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Abstract

We establish two results on the large level limit of projective quan-
tum representations of surface mapping class groups obtained by quan-
tizing moduli spaces of flat SU(n)-bundle with Hitchin’s connection.
First we prove that these projective representations lift to asymptotic
representations. Second we show that under an infinitesimal rigidity
assumption the characters of these representations have an asymptotic
expansion. The leading order term of this expansion agrees with the
formula derived heuristically by E. Witten in Quantum field theory and
the Jones polynomial.

1 Introduction

In 1988, Witten introduced new invariants of three-dimensional manifolds
[33], by quantizing Chern-Simons field theory. Furthermore he showed that
these invariants have in the semi-classical limit, an asymptotic behavior
governed by the Chern-Simons invariants and the Reidemeister torsions.
The quantum invariants were later defined rigorously by Reshetikhin and
Turaev [30]. The asymptotic behavior predicted by Witten is now referred
to as the Witten asymptotic conjecture. The conjecture has been settled
for many Seifert manifolds [22], [31], [25], [18], [19], [17], [1]. Nevertheless,
since Thurston’s work, it is believed that hyperbolic manifolds are the most
prevalent type of three-dimensional manifold, so that Seifert manifolds are
relatively rare.
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Recently, J. Marché and the author proved the conjecture for an infinite
family of hyperbolic manifold, obtained by surgery on the figure eight knot
[13], [14]. In this paper, we adress the case of the mapping tori of surface
diffeomorphisms, whose quantum invariants will be defined by the Hitchin’s
connection [20].

More precisely, the monodromy of the Hitchin’s connection provides a
family of projective representation of the mapping class group of any surface
with genus > 2, called quantum representations. It is a general property of
topological quantum field theories that the trace of the quantum representa-
tion of a surface diffeomorphism φ is equal to the quantum invariant of the
mapping torus of φ. So the objective is to understand the asymptotic be-
haviour of the character of the quantum representations. But this does not
really make sense because the trace is not defined on the projective linear
group.

We will first prove that the projective representations coming from Hit-
chin’s connection can be naturally lifted to asymptotic representations. Then
we will show that the characters of these asymptotic representations have an
asymptotic expansion whose leading order terms agrees with the Witten’s
formula. For this second result we will need to assume that a specific mod-
uli space of flat bundle on the mapping torus is a 0-dimensional manifold.
This rigidity assumption is natural in the statement of Witten’s conjecture.
Consequently for any pseudo-Anosov diffeomorphism satisfying this rigidity
condition, we obtain a hyperbolic manifold satisfying the Witten asymptotic
conjecture.

Asymptotic representations

Let Σ be a compact connected oriented surface with genus > 2 and whose
boundary C is a circle. Let n, d be two coprime integers with n > 2.
Consider the moduli space M of flat SU(n)-principal bundles over Σ such
that the holonomy of C is equal to exp(2iπd/n) id.
M is a smooth compact manifold. It has a natural symplectic form ωM

[5] and is the base of a Hermitian line bundle L → M, equipped with a
connection of curvature n

i ωM [28]. Any class σ in the Teichmuller space T
of Σ induces a complex structures onM and L making them respectively a
Kähler manifold Mσ and a holomorphic line bundle Lσ. Introduce for any
positive integer k the vector space

Hk,σ = H0(Mσ,O(Lkσ))

of holomorphic sections of the k-th tensor power of Lσ. The vector spaces

2



(Hk,σ, σ ∈ T ) are the fibers of a smooth vector bundle Hk with base T . In
[20], Hitchin proved that Hk admits a natural projectively flat connection.

The mapping class group Mod = π0(Diff+(Σ, C)) acts naturally on Hk
preserving the Hitchin connection. Consequently, we obtain a projective
representation of Mod on any fiber of Hk. In the following, we work with a
fixed σ ∈ T and denote by

ρk : Mod→ PGl(Hk,σ), k ∈ N∗ (1)

the corresponding group morphism.
Our first result says that we may lift this projective representation to an

asymptotic representation. The precise statement involves the metaplectic
correction. According to [29],M admits a metaplectic structure Met. Since
M is simply connected, Met is unique up to isomorphism, and each symplec-
tomorphism of M lifts to an automorphism of Met, unique up to a plus or
minus sign. The mapping class group acting onM by symplectomorphisms,
we obtain a central extension

1→ Z/2Z→ M̃od→ Mod→ 1.

Theorem 1.1. There exists a sequence of maps ρ̃k : M̃od → GL(Hk,σ),
k ∈ N∗ such that the following diagrams commute

M̃od
ρ̃k−−−−→ GL(Hk,σ)y y

Mod
ρk−−−−→ PGL(Hk,σ)

and for any h, h′ ∈ M̃od,

ρ̃k(h)ρ̃k(h
′) = ck(h, h

′)ρ̃k(hh
′)

with ck(h, h
′) a sequence of C such that ck(h, h

′) = 1 +O(k−1).

To compare with, the projective representation on L2(Rn) of the sym-
plectic group Sp(2n,R) provided by the Stone-Von Neumann theorem, may
be lifted to a genuine representation of the metaplectic group.

Witten asymptotic conjecture

Our second result is an estimation of the trace of ρ̃k(h) for any h ∈ M̃od
satisfying some rigidity assumption. Let us introduce the various terms
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involved in the result. Let φ ∈ Diff+(Σ, C) be a representative of the image
of h in Mod. Denote by Σφ the mapping torus

Σφ := (Σ× R)/(x, t+ 1) ∼ (φ(x), t).

Embed C into Σφ by x→ [x, 0]. Introduce the moduli spaceM′ consisting of
isomorphism classes of flat SU(n)-principal bundle with base Σφ and whose
holonomy along C is exp(2iπd/n) Id.

Let Σ̄ ⊃ Σ be the closed surface obtained by gluing a disk D along C.
Extend φ to Σ̄ by setting φ(x) = x, for any x ∈ D. The mapping torus Σ̄φ

is a closed manifold containing Σφ. For any P ∈M′, the bundle associated
to P via the adjoint representation is a flat real vector bundle over Σφ,
which is the restriction of a flat real vector bundle AdP → Σ̄φ, unique up
to isomorphism.

Our rigidity assumption is that for any P ∈M′, the group H1(Σ̄φ,AdP )
is trivial. Since this cohomology group is isomorphic to the Zariski tangent
space of M′ at P , this assumption says that M′ is a smooth 0-dimensional
manifold. It is believed that this assumption is generically satisfied for
closed 3-dimensional manifolds. Nevertheless, we do not know any result
supporting this, cf. however [?] for the case of manifolds obtained from the
3-sphere by surgery on a knot.

Our result involves two quantities naturally associated to any element P
ofM′: the Reidemeister torsion of AdP and the Chern-Simons invariant of
P . For the former, note that the cohomology group Hk(Σ̄φ,AdP ) is trivial
for k = 0 or 2. So if it is also the case for k = 1, then the Reidemeister
torsion of AdP is a real number.

Introducing the Chern-Simons invariant of P requires some care because
Σφ is not closed. For any a ∈ Ω1(Σφ, su(n)), let

CS(a) =
1

4π

∫
Σφ

tr(da ∧ a+
2

3
a3).

Contrarily to the case of a closed manifold, it is false that the class modulo
2π of CS(a) only depends on the gauge class of a. Nevertheless let us fix a
diffeomorphism between C and R/Z, and identify accordingly the boundary
T of Σφ with (R/Z)2 3 (x, y). Then for any P ∈ M′, there exists a flat
connection a ∈ Ω1(Σφ, su(n)) inducing the flat structure of P and whose
restriction to the boundary T has the form pdx + qdy with p, q ∈ su(n).
Then one shows that the class modulo 2πZ of nφ(P ), where

φ(P ) := CS(a) +
1

4π
tr(pq), (2)
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only depends of P .

Theorem 1.2. Let φ ∈ Diff+(Σ, C) and h ∈ M̃od lifting the mapping class
of φ. Assume that for any P ∈ M′, the cohomology group H1(Σφ,AdP ) is
trivial. Then

tr
(
ρ̃k(h)

)
=

1

n

∑
P∈M′

im(h,P ) ein(k + 1)φ(P ) |τ(AdP )|1/2 +O(k−1)

where for any P ∈ M′, φ(P ) is defined as in equation (2), τ(AdP ) is the
Reidemeister torsion of AdP and m(h, P ) ∈ Z/4Z.

