon-
omy of the i-th boundary component of Σ. Then the map

Ω1(∂Σ, g)⊕ R→ Gr, (a, 1)→ (hol∂i(−a))

induces a one-to-one correspondance betwwen the coadjoint orbits of Ĝ(∂Σ)
at level 1 and the conjugacy classes of Gr. Let C1, . . ., Cr be conjugacy
classes of G and denote by O the corresponding coadjoint orbit. Doing the
symplectic reduction at level O as explained in Section 2.2.3, we obtain a
smooth symplectic finite dimensional manifoldMs(Σ, G, (Ci)). It has several
presentations

Ms(Σ, G, (Ci)) =
{

[a] ∈M∂/a irreducible, (−a|∂Σ, 1) ∈ O
}
/G(∂Σ)

'
{
a ∈ Ω1(Σ, g)/a irreducible, F (a) = 0, hol∂i(a) ∈ Ci, ∀i

}
/G(Σ)

'
{
a ∈ Ω1(Σ, g)/a irreducible, F (a) = 0, a|(∂Σ) = b

}
/G(Σ)b

Here b is any form in Ω1(∂Σ, g) whose holonomy along the i-th boundary
component of Σ is in Ci. G(Σ)b is the subgroup of G(Σ) consisting of the
elements whose restriction to the boundary fix b.

3.3 Integral coadjoint orbits

The next question is to know when the orbit O of Ĝ(∂Σ) corresponding to
the conjugacy classes Ci has a prequantization in the sense of Section 2.2.4.

Theorem 3.2. Let k be a non-vanishing integer. Then the coadjoint orbit
(O, kωO) is prequantizable if and only if there exists λ1, . . . , λr ∈ k−1Λ∗ such
that Ci = G. exp(λi) for each i. When it exists, the prequantization is unique
up to isomorphism.
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Because of the Lie bracket (9), we recognize that Ĝ(∂Σ) is isomorphic to
the universal central extension of the loop group of Gr. The prequantizable
coadjoint orbits of this group are well-known [PS86].

Proof. We prove the condition is necessary. Choose a component Γ of ∂Σ.
Consider the map from g to g(∂Σ)⊕ R sending ξ into the element equal to
ξ on Γ and vanishing on the other components. By Equation (9), this map
is a Lie algebra morphism. G being simply connected, we can integrate it

and we obtain a group morphism Φ from G to Ĝ(∂Σ). Denote by p the

projection from Ĝ(∂Σ) onto G(∂Σ). For any ξ ∈ g, p(Φ(exp(ξ))) is equal to
exp(ξ) on Γ and to the identity on the other components.

Assume now that (O, kωO) is endowed with a Ĝ(∂Σ)-prequantum bun-
dle P with momentum kjO, where jO is the injection from O into the Lie
algebra. Recall from Section 2.2.4 that for any (a, 1) ∈ O, the isotropy group

of (a, 1) acts on the fiber P(a,1) through a morphism Ĝ(∂Σ)(a,1) → T whose
derivative is kχa where

χa(ξ, t) =

∫
∂Σ
〈ξ, a〉+ t. (11)

We may choose a so that a = λdθ on Γ with λ ∈ t and θ a coordinate.
Then for any ξ ∈ t, p(Φ(exp(ξ))) fixes a so that Φ(exp(ξ)) fixes (a, 1). By
(11), Φ(exp(ξ)) acts on P(a,1) by mutiplication by k〈ξ, λ〉. When ξ ∈ Λ,
Φ(exp ξ) = id and consequently k〈ξ, λ〉 ∈ Z.

To show that the condition is sufficient recquires more work. We have

to prove the existence of a character of Ĝ(∂Σ)(a,1) with derivative kχa. A
proof is given in [BL99], section 4.2. The uniqueness of the prequantization

follows from the fact that Ĝ(∂Σ)(a,1) is connected.

3.4 Chern-Simons bundle

Assume that (O, kωO) is prequantizable. Following section 2.2.4, we obtain
a prequantization of the G(∂Σ)-Hamiltonian space M∂ × O−. We can not
directly perform the reduction because the center of G which acts trivially
on M∂ ×O− may act non trivially on the prequantum bundle. Recall that
the restriction of the exponential map to 2iπP∨ induces an isomorphism
from 2iπP∨/Λ onto the center of G.

