0.1. Artinian rings.

Definition 0.1. A ring A is Artinian if it satisfies the DCC (Descending Chain
Condition): every descending chain of ideals of A,
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is stationary.
Exercise 0.2. Let k be a field. A finite-dimensional k-algebra is Artinian.

Exercise 0.3. An Artinian ring has only finitely many maximal ideals.

Proof. An ideal of a k-algebra is a k-vector space. In a descending chain of ideals
of a finite-dimensional k-algebra, the dimension stabilizes eventually. O

Exercise 0.4. The Jacobson radical (that is, the intersection of all maximal ideals)
of an Artinian ring is nilpotent. (Hint. Use the following form of Nakayama’s
Lemma: if A is a ring, [ ideal of A contained in the Jacobson radical of A and M
is a finitely generated A-module such that M = IM, then M = 0.)

Proof. Let I be the Jacobson radical of A. Since A is Artinian, there is N € N such
that I™ = It for all n > N. We want to show that IV is 0. Define
J:={fecA:fI¥N =0}

Then we have to show that J = A. Suppose by contradiction this is not the case.
Then, since A/J is Artinian, there is a minimal ideal J’ strictly containing J. Take
zeJ ~J. Then J = .J+ Azx.

Claim 0.5. J' = J 4 1.

Proof of the Claim. The ideal J + zI is contained in J’ by definition. On the other
hand, zI is not contained in J: otherwise, 27V +! would be contained in JIV = 0,
thus = would belong to J. By minimality, it follows J' = J + zI. O

Consider the finitely generated A-module M := J’/J. Then
IM=I1(J+Ax)/J=IJ+1z+J)/J=(J+1Ix)/J =M.
By Nakayama’s Lemma, one has M = 0, that is IJ’ C J. This implies
IVt C JIN =o.
Thus z € J. Contradiction. O

Exercise 0.6. Any ring with finitely many maximal ideals and nilpotent Jacobson
radical is the product of its localizations at its maximal ideals. Also, all primes are
maximal.

Proof. Let I be the Jacobson ideal of A. The nilpotent radical of a ring is the
intersections of all its prime ideals. Since I is nilpotent, it coincides with the
nilradical of A. It follows that every prime ideal contains I. Let mq,..., m, be the
maximal ideals of A. By the Chinese Remainder Theorem,

i=1
Since the prime ideals of a product of fields is maximal, we see that every prime
ideal of A is maximal.

Claim 0.7. Let B be a ring and J a nilpotent ideal of B. Let € € B/I be an
idempotent. Then there is an idempotent e € B lifting e.
1
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Proof of the Claim. If & € B is any lift of B, then é2 — é € J is nilpotent. Suppose
having found a lift e of € such that e? — e belongs to J* for some k € N. Then

e =e—=zx

with 2 = (2e — 1)(e? — e) is such that

e? —¢ = (e —e)+a(z— (26— 1))
=(e?—e)(1+ (2e — 1)(z —2e+1))
= (e —e)((2e — 1)z + 4e — 4¢?)
= (

e? —e)%((2e — 1)% —4) € J?*.

Therefore, by induction on k, we find a lift e of & such that e — e € J2* . Since J
is nilpotent, for k big enough, e will be idempotent. (I

Consider the idempotent € = (1,0,...,0) of A/T ~ [, A/m;. By the Claim,
the idempotent e lifts to an idempotent e. Then ¢/ = 1 — e is also idempotent:

(1-e)?—-(1—e)=e*—e=0.

It follows that A as a ring is isomorphic to Ae x Ae’. (Note that multiplication by
an idempotent element is a ring map.) The idempotent e belongs to maN---Nm,,
because its image in [[;_, A/m; is 0. It follows that the map Ae — A/m; has kernel

Te=(m;NmaN---Nm,)e =mye.
The therefore the ideal Ie is maximal and nilpotent in the ring Ae.

Claim 0.8. Let B be a ring having a nilpotent maximal ideal n. Then n is the
unique prime ideal of B.