Let us state a local version of this result, which only requires that the
rigidity assumption is satisfied at some point. The endomorphism ρ̃k(h) of
Hk,σ has a Schwartz kernel, whose restriction to the diagonal identifies with
a function on M that we will denote by x→ ρ̃k(h)(x). We have

tr
(
ρ̃k(h)

)
=

∫
M
ρ̃k(h)(x) µ(x)

where µ is the Liouville measure of M. Instead of this integral, we will
estimate the following one

Ik(f) =

∫
M
f(x)ρ̃k(h)(x) µ(x), f ∈ C∞(M), (3)

with f conveniently chosen.
Let j be the injection of Σ into Σφ given by j(x) = [x, 0]. Introduce the

map p : M′ → M sending P into j∗P. Each fiber of p contains n points,
and the image of p is the set of fixed points of the action of φ on M.

Theorem 1.3. Let φ ∈ Diff+(Σ, C) and h ∈ M̃od lifting the mapping class
of φ. Let f ∈ C∞(M) and define Ik(f) by Equation (3).

• If the support of f is disjoint from p(M′), then Ik(f) = O(k−N ), for
any N .

• If for any P ∈ p−1(Supp(f)), H1(Σ̄φ,AdP ) = 0, then

Ik(f) =
1

n

∑
P∈p−1(Supp(f))

im(h,P ) ein(k+1)φ(P ) |τ(AdP )|1/2f(P )+O(k−1)

where m(h, P ), φ(P ) and τ(AdP ) are defined as in Theorem 1.2.
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Remark 1.1. Actually we will prove that the sequence of functions x →
ρ̃k(h)(x) admits a complete asymptotic expansion with an explicit leading
order term. The estimation in the previous theorems follows from applica-
tion of stationnary phase lemma. We have worked with the usual assumption
that the phase has non-degenerate critical points. When this assumption is
not satisfied, we can still give an estimate using a more refined version of
stationnary phase lemma.

Remark 1.2. In three-dimensional topological quantum field theory (cf. for
instance Chapter 4 of [6]), for any diffeomorphism φ of a closed surface
Σ, the quantum invariant Zk(Σφ) of the mapping torus is the trace of the
endomorphism Zk(φ) : Vk(Σ) → Vk(Σ). Actually, this equality holds up to
some multiplicative constant due to the anomaly.

A similar result is satisfied for a surface with a non-empty colored bound-
ary. More precisely, if ∂Σ is connected, we define a vector space Vk(Σ, c)
for any color c in the set Ck of admissible colors at level k for the group
SU(n). Furthermore for any diffeomorphism φ of Σ relative to the bound-
ary, we have an endomorphism Zk(φ, c) of Vk(Σ, c). On the other hand, the
boundary of Σφ being the torus T , Zk(Σφ) ∈ Vk(T ). The vector space Vk(T )
admits a canonical basis (Ψc, c ∈ Ck) called the Verlinde basis. The relation
between these invariants is the following

Tr(Zk(φ, c)) ≡ 〈Zk(Σφ),Ψc〉

up to a multiplicative power of exp(2iπc/24) where c is the central charge,

c = (n2 − 1)
k

k + n
.

The set of color Ck may be viewed as a set of conjugacy classes of SU(n).
Furthermore cd = {exp(2iπd/n) id} ∈ Ck for any k.

It is likely that there exists an isomorphism between Vk(Σ, cd) and Hk,σ
such that Zk(φ) is sent to ρ̃k(h). Indeed, it has been proved in [24], [7]
that the Hitchin connection is isomorphic to the connection of conformal
block theory. Furthermore the topological quantum field theory defined from
conformal block theory is equivalent to the Reshetikhin-Turaev construction,
[6] and [2]. Observe also that the extension M̃od should be related to the
asymptotics of the anomaly.

Proofs and comments

For the proof of the three theorems, we have to gather and adapt various
results in the litterature related to Hitchin connections [20] [4], to the semi-
classical limit of Kähler quantization [10] [15] and to the geometry of the
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moduli spaces of flat bundles [16] [26] [12]. More precisely, for Theorem
1.1, we consider the connection introduced by Andersen, Gammelgaard and
Lauridsen [4]. We show that this connection is the same as the one intro-
duced by Hitchin [20] up to a projective correction, and we prove that it
is asymptotically flat. This last fact is based on a miraculous cancellation
that was already observed in our previous work [10]. The proof of Theo-
rems 1.2, 1.3 is based on microlocal analysis technics for the quantization
of Kähler manifolds. First, we deduce from [10] that the parallel transport
for the Hitchin connection is similar to a Fourier integral operator. We then
estimate the trace of these operators by applying a semi-classical Lefschetz
formula [15]. Finally we interpret the various quantities appearing in the
asymptotic expansion as invariants of mapping tori.

The proof of the Witten asymptotic conjecture for the manifolds ob-
tained by surgery on the figure eight knot is also based on microlocal tech-
nics. Interestingly the tools from microlocal analysis are needed for the
hyperbolic manifolds, whereas the case of Seifert manifolds can be handled
with methods more elementary. For instance it is instructive to compare
with the previous work of Andersen [1] for the mapping tori of finite order
diffeomorphisms. In this case, on one hand, the mapping torus is Seifert.
On the other hand, the surface has a complex structure preserved by the
diffeomorphism. Consequently the action on the quantum space is defined
without using the Hitchin connection and the trace can be estimated with
the standard holomorphic Lefschetz formula. To the contrary, consider a
pseudo-Anosov diffeomorphism φ of a surface Σ. On one hand, by Thurston’s
theorem, its mapping torus is hyperbolic. On the other hand, by the Nielsen-
Thurston classification, such a diffeomorphism does not fix any point of the
Teichmüller space. So the operator Zk(φ) : Vk(Σ) → Vk(Σ) is a quantiza-
tion of a symplectomorphism of the moduli space which does not preserve
a priori a complex structure. In microlocal analysis, the operators quan-
tizing symplectomorphisms which do not preserve any polarization, are an
essential tool, introduced by Hormander in [21] under the name of Fourier
integral operators.

This work suggests further developpments:

• extend this result to Hitchin’s connection for moduli spaces with parabolic
datas.

• understand better the relation between combinatorial topological quan-
tum field theory and the Hitchin’s connection

• computeH1(X,AdF ) for flatG-principal bundle F on three-dimensional
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manifold X.

Acknowledgements — I am grateful to Richard Wentworth for helpful
discussions and to Chris Woodward for answering my questions about his
work.

2 Hitchin’s connection

2.1 Holomorphic differential operators

Let M be a complex manifold and F → M be a holomorphic line bundle.
Consider the algebra of differential operators acting on Γ(M,F ). It is the
direct sum of the subalgebra of holomorphic differential operators and the
left-ideal I generated by the anti-holomorphic derivations. More explicitly,
introduce a local holomorphic trivialization of F and a system (zi) of holo-
morphic coordinates of M . Then each differential operator is of the form∑

α∈Zn
aα∂

α(1)
z1

...∂
α(n)
zn +

∑
α,β∈Zn,β 6=0

aα,β∂
α(1)
z1

...∂
α(n)
zn ∂

β(1)
z̄1

...∂
β(n)
z̄n ,

where the coefficients aα and aα,β are smooth functions. The first summand
is a holomorphic differential operator and the second one belongs to the
ideal I.

We denote by Dhol
k (F ) the bundle whose sections are the holomorphic

differential operators of order k acting on Γ(M,F ). Dhol
k (F ) has a natural

holomorphic structure, such that its holomorphic sections are the holomor-
phic differential operators with holomorphic coefficients. Observe that for
any holomorphic differential operator P and smooth section Z of T 1,0M ,
one has

DZ̄P = [DZ̄ , P ] mod I (4)

where DZ̄ denote the derivative of sections of Dhol
k (F ) (resp. F ) on the left

hand side (resp. right hand side).