Lemma 3.3. For any ξ ∈ 2iπP∨, exp(ξ) acts on the prequantum bundle of
M∂ ×O− by multiplication by −k

∑
i〈ξ, λi〉 ∈ T.
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Proof. By formula (7), exp(ξ) being in the center of G, for any t ∈ R,
exp(ξ, t) acts on the k-th power of the prequantum bundle of M∂ by mul-
tiplication by kt. On the other hand, since O is connected and exp(ξ) acts

trivially on it, exp(ξ, t) ∈ Ĝ(∂Σ) acts on the prequantum bundle of O by
multiplication by a constant in T. To compute this constant, introduce
a ∈ Ω1(∂Σ, g) such that a = λidθi on the ith boundary component with θi
a coordinate. So (a, 1) ∈ O. By equation (11), exp(ξ, t) acts on the fiber at
(a, 1) by multiplication by k(

∑
i〈ξ, λi〉+ t) ∈ T.

We are now ready to apply the reduction described in Section 2.2.4. We
obtain the following theorem.

Theorem 3.4. Let k ∈ N∗ and λ1, . . . , λr ∈ t. Assume that

kλi ∈ Λ∗, ∀i = 1, . . . , r and k
∑
i

〈ξ, λi〉 ∈ Z, ∀ξ ∈ 2iπP∨ (12)

Then the moduli spaceMs(Σ, G, (Ci)), where Ci = G. exp(λi) for i = 1, . . . , r,
inherits by reduction a prequantum bundle LkCS whose curvature is k times
the symplectic form.

We call the bundle LkCS the Chern-Simons bundle at level k. As it is
explained in section 2.2.4, the bundle has several presentations. In particular
we will use later the following one. Choose b ∈ Ω1(∂Σ, g) whose holonomy
for of the i-th component is in Ci. Recall thatMs(Σ, G, (Ci)) is the quotient
of

Asb :=
{
a ∈ Ω1(Σ, g)/ a irreducible, F (a) = 0, a|∂Σ = b

}
, (13)

by G(Σ)b. Consider as in section 3.1 the trivial prequantum bundle over
Ω1(Σ, g) with connection −C + dt. Restrict this bundle to Asb and lift the
action of G(Σ)b by parallel transport, we know this is possible by the pre-
vious considerations. Then dividing out by this action, we get the desired
Chern-Simons bundle.

Remark. When G is simply-laced, 2iπP∨ = Λ∗. So in this case, the second
assumption in (12) is equivalent to k(λ1 + . . .+ λr) ∈ Λ.

Remark. For r = 1, the second assumption in (12) implies the first one.

Remark. Assume that G = SU(2). Let us parametrize the conjugacy classes
by [0, 1], where t ∈ [0, 1] corresponds to exp(tρ).G with ρ = diag(iπ,−iπ).
Then Ms(G,Σ, (Ci)) is closed, that is Ms(Σ, G, (Ci)) = M(Σ, G, (Ci)), if
and only if

t1 ± . . .± tr /∈ Z
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for any choices of signs. The moduli space inherits by reduction a prequan-
tum bundle at level k if each ti belongs to k−1Z and k

∑
ti is even.

Remark. Assume that G = SU(n) and r = 1. Then the Chern-Simons bun-
dle is defined at level k iff the eigenvalues of each element of the conjugacy
class C are roots of unity of order k.

4 Modular group action

We start with the action of the preserving orientation diffeomorphisms of Σ
on the space of connections and its prequantum bundle. Using the explicit
formulas given in section 3.1, it is easy to see that we obtain an action
on M∂ and its prequantum bundle by prequantum bundle automorphisms.
We then proved that this induces an action of the modular group of Σ.
Finally we explain why the action of the modular group on the Chern-
Simons bundle does not factor through an action of the pure modular group
and why the action of the pure modular group on the moduli space does not
factor through an action of the modular group of the filled surface.

4.1 Diffeomorphism group and M∂

Introduce the group Diff+(Σ) of diffeomorphisms of Σ preserving the orien-
tation.

Proposition 4.1. Diff+(Σ) acts on the prequantum bundle P∂ of M∂ by

prequantum bundle automorphisms. It also acts on Ĝ(∂Σ) by group auto-
morphisms. These actions are compatible.

Proof. Diff+(Σ) acts by pull-back on Ω1(Σ, g). Because the orientation is
preserved, each diffeomorphism preserves the symplectic form (4) and the
trivial lift to the prequantum bundle Ω1(Σ, g)× T preserves the connection
one-form (5).

The group Diff+(Σ) acts also by pull-back on the gauge group G(Σ).
Lifting trivially this action to the extension G(Σ)× T, we obtain an action
by group automorphisms. This follows easily from Equation (6) giving the
product in G(Σ)×T. Furthermore this action is compatible with the action
on the prequantum bundle as follows from Equation (7).

