
0.1. Artinian rings.

Definition 0.1. A ring A is Artinian if it satisfies the DCC (Descending Chain
Condition): every descending chain of ideals of A,

I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · ·

is stationary.

Exercise 0.2. Let k be a field. A finite-dimensional k-algebra is Artinian.

Exercise 0.3. An Artinian ring has only finitely many maximal ideals.

Proof. An ideal of a k-algebra is a k-vector space. In a descending chain of ideals
of a finite-dimensional k-algebra, the dimension stabilizes eventually. �

Exercise 0.4. The Jacobson radical (that is, the intersection of all maximal ideals)
of an Artinian ring is nilpotent. (Hint. Use the following form of Nakayama’s
Lemma: if A is a ring, I ideal of A contained in the Jacobson radical of A and M
is a finitely generated A-module such that M = IM , then M = 0.)

Proof. Let I be the Jacobson radical of A. Since A is Artinian, there is N ∈ N such
that In = In+1 for all n > N . We want to show that IN is 0. Define

J := {f ∈ A : fIN = 0}.

Then we have to show that J = A. Suppose by contradiction this is not the case.
Then, since A/J is Artinian, there is a minimal ideal J ′ strictly containing J . Take
x ∈ J ′ r J . Then J ′ = J +Ax.

Claim 0.5. J ′ = J + xI.

Proof of the Claim. The ideal J +xI is contained in J ′ by definition. On the other
hand, xI is not contained in J : otherwise, xIN+1 would be contained in JIN = 0,
thus x would belong to J . By minimality, it follows J ′ = J + xI. �

Consider the finitely generated A-module M := J ′/J . Then

IM = I(J +Ax)/J = (IJ + Ix+ J)/J = (J + Ix)/J = M.

By Nakayama’s Lemma, one has M = 0, that is IJ ′ ⊆ J . This implies

xIN+1 ⊆ JIN = 0.

Thus x ∈ J . Contradiction. �

Exercise 0.6. Any ring with finitely many maximal ideals and nilpotent Jacobson
radical is the product of its localizations at its maximal ideals. Also, all primes are
maximal.

Proof. Let I be the Jacobson ideal of A. The nilpotent radical of a ring is the
intersections of all its prime ideals. Since I is nilpotent, it coincides with the
nilradical of A. It follows that every prime ideal contains I. Let m1, . . . ,mn be the
maximal ideals of A. By the Chinese Remainder Theorem,

A/I '
n∏
i=1

A/mi.

Since the prime ideals of a product of fields is maximal, we see that every prime
ideal of A is maximal.

Claim 0.7. Let B be a ring and J a nilpotent ideal of B. Let ē ∈ B/I be an
idempotent. Then there is an idempotent e ∈ B lifting ē.
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Proof of the Claim. If ẽ ∈ B is any lift of B, then ẽ2 − ẽ ∈ J is nilpotent. Suppose
having found a lift e of ē such that e2 − e belongs to Jk for some k ∈ N. Then

e′ := e− x

with x = (2e− 1)(e2 − e) is such that

e′2 − e′ = (e2 − e) + x(x− (2e− 1))

= (e2 − e)(1 + (2e− 1)(x− 2e+ 1))

= (e2 − e)((2e− 1)x+ 4e− 4e2)

= (e2 − e)2((2e− 1)2 − 4) ∈ J2k.

Therefore, by induction on k, we find a lift e of ē such that e2 − e ∈ J2k . Since J
is nilpotent, for k big enough, e will be idempotent. �

Consider the idempotent ē = (1, 0, . . . , 0) of A/I '
∏n
i=1A/mi. By the Claim,

the idempotent ē lifts to an idempotent e. Then e′ = 1− e is also idempotent:

(1− e)2 − (1− e) = e2 − e = 0.

It follows that A as a ring is isomorphic to Ae×Ae′. (Note that multiplication by
an idempotent element is a ring map.) The idempotent e belongs to m2 ∩ · · · ∩mn
because its image in

∏n
i=2A/mi is 0. It follows that the map Ae→ A/m1 has kernel

Ie = (m1 ∩m2 ∩ · · · ∩mn)e = m1e.