2.2 Variations of complex structures

Let U and M be two manifolds. Consider a smooth family (ju)u∈U of com-
plex structures of M . Denote by Mu the complex manifold ({u} ×M, ju).
Let E be the complex vector bundle over U ×M with fibers

Eu,x = T 1,0
x Mu.
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We call E the relative holomorphic tangent bundle. We shall often consider
the decomposition of the tangent space of U ×M given by

Tu,x(U ×M)⊗ C = (TuU ⊗ C)⊕ Eu,x ⊕ Ēu,x

Let X be a vector field of U . Since j2
u = − id, the derivative of (ju) with

respect to X has the form

X.j = µ(X) + µ̄(X)

where µ is a section of Hom(Ē, E). Let Z be a smooth section of E. Consider
Z and X as vector fields of U ×M . Observe that the Lie bracket [X, Z̄] is
tangent to E ⊕ Ē. Furthermore,

[X, Z̄] = i
2µ(X)(Z̄) mod Ē. (5)

which follows easily from the fact that the projection from E ⊕ Ē onto Ē is
1
2(id +ij).

2.3 Connection

Consider as previously two manifolds U andM with a smooth family (ju)u∈U
of complex structures. Let (Fu → Mu)u∈U be a smooth family of holomor-
phic line bundles. Assume that M is compact and that the dimension of the
space H0(Mu, Fu) of holomorphic sections does not depend on u. Then by
elliptic regularity, there exists a smooth vector bundle H with base U and
fibers H0(Mu, Fu), such that its smooth sections are the smooth families of
holomorphic sections (cf [8], chapter 9.2).

Let F and Dhol
2 (F ) be the bundles over U ×M which restrict over any

slice Mu to Fu and Dhol
2 (Fu) respectively. If s is a section of F , we denote

by ∂̄s the section of F ⊗ Ē∗ which restricts over Mu to ∂̄usu. So a smooth
section of H is by definition a smooth section of F satisfying ∂̄s = 0. We
use the same notation with Dhol

2 (F ) and more generally with any family of
holomorphic bundles.

Introduce a connection ∇ on F , such that its restriction to any Mu is
compatible with the holomorphic structure of Fu. Introduce a section P of
Dhol

2 (F )⊗ p∗(T ∗U) where p is the projection from U ×M to U . We would
like to define a connection on H → U whose covariant derivative in the
direction of X ∈ Γ(U, TU) is given by

∇X + P (X). (6)

The following lemma provides a sufficient condition for the connection to be
well-defined. We denote by R∇ the curvature of ∇.
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Proposition 2.1. Assume that for any section Z of E, we have

[∂̄P (X)](Z̄) =
i

2
∇µ(X)(Z̄) +R∇(X, Z̄)

Then if s is a section of F whose restriction to each Mu is holomorphic, the
same holds for (∇X + P (X))s.

Proof. We show that the assumption implies that for any smooth section s
of F and any point u of U(

[∇Z̄ ,∇X + P (X)]s
)
u

= Qusu

with Qu a differential operator of Fu in the ideal Iu generated by the anti-
holomorphic derivations. By (5), we have that

[∇Z̄ ,∇X ] = − i
2∇µ(X)(Z̄) −R∇(X, Z̄) mod I

By (4), we have that

[∇Z̄ , P (X)] = [∂̄P (X)](Z̄) mod I.

The conclusion follows.

2.4 Unicity

Let us discuss the unicity of a connection of the form (6) and satisfying the
assumption of proposition 2.1. Assume that M is connected and that for
any u, Mu has no holomorphic vector field. Suppose that (∇, P ) satisfies
the hypothesis of proposition 2.1 for any vector field X. Let (∇′, P ′) be
another pair satisfying the same assumption. Assume that for any u ∈ U
and X ∈ TuU , P (X)u and P ′(X)u are second-order differential operators
with the same principal symbol. Then there exists a form α ∈ Ω1(U) such
that

∇′X + P ′(X) = ∇X + P (X) + α(X) id (7)

for any vector field X of U .
Indeed, ∇ and ∇′ differ by a one-form β ∈ Ω1(U ×M,EndF ) which

vanishes in the directions tangent to Ē. Let β̃ be the section of EndF ⊗
p∗T ∗U such that β(X) = β̃(X), for any vector field X of U . Then it is easily
checked that the pair (∇′−β, P ′+ β̃) satisfies the assumption of proposition
2.1. Since

∇′X + P ′(X) = ∇′X − β(X) + P ′(X) + β̃(X) = ∇X + P ′(X) + β̃(X)
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we may assume that ∇ = ∇′. Next, the hypothesis of proposition 2.1 implies
that

∂̄(P (X)− P ′(X)) = 0 (8)

Since P (X)u and P ′(X)u have the same principal symbol, P (X)u−P ′(X)u
is a first order holomorphic differential operator. Since H0(Mu, Eu) = 0,
equation (8) implies that P (X)u − P ′(X)u is a zero-order holomorphic dif-
ferential operator. In other words, P (X)u−P ′(X)u is the multiplication by
a function. By equation (8), this function is holomorphic, hence constant
because M is compact and connected. This proves that P ′ = P + α with
α ∈ Ω1(U). The desired equation (7) follows.

2.5 A preliminary computation

To apply proposition 2.1, we need to compute the ∂̄ of some second order
differential operator. The parameter space doesn’t enter in the calculation,
so we assume in this subsection that U = {pt}. Suppose that the complex
manifold M has a Kähler metric, and that the holomorphic line bundle F
has a Hermitian metric. Hence F and T 1,0M have canonical connections
compatible with the metric and the holomorphic structure (Chern connec-
tion). Let G be a section of the second symmetric tensor power S2(T 1,0M).
Define the holomorphic differential operator acting on the sections of F

∆Gs = TrEnd(T 1,0M)(∇T 1,0M⊗F (Gy∇F s)) (9)

More explicitly if ∂1, . . . , ∂n is a local frame of T 1,0M and `1, . . . `n is the
dual frame,

∆Gs =
∑
k

`k(∇T
1,0M⊗F

k (
∑
i,j

Gij∂i ⊗∇Fj s))

where ∇i is the covariant derivative with respect to ∂i and G =
∑
Gij∂i⊗∂j .

Proposition 2.2. Assume that G is a holomorphic section of S2(T 1,0M),
then

∂̄∆G =
∑
i,j

(2RF +Rdet)(·, ∂i)Gij∇Fj + θF

where RF is the curvature of ∇F , Rdet is the curvature of the Chern con-
nection of ∧nT 1,0M and θF is the one-form of M given by

θF (Z̄) =
∑
k,i,j

`k(∇T
1,0M

k (RF (Z̄, ∂i)Gij∂j))

for any (local) holomorphic section Z of T 1,0M .
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This is a slight generalization of a computation in [20], page 364. The
assumption that the metric is Kähler is used for certain symmetries of the
curvature tensor of T 1,0M .

3 Application to Kähler quantization

3.1 Without metaplectic correction

Assume now that M is a symplectic manifold with symplectic form ω, and
that (ju)u∈U is a family of compatible complex structures. So each Mu is a
Kähler manifold.

Let LM →M be a prequantum bundle, that is a Hermitian line bundle
with a connection of curvature 1

iω. For any u, denote by Lu → Mu the
bundle LM with the holomorphic structure compatible with the connection
and ju. Denote by L the pull-back of LM by the projection U ×M → M
and endow L with the pull-back connection.

Our aim is to apply the construction of chapter 2.3 to the bundle F = Lk.
So consider the vector space

Hk,u = H0(Mu, L
k
u).

It follows from Kodaira vanishing theorem and Riemann-Roch theorem that
for any compact set C of U , if k is sufficiently large, the dimension of Hk,u
is constant when u runs over C. Let us do the following global assumption:
there exists k0 such that the dimension of Hk,u does not depend on u ∈
U when k > k0. Then for k > k0, the spaces Hk,u are the fibers of a
smooth vector bundle Hk over U , whose sections are the smooth families of
holomorphic sections. In the sequel we always assume that k > k0.

For any point u ∈ U and any tangent vector X ∈ TuU , introduce the
section µ(X) of Hom(T 0,1Mu, T

1,0Mu) measuring the variation of the com-
plex structure as in Section 2.2. Let G(X) be the section of S2(T 1,0Mu)
such that∑

i,j

Gij(X)ω(∂i, ·)∂j = µ(X)u, G(X) = Gij(X)∂i ⊗ ∂j (10)

G(X) is symmetric because ω and ju are compatible.