Each diffeomorphism of Σ preserves the boundary, so its action on G(Σ)
preserves the subgroup G∂(Σ). Furthermore the morphism s : G∂(Σ) →
G(Σ) × T defined in Proposition 3.1 is Diff+(Σ) equivariant. Indeed the
Wess-Zumino-Witten term satisfies t(ϕ∗g) = t(g) for any diffeomorphism ϕ.

17



So we get an action of Diff+(Σ) on the central extension Ĝ(Σ) by group
automorphisms.

Then as a consequence of the general principles of Section 2.1.4, we
obtain an action of Diff+(Σ) on the prequantum bundle P∂ of M∂ by pre-
quantum bundle automorphisms, and an action on the central extension

Ĝ(∂Σ) by group automorphisms. These actions are compatible.

4.2 Modular group and M∂

Consider the group Diff+(Σ, ∂) of diffeomorphism preserving the orientation
and fixing the boundary points by points. Let Diff+

0 (Σ, ∂) be its subgroup
consisting of diffeomorphism isotopic to the identity. Define the modular
group of Σ by

Mod(Σ) = Diff+(Σ, ∂)/Diff0(Σ, ∂).

Proposition 4.2. Consider the actions of Diff+(Σ) introduced in Proposi-
tion 4.1. Then the action of the subgroup Diff+(Σ, ∂) on the prequantum
bundle P∂ factors through an action of Mod(Σ). The action of Diff+(Σ, ∂)

on Ĝ(∂Σ) is trivial.

The proof starts by the following Lemma.

Lemma 4.3. For all a ∈ Ω1(Σ, g) and isotopy (ϕt, t ∈ [0, 1]) in Diff+(Σ),
we have

ϕ∗ta = agt

where gt is the gauge transform such that g−1
t (x) is the holonomy of α along

the path s ∈ [0, 1]→ ϕst(x) ∈ Σ.

If (ϕt) is a isotopy in Diff+(Σ, ∂), the gauge transform g1 is trivial on
the boundary. So the action of Diff0(Σ, ∂) on M∂ is trivial.

Proof. It suffices to show that all paths γ of Σ have the same holonomy for
ϕ∗ta and agt . On one hand, we have

holγ(ϕ∗ta) = holϕt◦γ(a).

On the other hand, if x and y are the endpoints of γ,

holγ(agt) =gt(x) holγ(a)gt(y)−1

= holγ1(α).holγ(a). holγ2(a)

= holϕt◦γ(a)
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where γ1(s) = ϕt(1−s)(x) and γ2(s) = ϕst(x). At the last line, we used
that ϕt ◦ γ and the concatenation of γ1, γ and γ2 are isotopic with fixed
endpoints.

Lemma 4.4. For any a ∈ Ω1(Σ, g) with vanishing curvature and any isotopy
(ϕt, t ∈ [0, 1]) in Diff+(Σ), the parallel transport along the path t ∈ [0, 1]→
at := ϕ∗ta in the prequantum bundle of Ω1(Σ, g) sends (a, s) to (ϕ∗1a, s

′) with

s′ = s+
1

2

∫ 1

0
ds

∫
∂Σ
〈as, ιXsas〉

where Xs(ϕs(x)) = d
ds(ϕs(x)).

If (ϕt) is an isotopy in Diff+(Σ, ∂), the infinitesimal generatorXt vanishes
on the boundary, so the lift by parallel transport is trivial. Hence the action
of Diff0(Σ, ∂) on the prequantum bundle of M∂ is trivial. This proves the
first part of Proposition 4.2.

To prove that Diff+(Σ, ∂) acts trivially on Ĝ(∂Σ), consider first the
action on the Lie algebra of the central extension and then use that the
central extension is connected.

Proof of lemma 4.4. Recall that the connection of the prequantum bundle
of Ω1(Σ, g) is given in equation (5). So

s′ = s−
∫ 1

0
ds

1

2

∫
Σ

〈
as, ȧs

〉
One has ȧt = LXtat. Hence to conclude, it is sufficient to show that

〈b,LY b〉 = −d〈b, ιY b〉,

for any flat connection b ∈ Ω1(Σ, g) and vector field Y of Σ. Since we have

〈b,LY b〉 = 〈b, ιY db+ dιY b〉 = 〈b, ιY db〉+ 〈db, ιY b〉 − d〈b, ιY b〉.

it is sufficient to prove that 〈b, ιY db〉 = 〈db, ιY b〉 = 0. Since Σ is a surface,
〈b, db〉 = 0, so

〈ιY b, db〉 = 〈b, ιY db〉 (14)

We have
〈b, ιY [b, b]〉 = 〈b, 2[ιY b, b]〉 = −2〈[b, b], ιY b〉

Since b is flat, this gives

〈b, ιY db〉 = −2〈db, ιY b〉 (15)