The therefore the ideal Ie is maximal and nilpotent in the ring Ae.

Claim 0.8. Let B be a ring having a nilpotent maximal ideal n. Then n is the
unique prime ideal of B.

Proof of the Claim. Indeed a prime ideal p of B contains the nilradical of B, which
contains n since the latter is nilpotent. Since n is maximal, we have p = n. �

It follows that the ring Ae is local with maximal ideal m1e. It follows that,
if a ∈ A r m1, then ae ∈ Ae is invertible. The surjective map A → Ae therefore
factors through a surjective map ϕ : Am1

→ Ae. The map ϕ is also injective: indeed
if a ∈ A is such that ϕ(a) = ae = 0 then a = 0 in Am1 because e 6∈ m1.

Summing up, we proved that A is isomorphic to Am1 × A′. By induction on n
we conclude the proof. �

Definition 0.9. Let A be a ring. The length of A-module M is the supremum of
the n ∈ N for which there exists a chain of A-submodules

{0} = M0 (M1 ( · · · (Mn = M.

Exercise 0.10. A ring A is Artinian if and only if it has finite length as a module
over itself. Any such ring A is both Artinian and Noetherian, any prime ideal of A
is a maximal ideal, and A is equal to the (finite) product of its localizations at its
maximal ideals.

Proof. A ring which has finite length as a module over itself satisfies both the
ascending and descending chain conditions.

Suppose that A is Artinian. Then by the previous exercises the Jacobson radical
is nilpotent and it has finitely many prime ideals. It follows that A is isomorphic to
the product of the localization at its maximal ideals. In order to prove that it has
finite length over itself (thus it is Noetherian), we may assume that A is local with
maximal ideal m and residue field k. It suffices to exhibit a chain of ideals whose
successive quotients have finite length.



3

The maximal ideal m coincides with the Jacobson radical of A, therefore it is
nilpotent. Let n ∈ N be such that mn = 0. Consider the chain of ideals

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m ⊆ A.

We conclude because, for each i ∈ N, the k-vector spacemi/mi+1 is finite-dimensional
(otherwise, it would furnish an infinite descending chain of ideals). �

Remark 0.11. The above argument permits to show the following variation. A
Noetherian ring A of dimension 0 is of finite length (hence Artinian).

Indeed, since A is a Noetherian ring, it has finitely minimal prime ideals. These
ideals are maximal because A is of dimension 0. In particular, the Jacobson radical
coincides with the nilradical, hence it is nilpotent (because A is Noetherian). There-
fore A is the product of the localization at its prime ideals. In order to conclude
that A has finite length over itself, we may assume that A is local with maximal
ideal m and residue field k. It suffices to exhibit a descending chain of ideals whose
successive quotients are of finite length. Let n ∈ N be such that mn = 0. Consider
the chain of ideals

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m ⊆ A.

We conclude that, for each i ∈ N, the k-vector space mi/mi+1 is finite-dimensional
(because A is Noetherian).

0.2. Morphisms between curves.

Exercise 0.12. Let A be a DVR with fractions fieldK. LetK ′ be a finite extension
of K such that the integral closure A′ of A in K ′ is finitely generated as an A-
module. Let m be the maximal ideal of A. Show the following assertions:

(1) The ring A′ is Dedekind with only finitely many maximal ideals.
(2) For each maximal ideal m′ of A′, there is an integer e(m′) > 1 such that

mA′m′ = m′e(m
′).

(3) For each maximal ideal m′ of A′, the field k′ = A′/m′ is a finite extension
of k = A/m. Let f(m′) = [k′ : k].

(4) The following formula holds

[K ′ : K] =
∑

m′∈Max(A′)

e(m′)f(m′).