Theorem 3.1 ([20]). Assume that M is simply connected, c1(M) = λ
i [ω] for

some real number λ, and the section G(X) defined in (10) is holomorphic
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for any X ∈ TU . Then for any k > k0, the bundle Hk → U admits a
connection ∇Hk of the form

∇HkX := ∇LkX + Pk(X), X ∈ Γ(U, TU)

with Pk ∈ Dhol
2 (Lk)⊗ p∗(T ∗U). Furthermore, the principal symbol of Pk(X)

is (4k + 2λ)−1G(X).

Since the exposition in [20] is different, we outline a proof. It is based
on the computations pages 365-366 of [20].

Proof. Introduce a familly of Ricci potentials F ∈ C∞(U ×M) satisfying

2i∂u∂̄uF = Rdet
u − λω, ∀u ∈ U.

For any X ∈ TuU , let

ν(X) = G(X)y∂F =
∑

Gij(X)(∂iF )∂j .

Then it follows from Proposition 2.2 that for any section Z of Eu,[
∂̄(∆G(X) + 2i∇Lkν(X))

]
(Z̄) = i(2k + λ)∇µ(X)(Z̄) + kθ(X)(Z̄)

with θ(X) a (0, 1)-form of Mu independent of k. Using that ∂̄2(∆G(X) +

2i∇Lkν(X)) = 0 for any k, we deduce that ∂̄θ(X) = 0. Since M is simply con-

nected, by Hodge decomposition, the Dolbeault cohomology groupH1,0(Mu)
vanishes for any u. So there exists a unique function f(X) such that

∂̄f(X) = θ(X),

∫
M
f(X) ωn = 0

Finally set Pk(X) = (4k+ 2λ)−1
(
∆G(X) + 2i∇Lkν(X)−kf(X)

)
. Then we have

∂̄Pk(X) =
i

2
∇µ(X)

and we conclude with Proposition 2.1.

3.2 With metaplectic correction

Introduce the same data as in the previous section. Consider furthermore a
pair (δ, ϕ) which consists of a line bundle δ over U×M with an isomorphism
ϕ from δ2 to ∧topE∗. If U is contractible, such a pair exists if and only if
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the second Stiefel-Whitney class of M vanishes. The restriction δu of δ to
Mu has holomorphic and Hermitian structures determined by the condition
that the isomorphism ϕu : δ2

u → ∧topE∗u is an isomorphism of Hermitian
holomorphic bundles. We call (δu, ϕu)u∈U a family of half-form bundles.

Let us define a connection on δ. First consider the connection ∇E⊕Ē on
E⊕Ē such that its restriction to each slice Mu is the Levi-Civita connection
of the Kähler metric ofMu and the covariant derivative in a direction tangent
to U is the obvious one. This makes sense because the restriction of E ⊕ Ē
to U × {x} is the trivial bundle with fiber TxM ⊗ C. Next we consider the
following connection on E

∇E = π ◦ ∇E⊕Ē ,

where π = 1
2(id−ij) is the projection of E ⊕ Ē onto E with kernel Ē.

This defines a connection on the associated bundle ∧topE∗ and finally a
connection ∇δ on δ.

Instead of Lk, consider the bundle F = Lk ⊗ δ. Introduce the vector
space

Hmk,u = H0(Mu, L
k
u ⊗ δu).

Here the subscript m stands for metaplectic correction. Assume that there
exists k0 such that the dimension of Hmk,u does not depend on u ∈ U when
k > k0. Let Hmk → U be the bundle with fibers Hmk,u, u ∈ U .

Theorem 3.2 ([4]). Assume that M is simply connected and the section
G(X) defined in (10) is holomorphic for any X ∈ TU . Then for any k > k0,
the bundle Hmk → U admits a connection ∇Hk of the form

∇HkX := ∇Lk⊗δX +
1

4k

(
∆G(X) −H(X)

)
, X ∈ Γ(U, TU) (11)

where ∆G(X) is given by the equations (9) and H ∈ Γ(U ×M,p∗(T ∗U)) is
independent of k.

We outline the proof, which is similar to the one of Theorem 3.1.

Proof. By proposition 2.2, we have for any X ∈ TuU and section Z of Eu,[
∂̄∆G(X)

]
(Z̄) = 2ik∇Lk⊗δ

µ(X)(Z̄)
+ kθLu(Z̄) + θδu(Z̄)

It is proved in [4] that 4Rδ(X, Z̄) = θLu(Z̄). So[
∂̄∆G(X)

]
(Z̄) = 4k

[
i
2∇

Lk⊗δ
µ(X)(Z̄)

+Rδ(X, Z̄)
]

+ θδu(Z̄)

14



For k = 0, this implies that ∂̄θδu = 0. So M being simply connected, there
exists a function H(X) such that

∂̄H(X) = θδu ,

∫
M
H(X) ωn = 0.

We conclude with Proposition 2.1.

4 An algebra of Toeplitz operators

Consider a complex compact manifold M and a family of Hermitian holo-
morphic line bundles F = (Fj → M)j∈J . For any j ∈ J , let Op(Fj) be
the algebra of holomorphic differential operators acting on the sections of
Fj . Consider the subalgebra Opsc(F ) of

∏
j∈J Op(Fj) consisting of the fam-

ily (Pj) satisfying the following condition: there exists ` such that for any
complex coordinate system (U, z1, . . . , zn), there exists a family (aα)|α|6` of
C∞(U) such that we have over U

Pj =
∑
α

aα
(
∇Fi1

)α(1)
. . .
(
∇Fin

)α(n)
, ∀j ∈ J.

Here ∇Fj is the Chern connection of Fj , and ∇Fj` is the covariant derivative
with respect to ∂z` . To check that Opsc(F ) is a subalgebra, it suffices to use

that [∇Fjk ,∇
Fj
` ] = 0.

Let µ be a measure of M . We define a scalar product on Γ(M,Fj) by
integrating the pointwise scalar product of sections against µ. Denote by
Πj the orthogonal projector of Γ(M,Fj) onto its subspace of holomorphic
sections H0(M,Fj).

Proposition 4.1. For any (Pj) ∈ Opsc(F ), there exists a function f ∈
C∞(M) such that for any j ∈ J

ΠjPjΠj = ΠjMfΠj

where Mf is multiplication operator of Γ(M,Fj) with multiplicator f .

The proof is based on a trick due to Tuynman [32], a similar result was
also used in [3].

Proof. Let (Pj) ∈ Op(F ). Observe that all the Pj have the same order `
and the same symbol σ. This symbol is a section of S`(T 1,0M). Using a
partition of unity, we can write σ under the form

σ =
∑

i=1,...,r

Xi
1 ⊗ . . .⊗Xi

`

15



where the Xi
k are smooth sections of T 1,0M . Since

Pj −
∑

i=1,...,r

∇Fj
Xi

1
. . .∇Fj

Xi
`

has order `− 1, it suffices to prove the proposition for each operator

∇Fj
Xi

1
. . .∇Fj

Xi
`

.

Let s1, s2 be smooth sections of Fj . Assume that s2 is holomorphic. Then
for any smooth section X of T 1,0M , we have

X.[(s1, s2)µ] = (∇FiX s1, s2)µ+ (s1, s2)(divX)µ

So if we denote by (·, ·)Fj the scalar product of sections we obtain

(∇FjX s1, s2)Fj = (fs1, s2)Fj

with f = −divX. So if X1, . . . , X` are smooth sections of T 1,0M , then

(∇FjX1
. . .∇FjX`s1, s2)Fj =(f1∇

Fj
X2
. . .∇FjX`s1, s2)Fj

=(∇Fjf1X2
. . .∇FjX`s1, s2)Fj

. . .

=(fs1, s2)Fj

where f is a function which depends only on µ and the vector fields Xi.
This proves the result.

5 Asymptotic flatness

In this part we consider the same data as in section 3.2. We will prove that
the curvature of the connection ∇Hk defined in theorem 3.2 vanishes in the
semi-classical limit k → ∞. For any vector field X of U , denote by Pk(X)
the operator

Pk(X) = 1
4(∆G(X) −H(X))

The curvature of (11) in the directions X,Y ∈ Γ(U, TU) is

Rk(X,Y ) =
[
∇Lk⊗δX + k−1Pk(X),∇Lk⊗δY + k−1Pk(Y )

]
−∇Lk⊗δ[X,Y ] − k

−1Pk([X,Y ]).