Proof of the Claim. Indeed a prime ideal p of B contains the nilradical of B, which
contains n since the latter is nilpotent. Since n is maximal, we have p = n. O

It follows that the ring Ae is local with maximal ideal mje. It follows that,
if a € A~ mq, then ae € Ae is invertible. The surjective map A — Ae therefore
factors through a surjective map ¢: Ay, — Ae. The map ¢ is also injective: indeed
if a € A is such that ¢(a) = ae = 0 then a = 0 in A,,, because e &€ m;.

Summing up, we proved that A is isomorphic to Ay, x A’. By induction on n
we conclude the proof. O

Definition 0.9. Let A be a ring. The length of A-module M is the supremum of
the n € N for which there exists a chain of A-submodules

{0} =My C M, C--- C M, =M.

Exercise 0.10. A ring A is Artinian if and only if it has finite length as a module
over itself. Any such ring A is both Artinian and Noetherian, any prime ideal of A
is a maximal ideal, and A is equal to the (finite) product of its localizations at its
maximal ideals.

Proof. A ring which has finite length as a module over itself satisfies both the
ascending and descending chain conditions.

Suppose that A is Artinian. Then by the previous exercises the Jacobson radical
is nilpotent and it has finitely many prime ideals. It follows that A is isomorphic to
the product of the localization at its maximal ideals. In order to prove that it has
finite length over itself (thus it is Noetherian), we may assume that A is local with
maximal ideal m and residue field k. It suffices to exhibit a chain of ideals whose
successive quotients have finite length.
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The maximal ideal m coincides with the Jacobson radical of A, therefore it is
nilpotent. Let n € N be such that m™ = 0. Consider the chain of ideals

O=m"Cm" 'C...CmCA.

We conclude because, for each i € N, the k-vector space m*/m**! is finite-dimensional
(otherwise, it would furnish an infinite descending chain of ideals). O

Remark 0.11. The above argument permits to show the following variation. A
Noetherian ring A of dimension 0 is of finite length (hence Artinian).

Indeed, since A is a Noetherian ring, it has finitely minimal prime ideals. These
ideals are maximal because A is of dimension 0. In particular, the Jacobson radical
coincides with the nilradical, hence it is nilpotent (because A is Noetherian). There-
fore A is the product of the localization at its prime ideals. In order to conclude
that A has finite length over itself, we may assume that A is local with maximal
ideal m and residue field k. It suffices to exhibit a descending chain of ideals whose
successive quotients are of finite length. Let n € N be such that m" = 0. Consider
the chain of ideals

0=m"Cm" 'C...CmCA.

We conclude that, for each i € N, the k-vector space m’/m‘*! is finite-dimensional
(because A is Noetherian).

0.2. Morphisms between curves.

Exercise 0.12. Let A be a DVR with fractions field K. Let K’ be a finite extension
of K such that the integral closure A’ of A in K’ is finitely generated as an A-
module. Let m be the maximal ideal of A. Show the following assertions:

(1) The ring A’ is Dedekind with only finitely many maximal ideals.

(2) For each maximal ideal m’ of A’ there is an integer e(m’) > 1 such that
mA!, = m/em),

(3) For each maximal ideal m’ of A’, the field &’ = A’/w’ is a finite extension
of k=A/m. Let f(m') = [k : k]

(4) The following formula holds

[K': K] = Z e(m’) f(m').

m’eMax(A’)

Proof. (1) The ring A’ is normal by hypothesis and Noetherian because it is a finite
module over the Noetherian ring A. Let p C A’ be a nonzero prime ideal. Then
pN A is a nonzero prime ideal (it contains the norms of the elements of p). Therefore
m := pN A is the unique maximal ideal of A. In particular, the ring A’/p is an
integral domain and a finite-dimensional A/m-vector space. It follows that A’/p is
a field, that is, the prime ideal p is maximal. The ring A’/mA’ is thus Noetherian
and 0-dimensional, hence it has only finitely many maximal ideals.