Proof. (1) The ring A′ is normal by hypothesis and Noetherian because it is a finite
module over the Noetherian ring A. Let p ⊆ A′ be a nonzero prime ideal. Then
p∩A is a nonzero prime ideal (it contains the norms of the elements of p). Therefore
m := p ∩ A is the unique maximal ideal of A. In particular, the ring A′/p is an
integral domain and a finite-dimensional A/m-vector space. It follows that A′/p is
a field, that is, the prime ideal p is maximal. The ring A′/mA′ is thus Noetherian
and 0-dimensional, hence it has only finitely many maximal ideals.

(2) This is true because A′m′ is a DVR.
(3) This follows from the finiteness of A′ as an A-module.
(4) The A-module A′ is flat (because it is without torsion) and finitely generated.

Therefore it is free of rank [K ′ : K]. Let k = A/m. Then A′ ⊗A k = A′/mA′ is a
k-vector space of dimension [K ′ : K].

On the other hand, the ring A′/mA′ is Artinian and therefore it is the product
of the localization at its maximal ideals:

A′/mA′ '
∏

m′∈Max(A′)

A′m′/mA′m′ =
∏

m′∈Max(A′)

A′m′/m′e(m
′).
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In particular,

[K ′ : K] = dimk(A′/mA′) =
∑

m′∈Max(A′)

dimk(A′m′/m′e(m
′)).

Let m′ be a maximal ideal of A′. In order to simplify notation, write B = A′,
n = m′ and e = e(n′). For i ∈ N, consider the short exact squence of B-modules

0 −→ ni/ni+1 −→ B/ni+1 −→ B/ni −→ 0.

The k′-vector space ni/ni+1 is of dimension 1. One deduces, by induction,

dimk(B/ne) = edimk(k′) = e(m′)f(m′).

This concludes the proof. �

Exercise 0.13. Let k be a perfect field. Let K,K ′ be finitely generated fields
over k of transcendence degree 1. Let C,C ′ be the associated algebraic curves. Let
π : C ′ → C be a morphism of algebraic varieties (i.e. of k-locally ringed spaces).
Show the following assertions:

(1) The image of π is either a single point (in which case we say that π is
constant) or the whole C.

(2) If f is non-constant, then it induces a k-algebra homomorphism K → K ′

making K ′ a finite extension of K. For each x ∈ C show that the following
formula holds

deg(π) := [K ′ : K] =
∑

π(x′)=x

e(x′)[k(x′) : k(x)],

where, for x′ ∈ π−1(x), the integer e(x′) is the ramification index at x′:

mxOC′,x′ = m
e(x′)
x′ .

(3) Conversely, for each k-algebra homomorphism ϕ : K → K ′ show that there
is a unique non-constant morphism of algebraic varieties πϕ : C ′ → C in-
ducing ϕ.

(4) Let V ⊆ C ′ be a non-empty open subset. Let f : V → C be a non-constant
morphism of algebraic varieties. Show that f extends uniquely to a mor-
phism C ′ → C.

Proof. (1) Let U = Spm(A) be a non-empty open subset of X for some finitely
generated k-algebraA. Let U ′ ⊆ π−1(U) be a non-empty open subset with such that
U ′ = Spm(A′) for some finitely generated k-algebra A′. The morphism π : U ′ → U
corresponds to a homomorphism of k-algebras ϕ : A→ A′.

Suppose ϕ not injective. Since A′ is an integral domain. Then m := Ker(ϕ) is
a nonzero prime ideal of A, hence it is maximal. Therefore the homomorphism ϕ
factors as A → A/m → A′. Let x the point of U corresponding to m. It follows
that the image of π : U ′ → U is {x}. By continuity π is constant of value x.

Suppose ϕ injective. In this case ϕ : A → A′ extends to a injective homo-
morphism of k-algebras ϕ : K → K ′, making K ′ a finite extension of K. Let
v : K → Z∪ {∞} be a surjective valuation whose restriction to k is trivial. Then v
can be extended to K ′.1

(2) Let U = Spm(A) be a non-empty open subset ofX for some finitely generated
k-algebra A. Let A′ be the normalization of A in K ′.

Claim 0.14. Spm(A′) = π−1(U).