Our aim is to prove that the connection is asymptotically flat in the following
sense.
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Theorem 5.1. For any vector fields X, Y of U , any compact set K of U ,
there exists C > 0, such that the curvature at any point u of U ,

Rk(X,Y )(u) : Hmk,u → Hmk,u,

has a uniform norm bounded by Ck−1.

Recall that the algebra of differential operators acting on the sections of
a holomorphic fiber bundle is the direct sum of the algebra of holomorphic
differential operators and the left ideal generated by the anti-holomorphic
vector fields. If Qu is a differential operator acting on Γ(Mu, L

k
u ⊗ δu), we

denote by QHol
u its holomorphic part. We use the same notations for families

(Qu)u∈U . We denote by Opsc the space of families

(Qu,k : Γ(Mu, L
k
u ⊗ δu)→ Γ(Mu, L

k
u ⊗ δu))u∈U,k>k0

consisting of differential operators such that for any k, Qu,k depends smoothly
on u and for any u, (Qu,k)k belongs to the algebra Opsc(L

k
u ⊗ δu, k > k0)

introduced in the previous section.

Theorem 5.2. For any vector fields X,Y of U , one has

Rk(X,Y )Hol = k−1P1,k(X,Y ) + k−2P2,k(X,Y ), ∀k > k0

where the families (P1,k(X,Y ))k and (P2,k(X,Y ))k belong to Opsc.

Theorem 5.1 follows from Theorem 5.2. Indeed by proposition 4.1, for
any family (Qu,k) of Opsc, there exists a continuous function C : U → R
such that for any k and u, the uniform norm of

Πu,kQu,k : H0(Mu, L
k
u ⊗ δu)→ H0(Mu, L

k
u ⊗ δu)

is bounded by C(u).
The remainder of this section is devoted to the proof of theorem 5.2.

Since L is the pull-back of a bundle over M , its curvature in the directions
tangent to U vanishes. For the half-form bundle, the curvature Rδ depends
on the derivative of the complex structure. Recall that we denote by µ(X)
the variation of the complex structure, cf. section 2.2.

Proposition 5.3. For any vector field X,Y of U ,

Rδ(X,Y ) =
1

8
tr(µ(X)µ(Y )− µ(Y )µ(X)).
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The proof is easy, cf. as instance the proof of theorem 7.2 in [10].

Proposition 5.4. For any vector fields X,Y of U we have[
∇Lk⊗δX , Pk(Y )

]Hol
=
k

8
tr(µ(Y )µ(X)) + Pk(X,Y )

where the family (Pk(X,Y )) belongs to Opsc.

Proof. Introduce a local frame ∂1, . . . , ∂n of the relative holomorphic tangent
bundle of M × U . Denote by ∇k the covariant derivative of Lk ⊗ δ and by
∇ki the covariant derivative in the direction of ∂i. In the sequel, repeated
indices i and j are summed over. We have

∆G(Y ) = fj∇kj +Gi,j∇ki∇kj . (12)

where the coefficients fi and Gij do not depend on k. Then[
∇kX , fj∇kj

]
= (X.fj)∇kj + fj∇k[X,∂j ] + fjR

k(X, ∂j) (13)

where Rk is the curvature of ∇k. The first term of the right hand side clearly
belongs to Opsc, the third term also because

Rk(X, ∂j) = Rδ(X, ∂j)

is independent of k. For the second term, observe that the holomorphic part
of ∇k[X,∂j ] is a linear combination of the ∇kj with smooth coefficients which

do not depend on k. So the holomorphic part of (13) belongs to Opsc. Let
us compute the bracket of ∇kX with the second term of (12).[
∇kX , Gij∇ki∇kj

]
= (X.Gij)∇ki∇kj +Gij

[
∇kX ,∇ki

]
∇kj +Gij∇ki

[
∇kX ,∇kj

]
The first term of the right hand side belongs to Opsc. The same holds for
the holomorphic part of the third term because

Gij∇ki
[
∇kX ,∇kj

]
= Gij∇ki∇k[X,∂j ] +Gij∇kiRk(X, ∂j).

and we can argue as we did for (13). The second term is equal to

Gij
[
∇kX ,∇ki

]
∇kj =Gij∇k[X,∂i]∇

k
j +GijR

k(X, ∂i)∇kj
=Gij∇kj∇k[X,∂i] +Gij∇k[[X,∂i],∂j ] +GijR

k([X, ∂i], ∂j)

+GijR
k(X, ∂i)∇kj
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All the terms of this last sum have a holomorphic part in Opsc except the
third one which is equal to

GijR
k([X, ∂i], ∂j) = GijR

δ([X, ∂i], ∂j) +
k

i
Gijω([X, ∂i], ∂j)

Since µ(Y ) = Gijω(∂i, ·)∂j , we have

tr(µ(Y )µ(X)) = Gijω(∂i, µ(X)(∂j))

Using that [X, ∂i] = − i
2µ(X)(∂i) modulo E, it follows that

k

i
Gijω([X, ∂i], ∂j) =

k

2
tr(µ(Y )µ(X))

Collecting the various terms, we obtain the result.

Let us conclude the proof of theorem 5.2. We have

Rk(X,Y ) =Rδ(X,Y ) +
1

k

[
∇Lk⊗δX , Pk(Y )

]
− 1

k

[
∇Lk⊗δY , Pk(X)

]
+

1

k2

[
Pk(X), Pk(Y )

]
− 1

k
Pk([X,Y ])

By propositions 5.3 and 5.4, the holomorphic part of the sum of the first
three terms is in k−1Opsc. The last two terms belong respectively to k−2Opsc
and k−1Opsc.

6 Semi-classical connection

Let (M,ω) be a compact symplectic manifold with a prequantum bundle
LM → M . Consider a manifold U and a smooth family (ju, δu, ϕu)u∈U
consisting of compatible complex structures with half-form bundles.

We adopt the same notations and conventions as in sections 2.2 and 3.1.
Namely, Mu = {u}×M is endowed with the complex structure ju, Lu →Mu

is the prequantum bundle with the holomorphic structure induced by ju. We
denote by L, δ and E the bundles over U×M whose restrictions to each Mu

are Lu, δu and T 1,0Mu. Let Hmk be the vector bundle over U whose fibers
are the Hilbert spaces

Hmk,u = H0(Mu, L
k
u ⊗ δu)

and denote by Πk,u the orthogonal projector from Γ(Mu, L
k
u⊗δu) onto Hmk,u.

19



We now define a connection of the bundle Hmk . Consider the same con-
nections on δ and L as in section 3.1. We set for any vector field X of U
and section s of Hmk

(∇Toep,k
X s)(u) := Πk,u

(
(∇Lk⊗δX s)(u)

)
It is easily proved that this is indeed a connection. More generally we shall
consider the connections

∇Toep,k +Ak, Ak ∈ Ω1(U,End(Hmk ))

where the family (Ak, k = 1, 2, . . .) is a Toeplitz operator. This has the
following meaning. Let p be the projection from U ×M onto U . Then there
exists a sequence f(·, k) of Γ(U ×M,p∗(T ∗U ⊗C)) admitting an asymptotic
expansion of the form f0 + k−1f1 + . . . for the C∞-topology on the compact
subsets, such that

Ak(X)(u) = Πk,uMf(X)(·,u,k) : Hmk,u → Hmk,u

for any vector field X of M . Here Mg denote the multiplication operator
by g. We call f0 the principal symbol of (Ak). This includes the connection
defined in section 3.2. Indeed proposition 4.1 implies the

Proposition 6.1. There exists f1 ∈ Γ(U ×M,π∗(T ∗U)⊗ C) such that for
any k > k0, we have

∇H
m
k

X = ∇Toep,k
X + k−1ΠkMf1(X)

for any vector field X of U .

The following theorem says that the curvature of these connections is a
Toeplitz operator in a semi-classical sense.