Comparing equations (14) and (15), we obtain 〈ιY b, db〉 = 〈b, ιY db〉 = 0.
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4.3 Modular group and Chern-Simons bundle

Consider conjugacy classes C1, . . . , Cr of G and let

O := {(a, 1) ∈ Ω1(∂Σ, g)× R/ hol(a|(∂Σ)i) ∈ Ci, i = 1, . . . , r}

be the corresponding coadjoint orbit of Ĝ(∂Σ). Recall that the moduli space
is the symplectic reduction of the Hamiltonian space (M∂ × O−, G(∂Σ)).
Consider the trivial action of the modular group Mod(Σ) on the orbit. It
follows from the previous section that the modular group acts by automor-
phisms of Hamiltonian space on (M∂×O−, G(∂Σ)). So applying the general
principle of section 2.1.4, we get an action by symplectomorphisms of the
mapping class group on Ms(Σ, G, (Ci)).

Assume that the conjugacy classes satisfy (12), so that the orbit has a
prequantum bundle and we can define a Chern-Simons bundle by symplectic
reduction. Applying again the general principle of section 2.1.4, we obtain
an action of the modular group on the Chern-Simons bundle. So we have
proved the following proposition.

Proposition 4.5. Let C1, . . . , Cr be conjugacy classes of G satisfying (12).
Then the action of Mod(Σ) on P∂ given in Proposition 4.2 descends to an
action on the Chern-Simons bundle LkCS →Ms(Σ, G, (Ci)).

4.4 Pure modular group action

Recall that the pure mapping class group PMod(Σ) is the group of preserving
orientation diffeomorphisms of Σ that fix each boundary component as a set,
modulo isotopies in Diff+(Σ). One has a short exact sequence

1→ Zr → Mod(Σ)→ PMod(Σ)→ 1

where the image of the obvious generators of Zr are Dehn twists on the
boundary components.

Let C1, . . . , Cr be conjugacy classes of G. The action of Mod(Σ) on the
space Ms(Σ, G, (Ci)) factors through an action of the pure mapping class
group. This follows from lemma 4.3. Alternatively, it is a well known fact
that the pull-backs of the same bundle by homotopic maps are isomorphic.
So if we think ofMs(Σ, G, (Ci)) as a moduli space of principal bundles with
a discrete structure group, we obtain another proof that the mapping class
group action descend to the pure mapping class group.

Let us make now the integrality assumption (12) and consider the action
of the modular group on the Chern-Simons bundle LkCS → Ms(Σ, G, (Ci)).
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Let us parametrize a neighborhood of the j-th boundary component by
]0, 1] × S1 3 (ρ, θ). Let f ∈ C∞(]0, 1]) be a non-decreasing function equal
to 0 (resp. 1) on a neighborhood of 0 (resp. 1). Consider the twist T of
Σ given by T (ρ, θ) = (ρ, θ + f(ρ)) on ]0, 1] × S1 and equal to the identity
outside ]0, 1]× S1.

Proposition 4.6. The twist T acts on the Chern-Simons bundle LkCS →
Ms(Σ, G, (Ci)) by multiplication by k

2 |λj |
2 ∈ T.

Proof. We will use the presentation of the Chern-Simons bundle given after
Equation (13). Let b ∈ Ω1(∂Σ, g) be equal to λjdθ on the j-th boundary
component. Let us compute the action of T on the fiber of [a], where a ∈ Asb,
cf. definition (13).

Consider the family Φt, t ∈ [0, 1] of diffeomorphisms of Σ defined on
]0, 1]× S1 by Φt(ρ, θ) = (ρ, θ + f(tρ)) and equal to the identity everywhere
else. Observe that Φ∗ta belongs to Asb for all t. Furthermore Φ∗ta = agt with
gt a curve in G(Σ)b by lemma 4.3. The parallel transport along the curve
(Φ∗ta) in the prequantum bundle of Ω1(Σ, g) is the translation by −1

2 |λj |
2 by

lemma 4.4. So we have the following equality in the Chern-Simons bundle
of M(Σ, G, (Ci))

[a, s] =
[
T ∗a,−k

2
|λj |2 + s

]
By definition, the Dehn twist T sends [a, s] to [T ∗a, s].

4.5 Birman exact sequence and central conjugacy classes

Let Σ̄ be the closed surface obtained by filling the holes of Σ. There is a
natural epimorphism PMod(Σ)→ Mod(Σ̄). One can ask whether the action
of PMod(Σ) factors through an action of the mapping class group of Σ̄. We
will prove it is not true even in a very simple case.