(2) This is true because A7, is a DVR.

(3) This follows from the finiteness of A’ as an A-module.

(4) The A-module A’ is flat (because it is without torsion) and finitely generated.
Therefore it is free of rank [K’ : K]. Let k = A/m. Then A’ ®4 k = A’/mA’ is a
k-vector space of dimension [K' : K].

On the other hand, the ring A’/mA’ is Artinian and therefore it is the product
of the localization at its maximal ideals:

Al/mA/ ~ H A:n/ /mA:n/ = H A:n/ /m,e(m’) .

m’eMax(A’) m’eMax(A’)



In particular,
[K': K] = dim(A'/mA) = > dimy (AL, /m™)).
m’eMax(A’)
Let m’ be a maximal ideal of A’. In order to simplify notation, write B = A’,
n=m' and e = e(n’). For i € N, consider the short exact squence of B-modules

0 — n'/ntt — B/n'™! — B/n — 0.
The k’-vector space n’/ni*! is of dimension 1. One deduces, by induction,
dimy (B/n°) = edimg (k') = e(m’) f(m').
This concludes the proof. O

Exercise 0.13. Let k be a perfect field. Let K, K’ be finitely generated fields
over k of transcendence degree 1. Let C, C’ be the associated algebraic curves. Let
m: C' — C be a morphism of algebraic varieties (i.e. of k-locally ringed spaces).
Show the following assertions:

(1) The image of 7 is either a single point (in which case we say that 7 is
constant) or the whole C.

(2) If f is non-constant, then it induces a k-algebra homomorphism K — K’
making K’ a finite extension of K. For each x € C show that the following
formula holds

deg(m) = [K': K] = ) e(a)[k(z') : k(x)],

(2! )=z

where, for 2/ € 771(x), the integer e(2’) is the ramification index at z':

m,Ocr p = mi(m )

(3) Conversely, for each k-algebra homomorphism ¢: K — K’ show that there
is a unique non-constant morphism of algebraic varieties 7,: ¢’ — C' in-
ducing ¢.

(4) Let V C C’ be a non-empty open subset. Let f: V — C be a non-constant
morphism of algebraic varieties. Show that f extends uniquely to a mor-

phism C" — C.

Proof. (1) Let U = Spm(A) be a non-empty open subset of X for some finitely
generated k-algebra A. Let U’ C 7~ 1(U) be a non-empty open subset with such that
U’ = Spm(A’) for some finitely generated k-algebra A’. The morphism 7: U' — U
corresponds to a homomorphism of k-algebras p: A — A’.

Suppose ¢ not injective. Since A’ is an integral domain. Then m := Ker(y) is
a nonzero prime ideal of A, hence it is maximal. Therefore the homomorphism ¢
factors as A — A/m — A’. Let x the point of U corresponding to m. It follows
that the image of w: U’ — U is {z}. By continuity 7 is constant of value x.

Suppose ¢ injective. In this case p: A — A’ extends to a injective homo-
morphism of k-algebras ¢: K — K’ making K’ a finite extension of K. Let
v: K — ZU{oo} be a surjective valuation whose restriction to k is trivial. Then v
can be extended to K'[1

(2) Let U = Spm(A) be a non-empty open subset of X for some finitely generated
k-algebra A. Let A’ be the normalization of A in K'.

Claim 0.14. Spm(A’") =7~ 1(U).