Theorem 6.2 ([10], Theorem 7.1). There exists a sequence g(·, k) ∈ Γ(U ×
M,p∗(∧2T ∗U ⊗ C)) admitting an asymptotic expansion of the form g0 +
k−1g1 + . . . for the C∞-topology on compact subsets, such that the curvature
of ∇Toep,k +Ak satisfies

RAk(X,Y )u = Πk,uMg(X,Y )(·,u,k) +O(k−∞)

where the O(k−∞) is uniform on compact set of U . Furthermore, g0 is given
by

g0(X,Y ) = X.f0(Y )− Y.f0(X)− f0([X,Y ])

with f0 the principal symbol of (Ak).
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To describe the parallel transport along a path γ in the bundle Hmk we
introduce the notion of half-form isomorphism. For any u, u′ ∈ U and x ∈M
denote by πu′,u,x the projection from Eu′,x to Eu,x with kernel Eu′,x. We say
that a linear isomorphism Ψ of Hom(δu,x, δu′,x) is a half-form isomorphism
if its square is the pull-back by πu′,u,x, more precisely

ϕu′,x ◦Ψ2 = π∗u′,u,x ◦ ϕu,x.

Such an isomorphism is unique up to a plus or minus sign. If γ is a path
of U , then for any x, there exists a unique continuous path of half-form
morphism δγ(0),x → δγ(t),x starting from the identity. We denote by Ψ(γ)
the morphism δγ(0) → δγ(1) obtained at t = 1.

Theorem 6.3 ([10], Theorem 7.1). Let u, u′ ∈ U and γ be a path from u to
u′. For any k > k0, let Tk : Hmk,u → Hmk,u′ be the parallel transport along γ in

the bundle Hmk for the connection ∇Toep,k +Ak. Then the Schwartz kernels
of the operators Tk have the following form

Tk(x, y) =
( k

2π

)n
F k(x, y)⊗ f(x, y, k) +O(k−∞)

where n is half the dimension of M and

• F is a section of L�L such that |F (x, y)| < 1 if x 6= y, F (x, x) = v⊗ v̄
for all x and v ∈ Lx of norm 1, and ∂̄ju′×−juF ≡ 0 modulo a section
vanishing to any order along the diagonal.

• f(., k) is a sequence of sections of δu′ � δ̄u → M2 which admits an
asymptotic expansion in the C∞ topology of the form

h(., k) = h0 + k−1h1 + k−2h2 + ...

whose coefficients satisfy ∂̄ju′×−jufi ≡ 0 modulo a section vanishing to
any order along the diagonal.

• If the principal symbol of (Ak) vanishes, then h0(x, x) = Ψ(γ).v ⊗ v̄
for any x ∈M and v ∈ δu,x with norm 1.

Theorems 6.2 and Theorems 6.3 are generalizations of theorem 7.1 of
[10], where we did not consider the terms (Ak). The proof is an immediate
generalization of the one in [10]. Theorems 6.2 provides another proof of
theorem 5.1.

Consider an automorphism ΦL : L → L of the prequantum bundle L,
that is an automorphism of line bundle preserving the connection and the
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Hermitian structure. ΦL lifts a Hamiltonian diffeomorphism Φ of M . Let
u0, u1 ∈ U such that Φ∗(ju0) = ju1 . Then Φ induces a isomorphims from
the canonical bundle of Mu0 to the canonical bundle of Mu1 . Assume that
this isomorphism has a square root Φδ : δu0 → δu1 . Then the isomorphism
Φk
L ⊗ Φδ defines by push-forward a familly of linear map

Vk : Hmk,u0 → H
m
k,u1 , k ∈ N∗.

Consider a path γ in U from u1 to u0. For any positive k, let

Tk : Hmk,u1 → H
m
k,u0

be the parallel transport along γ in the bundle Hmk for the connection
∇Toep,k +Ak. The operator

Uk = Tk ◦ Vk : Hmk,u0 → H
m
k,u0

has to be considered as a quantization of the symplectomorphism Φ. Denote
by x → Uk(x) the restriction of the Schwartz kernel of Uk to the diagonal,
so that

Tr(Uk) =

∫
Uk(x)µM (x)

where µM is the Liouville measure of M . Theorem 6.3 gives us the asymp-
totic behaviour of Uk(x). The following result has been proved in [15],
Theorem 5.3.1.

Theorem 6.4. ([15]) Let f ∈ C∞(M). Assume that the fixed points x of Φ
contained in the support of f are all non-degenerate, meaning that id−TxΦ
is an isomorphism of TxM . Then we have∫

M
f(x)Uk(x)µM (x) =

∑
x∈Supp f/ Φ(x)=x

f(x)
im(x)ukx

| det(id−TxΦ)|1/2
+O(k−1).

where for any fixed point x of Φ, ux ∈ C is the trace of the endomorphism
ΦL,x : Lx → Lx and mx ∈ Z/4Z is the index of Ψ(γ)x ◦ Φδ,x : δu0,x → δu0,x.

The index mx is defined in [15]. The proof is an application of the
stationnary phase lemma, the fact that the fixed points are non-degenerate is
equivalent to the fact that the critical point of the phase are non-degenerate.
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7 Proof of Theorem 1.1

Moduli spaces of SU(n) bundles on surfaces

Let Σ be a compact connected oriented surface of genus > 2 and whose
boundary is a circle, denoted by C. Let n, d be two coprime integers with
n > 2. Consider the moduli space M of flat SU(n)-principal bundles over
Σ such that the holonomy of C is equal to exp(2iπd/n) id. Since (n, d) = 1,
M is a smooth compact manifold.

Let Σ̄ ⊃ Σ be the closed surface obtained by gluing a disk D along C.
For any [P ] ∈M, the bundle associated to P via the adjoint representation
is a flat real vector bundle over Σ such that the holonomy of C is trivial.
So this associated bundle is the restriction of a flat real vector bundle AdP
over Σ̄, unique up to isomorphism. The tangent space of the moduli space
at [P ] is

T[P ]M' H1(Σ̄,AdP ).

The bundle AdP has a natural metric coming from the basic scalar product
of su(n)

a · b = − 1

4π2
tr(ab), a, b ∈ su(n)

Atiyah and Bott [5] introduced a symplectic form ωM on M. It is given by

ωM([a], [b]) = 2π

∫
Σ
a · b (14)

where a and b are any closed forms of Ω1(Σ̄,AdP ).

Prequantum bundle

The following facts are proved in [5], [29], [27]: M is simply connected, it
has no torsion, its second Betti number is one and nωM is a generator of
H2(M,Z) ⊂ H2(M,R). So there exists a Hermitian line bundle

L→M

equipped with a connection of curvature n
i ωM. SinceM is simply connected,

L is unique up to isomorphism.
Various explicit constructions of L as a quotient in gauge theory were

given in [16], [26] and [9] extending the construction of Ramadas-Singer-
Weitsman [28] in the case Σ has no boundary. This is important for our
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purpose because one can deduce that the mapping class group action onM
lifts to L. The relevant mapping class groups here are

Mod(Σ) := π0(Diff+(Σ, C)) = π0(Diff+(Σ̄, D))

that we denote also by Mod and

Mod(Σ̄, p) := π0(Diff+(Σ̄, p))

where p is a point in the interior of D. Recall that Mod(Σ̄, p) is an extension
of Mod by Z,

1→ Z→ Mod(Σ)→ Mod(Σ̄, p)→ 1

where the kernel is generated by a Dehn twist on C.
The following facts are explained in detail in the paper [12]. First,

Mod(Σ̄, p) acts on M by symplectomorphism. Second, Mod(Σ) acts on
L by automorphisms of prequantum bundles. This action lifts the action of
Mod(Σ̄, p) on M. Nevertheless it does not in general factor through an ac-
tion of Mod(Σ̄, p). Indeed, the Dehn twist on C acts on L by multiplication
by exp

(
iπ(n− 1)d2

)
in each fiber.

Complex structure

Suppose Σ̄ is endowed a complex structure compatible with the orientation.
Then by Hodge decomposition, for any [P ] ∈M

H1(Σ̄,AdP )⊗ C = H0,1(Σ̄, (AdP )⊗ C)⊕H1,0(Σ̄, (AdP )⊗ C)

M has a complex structure such that the holomorphic tangent space at [P ]
is the first summand in the previous decomposition. This complex structure
is integrable, compatible with ωM and positive. So it makes M a Kähler
manifold. It may also be defined by identifying M with the moduli space
of holomorphic vector bundles of rank n, degree d with a fixed determinant
through the Narasimhan-Seshadri theorem.