Assume that the boundary of Σ is connected. Let c be an element of
the center Z(G) of G. The moduli space M(Σ, G, {c}) has the following
presentation

M(Σ, G, {c}) ' Mor(π1(Σ), G, c)/G

where Mor(π1(Σ), G, c) consists of the morphisms from the fundamental
group of Σ to G sending any loop homotopic to the boundary to c. The
group

H1(Σ̄, Z(G)) = Mor(π1(Σ̄), Z(G))

acts on Mor(π1(Σ̄), G, c) by pointwise multiplication: (ϕ.h)(γ) = ϕ(γ)h(γ).
This induces an action of H1(Σ̄, Z(G)) on M(Σ̄, G, {c}).
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Recall the Birman exact sequence:

0→ π1(Σ̄)→ PMod(Σ)→ Mod(Σ̄)→ 0

Introduce the morphism Φ : π1(Σ̄)→ H1(Σ̄, Z(G)) defined by:

Φ(γ)(α) = ci(γ,α), ∀α ∈ π1(Σ̄).

where i is the algebraic intersection number of π1(Σ̄).

Proposition 4.7. The action of π1(Σ̄) onM(Σ, G, {c}) factors through the
action of H1(Σ̄, Z(G)) by the morphism Φ.

Proof. Let us prove that for any γ ∈ π1(Σ̄), the actions of γ and Φ(γ) on
M(Σ, G, {c}) coincide. We may assume that γ is represented by a simple
curve of Σ since these element generate π1(Σ̄). Choose a neighborhood of
this curve diffeomorphic to an annulus S1 × [−1, 1], the marked point of Σ
being sent to (0, 0).

The morphism π1(Σ̄)→ PMod(Σ) in the Birman exact sequence maps γ
to the class of ST , where T (resp. S) is a diffeomorphism of Σ equal to the
identity outside of S1 × [−1, 0] (resp. S1 × [0, 1]), and whose restriction to
S1× [−1, 0] (resp. S1× [0, 1]) is a Dehn Twist. The two twists have opposite
orientations so that ST = id in Mod(Σ̄).

Denote by u, C− and C+ the paths of S1 × [−1, 1] defined by u(t) =
(−1, t) with t ∈ [−1, 1] and C±(t) = (exp(∓2iπt),±1) with t ∈ [0, 1].
The image of u by ST is isotopic with fixed endpoints to the concatena-
tion C+uC− ' uu−1C+uC−, and u−1C+uC− is a loop winding around the
marked point. Hence for any flat connection α whose holonomy around the
marked point is c, one has

holST (u)(α) = cholu(α).

So ST modify the holonomy of a path β intersecting transversally α by a
factor c (resp. c−1) at each positive (resp. negative) intersection.

Assume from now on that G = SU(2) and c = − id. For any closed curve
γ of Σ, introduce the function fγ :M(Σ,SU(2),− id)→ R defined by

fγ([α]) = arccos
(1

2
tr(holρ(γ))

)
where holρ(γ) is the holonomy of ρ along the curve γ.
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Lemma 4.8. Consider any simple non-separating closed curve γ of Σ. Then
the set of ρ ∈M(Σ,SU(2),− id) such that fγ(ρ) 6= 1/2 is nonempty.

Proof. Choose a maximal family of non-intersecting simple curves γ1, . . . ,
γN so that γ1 = γ and γN = ∂Σ, and the associated graph is the one given in
figure 1. It follows from Jeffrey-Weitsman [JW92] that for any t ∈ [1/4, 3/4],
there exists ρ ∈M(Σ,SU(2),− id) such that

fγ(ρ) = t, fγ2(ρ) = fγ3(ρ) = . . . = fγN−1(ρ) = 1/2, fγN (ρ) = 1.

Indeed the triples (t, t, 1/2), (1/2, 1/2, 1/2) and (1/2, 1/2, 1) satisfy the

γ1
γN

Figure 1: trivalent graph

quantum Clebsh-Gordon conditions

a+ b+ c 6 2, a 6 b+ c, b 6 c+ a, c 6 a+ b.

Consider ϕ ∈ H1(Σ̄, {± id}), γ ∈ π1(Σ̄) and ρ ∈ M(Σ,SU(2),− id).
Then it is easy to see that

fγ(ϕ.ρ) =

{
fγ(ρ) if ϕ(ρ) = id

1− fγ(ρ) if ϕ(ρ) = − id

Choose any non-seperating closed curve γ of Σ and ϕ ∈ H1(Σ̄, {± id}) such
that ϕ(γ) = − id. Then Lemma 4.8 implies that the action of ϕ is not trivial.
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