LThere are many ways to see this. Here is one. Let K, be the completion of K with respect to v.
Let K, be an algebraic closure of K. Then the valuation v extends in a unique way to a valuation
7 on K, by setting, for a € K, with minimal polynomial z% + ag_1z% 1 4+ ...+ ag € Kz], the
value to be ¥(a) = v(ag)/d. The choice of an embedding K’ — K, gives the wanted valuation.
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Proof of the Claim. (C) Clear. Given a maximal ideal m’ of B, the prime ideal
m’ N A is maximal. (2) Let v': K’ — Z U {o0} be a valuation such that v :=v" o
belongs to U. It follows that the integral closure of A’ of A is contained in the
valuation ring of v’. Therefore v’ corresponds to a maximal ideal of A’. O

The formula is just the preceding exercise.
O

Exercise 0.15 (Valuative criterion of properness). Let k be a perfect field. Let K
be finitely generated fields over k of transcendence degree 1. Let C be the associated
algebraic curve. Let U C C be a open subset, and z € U. Let f: U \ {z} — P}
be a morphism of algebraic varieties. Show that f extends uniquely to a morphism
U—Pp.

0.3. Some algebraic geometry. Let k& be a field. For a finitely generated k-
algebra A let

Spm(A) = (MaX(A)a OMax(A))'

Exercise 0.16. Let X be an algebraic variety. Let Y C X be a closed subset. For
each open subset U C X, consider

I(U) ={feOxU): fly) =0,y e Y NU}

(1) Show that I(U) is an ideal of Ox(U) and U + I(U) is a sheaf on X.

(2) For each affine open subset V C X, set Q(V) := Ox(V)/I(V). Show that
Q@ extends uniquely to a sheaf on X. (Hint: start by considering X affine
and then conclude by taking an affine cover.)

(3) Show that the k-locally ringed space (Y,Qy) is an algebraic variety. It
called the reduced structure on Y.

(4) Take X = AZ ~ {(0,0)} and Y = V(y) where z,y are the coordinates
on AZ. Compute Ox(X) and Q(X), and conclude that the natural map
Ox(X) — Q(X) is not surjective.

Exercise 0.17. Let X,Y be algebraic varieties over k.

(1) Show that there exists a unique (up to a unique isomorphism) an algebraic
variety Z, called the product of X and Y and denoted X xj Y, endowed
with morphisms p: Z — X and ¢: Z — Y with the following universal
property: given algebraic variety S and morphisms of algebraic varieties
f: 8 = X and g: S — Y, there exists a unique morphism of algebraic
varieties h: S — Z such that poh = f, goh =g. (Hint: If X = Spm(A),
Y = Spm(B) for finitely generated k-algebras A, B, then Z = Spm(A®y B).
Then glue.)

(2) Show that AP* x;, AT = A" ™,

(3) Show that P! x, P} is not isomorphic to P2.

Exercise 0.18 (Segre embedding). Let m,n € N. Consider the morphism of

algebraic varieties s: P x; P} — IP,(CmH)(nH)*l defined by
ot txm], (Yo tyn] — [y :i=0,...,m,j=0,...,n].

(1) Show that the image X of s is closed, by writing the (quadratic) equations
that it satisfies.

(2) Show that s induced an isomorphism of P}* x; P} with X endowed with
its reduced structure. (That is, s is a closed embedding.)
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0.4. Embeddings.

Definition 0.19. Let k be a field. An algebraic variety X is said to be reduced if,
for each open subset U of X, the k-algebra Ox (U) is reduced.

Let X be a reduced algebraic variety. A morphism f: X — Y of algebraic
varieties is said to be a closed immersion if the image Z of f is closed and f induces
an isomorphism of X with Z endowed of its reduced structure.

Exercise 0.20. Let k be a perfect field. Let K be a finitely generated field over k
of degree of transcendance 1. Let C be the associated algebraic curve.
(1) Show that C' can be covered by non-empty open subsets Uy, ..., U, with
U; = Spm(A4;) for a finitely generated k-algebra A;.
(2) By choosing generators of A;, define a closed embedding ¢;: U; — Aii.
(3) Show that the intersection U := Uy N --- N U, is a non-empty open subset
of C' and the morphism

5:(51,...,5n):U—>AZ1 ><,C--~><kAZ1

extends to a morphism ¢: C' — PZI X oo X ]P’Zl.

(4) Show that € is a closed embedding.

(5) By composing with Segre’s embedding, show that ¢ yields a closed embed-
ding of C' in a projective space.
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