Let A be the space of complex structures of Σ and

T := A/Diff+
0 (Σ̄)

be the Teichmüller space. As a fact, the complex structure of M induced
by j ∈ A only depends on the class of j in the Teichmüller space.

The mapping class group Mod(Σ̄) := π0(Diff+(Σ̄)) acts on T . This
action is compatible with the one of Mod(Σ̄, p) onM, meaning that for any
γ ∈ Mod(Σ̄, p) and σ ∈ T , the action of γ onM sends the complex structure
induced by σ into the one induced by π(γ).σ where π is the natural map
Mod(Σ̄, p)→ Mod(Σ̄).
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Quantum representation

For any class σ in the Teichmüller space, we let Mσ be M endowed with
the complex structure induced by σ and Lσ → Mσ be the line bundle L
with the corresponding holomorphic structure. Define

Hk,σ := H0(Mσ, L
k
σ), σ ∈ T .

Since the canonical class ofMσ is negative, the dimension of Hk,σ does not
depend on σ. So for any k ∈ N∗, we can consider the bundle Hk → T with
fiber Hk,σ.

Applying Theorem 3.1, we get a connection ∇Hk on Hk. Hitchin proved
that this connection is projectively flat [20].

The mapping class group Mod acts on the bundle Hk by preserving the
connection. So we can deduce a projective representation of Mod as follows.
Choose σ0 ∈ T . For any h ∈ Mod, define

ρk(h) ∈ PGL(Hk,σ0)

as the composition of the action of h from Hk,σ0 to Hk,h.σ0 with the par-
allel transport in Hk along a path from h.σ0 to σ0. The connection being
projectively flat, ρk(h) does not depend on the choice of the path. The
connection being Mod-invariant, ρk(h)ρk(h

′) = ρk(h.h
′). This defines the

family of projective representation

ρk : Mod→ PGl(Hk,σ0), k ∈ N∗.

considered in the introduction (1).

Metaplectic correction

By [29], the canonical class of M has a square root. The Teichmüller space
being contractible, there exist a smooth familly (δσ →Mσ, σ ∈ T ) of half-
form bundle. So we can introduce the bundle Hmk → T with fibers

Hmk = H0(Mσ, L
k
σ ⊗ δσ), σ ∈ T .

By Theorem 3.2, this bundle has a natural connection ∇Hmk .
Actually, by [26], the canonical class of M is −2c1(L). So the fiber

bundles δσ and L−1 are isomorphic. Since the Jacobian variety of each Mσ

is trivial, there even exists a holomorphic bundle isomorphism between δσ
and L−1

σ , unique up to C∗. Using again that T is contractible, we can choose

25



these isomorphisms in such a way that they depend smoothly on σ and we
obtain an isomorphism

Hmk ' Hk+1.

So we can compare the two connections ∇Hmk and ∇Hk+1 . It follows from
the discussion in section 2.4 that these connections differ by α id, with α ∈
Ω1(T ). As a consequence, ∇Hmk is projectively flat.

The asymptotic representation

As in the introduction, consider the group M̃od defined as the fiber prod-
uct of Mod and the group of automorphisms of the (unique) metaplectic

structure of M. Any h ∈ M̃od determines a continuous family (ϕσ : δσ →
δp(h).σ, σ ∈ T ) of half-form bundle isomorphisms. 1 Here p is the projection

from M̃od to Mod.
So M̃od acts on the bundle Hmk by preserving the connection ∇Hmk .

Choose σ0 ∈ T and for any h ∈ Mod(Σ̄) a path from h.σ0 to σ0. Then

composing the M̃od-action with the parallel transport in Hmk along the con-
venient path, we obtain a family of invertible operators

ρmk (h) : Hmk,σ0 → H
m
k,σ0 , h ∈ M̃od.

We can now procced to the proof of Theorem 1.1. Since the connections
∇Hmk and ∇Hk+1 are the same up to a projective term, we have

[ρmk (h)] = ρk+1(p(h)), ∀h ∈ M̃od.

Since the connection ∇Hmk is projectively flat,

ρmk (h.h′) = ck(h, h
′)ρmk (h)ρmk (h′), ∀h, h′ ∈ M̃od

with ck(h, h
′) ∈ C∗. Since the connection ∇Hmk is asymptotically flat in the

sense of Theorem 5.1,

ck(h, h
′) = 1 +O(k−1), ∀h, h′ ∈ M̃od.

So the familly (ρ̃k := ρmk+1, k ∈ N∗) satisfies all the conditions of Theorem
1.1.

1ϕσ is a half-form bundle isomorphism means that the square of ϕσ is the isomorphism
between the canonical bundles of Mσ and Mγ.σ induced by the action of γ.

26



8 Proof of Theorems 1.2 and 1.3

8.1 Moduli spaces of mapping tori

Consider the same setting as in the previous section. Let h ∈ M̃od and
φ ∈ Diff+(Σ, C) be a representative of p(h). The proof consists in applying
Theorems 6.4 to ρk(h) and reinterpreting the assumption and the invariants
involved in the results in terms of the mapping torus of φ

Σφ := (Σ× R)/(x, t+ 1) ∼ (φ(x), t).

For X = Σ or Σφ, let Mn(X) be the moduli space of flat SU(n)-principal
bundles with base X. Denote by j : Σ→ Σφ the map sending x into [x, 0].

Lemma 8.1. There is a one-to one equivalence between Mn(Σφ) and the
set of isomorphism class of pairs (F, φF ) such that F ∈ Mn(Σ) and φF is
an automorphism of F lifting φ.

Proof. Given F̃ ∈ Mn(Σφ), we associate to it its restriction F = j∗F̃ to Σ
and the automorphism φF of F obtained by parallel transport in F̃ along
the path [0, 1] 3 ct→ [t, x]. Conversely, given a pair (F, φF ) we define F̃ as
the mapping torus of φF .

Embedd C into Σφ through the map x → [x, 0]. Introduce the moduli
space M′ ⊂ Mn(Σφ) consisting of the bundles such that the holonomy of
C is exp(2iπd/n) id.

Recall that a flat SU(n)-principal bundle is said to be irreducible if its
gauge automorphism group is the center Zn of SU(n). When n and d are
coprime, the bundles in M are all irreducible. So by Lemma 8.1, the fibers
of the map

p :M′ →M, F̃ → F = j∗F̃ (15)

are the orbits of the Zn-action given by u.(F, φF ) = (F, φFu). By Lemma
8.1, the image of p is the set of fixed point of φ∗ :M→M.

Lemma 8.2. Let F̃ be an irreducible bundle of Mn(Σφ) corresponding to a
pair (F, φF ). Then the following sequence is exact

0→ H1(Σ̄φ,Ad F̃ )
j∗−→ H1(Σ̄,AdF )

id−L(F )−−−−−→ H1(Σ̄,AdF )

where L(F ) is the linear map (AdφF )∗ : H1(Σ̄,AdF ) → H1(Σ̄,AdF ). If
furthermore H1(Σ̄φ,Ad F̃ ) = (0), then the Reidemeister torsion of the flat
vector bundle Ad F̃ satisfies

|τ(Ad F̃ )| = |det(id−L(F ))|−1.
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Proof. This follows from the standard computation of the cohomology of a
mapping torus by using the Mayer-Vietoris sequence, cf. page 87 of [23].

Let us apply Theorem 6.4 to the sequence Uk = ρ̃k(h). The symplec-
tomorphism Φ is the map φ∗ : M → M. The tangent space TFM is
naturally isomorphic to H1(Σ̄,AdF ), so that the linear tangent map TFΦ
corresponds to L(F ). So by Lemma 8.2, the transversality assumption of
Theorem 6.4 is equivalent to the fact that H1(Σ̄φ,Ad F̃ ) = 0. Furthermore
| det(id−TFϕ)|−1 is equal to the torsion of Ad F̃ . To complete the proof of
Theorems 1.2 and 1.3 it remains to express the complex number ux appear-
ing in Theorem 6.4 in terms of Chern-Simons invariant.

Remark 8.1. Lemma 8.2 may be naturally interpreted with the map p. In-
deed the Zariski tangent space TF̃M

′ is isomorphic to H1(Σ̄φ,Ad F̃ ) so that
TF p = j∗.

8.2 Chern-Simons bundle

Let A be the vector space Ω1(Σ, su(n)). Consider the trivial line bundle
A× C with connection ∇ = d+ 2π

i C where

Ca(ȧ) =
1

2

∫
Σ
a · ȧ, a, ȧ ∈ A

where the dot stands for the basic scalar product.
The elements of A may be viewed as connection of the trivial SU(n)-

principal bundle Σ× SU(n). The curvature is given by F (a) = da+ 1
2 [a, a].

The gauge group G = C∞(Σ, SU(n)) acts on A by ag = gag−1 − dgg−1.
Choose b ∈ Ω1(C, su(n)) with holonomy exp(2iπd/n) id. Denote by A[b the
subset of A consisting of the elements which are flat and restrict on C to b.
Let Gb be the subgroup of G consisting of the elements whose restriction to
the boundary fixes b. Then the map sending the flat connection a ∈ A[b to
the flat associated bundle factors to a bijection from A[b/Gb to M.

Proposition 8.3 ([12]). There is a unique action of Gb on A[b×C lifting the
action on A[b and such that for any path [0, 1]→ Gb, t→ gt and a ∈ A[b, the
path t→ gt.(a, 1) is horizontal. The quotient A[b×C/Gb is the Chern-Simons
bundle LCS →M.

Here there is the subtlety that the group Ab does not act freely on M.
Actually the isotropy group of any F ∈ M is the center of SU(n). This
isotropy group does not act trivially on A[b ×C, so that the quotient LCS is
not a genuine line bundle but an orbifold bundle. Nevertheless by Lemma
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3.3 of [12], the n-th power of the isotropy group action is trivial, so that
L := LnCS is a honnest line bundle.

Let us compute the parallel transport in terms of a Chern-Simons in-
variant. Recall that for any 3-dimensional compact oriented manifold X,

CSX(a) =
1

8π2

∫
X

tr(ada) +
2

3
a3 = −1

2

∫
M

(
a · F (a)− 1

6
a · [a, a]

)
for all a ∈ Ω1(X, su(n)).

Proposition 8.4. Let (gt, t ∈ [0, 1]) be a path of Gb starting from the iden-
tity. Let a0 ∈ A[b and set gt.(a0, 1) = (at, e

2iπϕt). Then

ϕ1 = CSX(ag) +
1

2

∫
∂Σ×[0,1]

b ·Xtdt (16)

where X = Σ × [0, 1], Xt = ġtg
−1
t , a ∈ Ω1(X, su(n)) is the pull-back of a0

by the projection X → Σ, and g ∈ C∞(X,SU(n)) is such that for any t, its
restriction to Σ× {t} is gt.

Proof. Since t→ (at, e
2iπϕt) is horizontal, we have ϕ̇t = Cat(ȧt) = 1

2

∫
Σ at · ȧt

so that

ϕ1 =
1

2

∫ 1

0
dt

∫
Σ
at · ȧt

A straightforward computation shows that ȧt = [Xt, at]−dXt. Consequently,

at · ȧt =at · [Xt, at]− at · dXt

=at · [Xt, at]− d(at ·Xt)− dat ·Xt

=− 1
2at · [at, at] + d(at ·Xt)

where we have used at the last line that F (at) = 0. Since ag = at −Xtdt,
we obtain

at · ȧt dt =
1

6
ag · [ag, ag] + d(at ·Xt ∧ dt)

To end the proof, we integrate this expression on Σ × [0, 1], apply Stokes
Theorem and observe that ag is flat so that its Chern-Simons simplifies.

8.3 Automorphisms

Consider now φ ∈ Diff+(Σ, C). Such a map induces an automorphism of
the Gb-bundle A[b × C. Taking the quotient we get a prequantum bundle
automorphism of L→M lifting the action of φ on the moduli space.
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Consider F ∈Mn,d(Σ) such that φ∗F = F . Then φ∗ preserves the fiber
of L at F and acts on it by multiplication by a complex number uF . We
can compute this number in terms of the mapping torus Σφ. Choose an
automorphism φF of F lifting φ and consider the mapping torus F̃ of φF .
Recall that the boundary of Σφ is the torus T = C × R/Z.

Proposition 8.5. Let β ∈ Ω1(Σφ, su(n)) be any connection representing F̃
and such that its restriction to T has the form b−Xdt with X ∈ C∞(T, su(n)).
Then uF = exp(2iπnθ) with

θ = CSΣφ(β) +
1

2

∫
T
b ·Xtdt (17)

Proof. Denoting by j the injection Σ → Σφ sending x into [x, 0], we set
a0 = j∗β. Consider a, β′ ∈ Ω1(Σ × [0, 1], su(n)) defined respectively as the
pull-bak of a0 by the projection Σ× [0, 1]→ Σ and the pull-back of β by the
map Σ× [0, 1]→ Σφ. Since a and β′ are flat and their restriction to Σ×{0}
are equal, there exists g ∈ C∞(Σ× [0, 1], SU(n)) such that β′ = ag. Denote
by gt the restriction of g to Σ× {t}. We have that ag10 = φ∗a0. So the map
φ∗ from L to itself sends [ag10 , z] into [a0, z]. By proposition 8.4, if we choose
g in such a way that g0 = id, we have that [a0, z] = [ag10 , z exp(2iπnθ)] where

θ = CSΣ×[0,1](β
′) +

1

2

∫
T
b ·Xtdt

Since CSΣ×[0,1](β
′) = CSΣφ(β), the result follows.

This completes the proof of Theorems 1.2 and 1.3.

8.4 Scalar product in the Chern-Simons bundle of the torus

Proposition 8.5 implies that the number exp(2iπnθ) with θ given by Equa-
tion (17) only depends on the gauge class of β. In this last section we give
another proof of this fact by interpreting exp(2iπθ) as a scalar product in
the Chern-Simons bundle of the torus T .

Let Mn(T ) be the moduli space of flat SU(n)-principal bundle on T .
Introduce the associated Chern-Simons bundle LCS(T ) → Mn(T ). This
bundle has the property that for any compact oriented 3-dimensional man-
ifold X with boundary T , for any β ∈ Ω1(X, su(n)), the class

[β, exp(2iπCS(β))] ∈ LCS(T )
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only depends on the gauge class of β. In particular, the boundary of Σφ

being T , for any flat bundle F̃ → Σφ, exp(2iπCS(F̃ )) is a well-defined
vector in the fiber of LCS(T ) at F̃ |T .

Let t be the subspace of su(n) consisting of diagonal matrices. Let Λ ⊂ t
be the kernel of the exponential map exp : t→ SU(n)). Let W be the Weyl
group of SU(n). The space H1(T ) has a preferred basis (`,m) where ` and
m are respectively the class of C and of t → [x, t]. Consequently Mn(T )
may be naturally identified with the quotient t2/Λ2oW by the map sending
(p, q) ∈ t2 to the bundle such that the holonomies of ` and m are respectively
exp(p), exp(q). As explained in [11], Section 3.2, the Chern-Simons bundle
is naturally isomorphic with the quotient of t2×C by Λ2 oW where Λ2 acts
by

(ṗ, q̇).(p, q, z) = (p+ ṗ, q + q̇, z exp(iπk(ṗq̇ + ṗq − pq̇)))

and W by w.(p, q, z) = (w(p), w(q), z).
Let Λ∗ ⊂ t be the dual lattice with respect to the basic scalar product.

Proposition 8.6. For any p, q ∈ t with p ∈ k−1Λ∗, the fiber of LkCS(T ) at
F = [p, q] has a canonical vector given by

v(F, k) = [p, q, exp(ikπpq)].

Proof. We have to check that u(γ, k) does not depend on p, q. Let (ṗ, q̇) ∈
Λ2. Since p ∈ k−1Λ∗ we have kpq̇ ∈ Z so that

(ṗ, q̇).(p, q, exp(iπkp · q)) = (p+ ṗ, q + q̇, exp(iπk(p+ ṗ)(q + q̇)))

Furthermore w(p) · w(q) = p · q.

Consider F̃ ∈ M′ and set F = j∗F̃ . Then by Proposition 8.6, we can
define v(γ, n) and the number uF of Proposition 8.5 is given by

uF =
〈
exp(2inπCS(F̃ )), v(γ, n)

〉
.
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