1There are many ways to see this. Here is one. LetKv be the completion ofK with respect to v.
Let K̄v be an algebraic closure of K. Then the valuation v extends in a unique way to a valuation
v̄ on K̄v by setting, for α ∈ K̄v with minimal polynomial xd + ad−1x

d−1 + · · · + a0 ∈ K[x], the
value to be v̄(α) = v(a0)/d. The choice of an embedding K′ → K̄v gives the wanted valuation.
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Proof of the Claim. (⊆) Clear. Given a maximal ideal m′ of B, the prime ideal
m′ ∩A is maximal. (⊇) Let v′ : K ′ → Z∪ {∞} be a valuation such that v := v′ ◦ϕ
belongs to U . It follows that the integral closure of A′ of A is contained in the
valuation ring of v′. Therefore v′ corresponds to a maximal ideal of A′. �

The formula is just the preceding exercise.
�

Exercise 0.15 (Valuative criterion of properness). Let k be a perfect field. Let K
be finitely generated fields over k of transcendence degree 1. Let C be the associated
algebraic curve. Let U ⊆ C be a open subset, and x ∈ U . Let f : U r {x} → Pnk
be a morphism of algebraic varieties. Show that f extends uniquely to a morphism
U → Pnk .

0.3. Some algebraic geometry. Let k be a field. For a finitely generated k-
algebra A let

Spm(A) := (Max(A),OMax(A)).

Exercise 0.16. Let X be an algebraic variety. Let Y ⊆ X be a closed subset. For
each open subset U ⊆ X, consider

I(U) := {f ∈ OX(U) : f(y) = 0, y ∈ Y ∩ U}.

(1) Show that I(U) is an ideal of OX(U) and U 7→ I(U) is a sheaf on X.
(2) For each affine open subset V ⊆ X, set Q(V ) := OX(V )/I(V ). Show that

Q extends uniquely to a sheaf on X. (Hint: start by considering X affine
and then conclude by taking an affine cover.)

(3) Show that the k-locally ringed space (Y,Q|Y ) is an algebraic variety. It
called the reduced structure on Y .

(4) Take X = A2
k r {(0, 0)} and Y = V (y) where x, y are the coordinates

on A2
k. Compute OX(X) and Q(X), and conclude that the natural map

OX(X)→ Q(X) is not surjective.

Exercise 0.17. Let X,Y be algebraic varieties over k.

(1) Show that there exists a unique (up to a unique isomorphism) an algebraic
variety Z, called the product of X and Y and denoted X ×k Y , endowed
with morphisms p : Z → X and q : Z → Y with the following universal
property: given algebraic variety S and morphisms of algebraic varieties
f : S → X and g : S → Y , there exists a unique morphism of algebraic
varieties h : S → Z such that p ◦ h = f , q ◦ h = g. (Hint: If X = Spm(A),
Y = Spm(B) for finitely generated k-algebras A,B, then Z = Spm(A⊗kB).
Then glue.)

(2) Show that Amk ×k Ank = Am+n
k .

(3) Show that P1 ×k P1
k is not isomorphic to P2.

Exercise 0.18 (Segre embedding). Let m,n ∈ N. Consider the morphism of
algebraic varieties s : Pmk ×k Pnk → P(m+1)(n+1)−1

k defined by

[x0 : · · · : xm], [y0 : · · · : yn] 7−→ [xiyj : i = 0, . . . ,m, j = 0, . . . , n].

(1) Show that the image X of s is closed, by writing the (quadratic) equations
that it satisfies.

(2) Show that s induced an isomorphism of Pmk ×k Pnk with X endowed with
its reduced structure. (That is, s is a closed embedding.)
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0.4. Embeddings.

Definition 0.19. Let k be a field. An algebraic variety X is said to be reduced if,
for each open subset U of X, the k-algebra OX(U) is reduced.

Let X be a reduced algebraic variety. A morphism f : X → Y of algebraic
varieties is said to be a closed immersion if the image Z of f is closed and f induces
an isomorphism of X with Z endowed of its reduced structure.

Exercise 0.20. Let k be a perfect field. Let K be a finitely generated field over k
of degree of transcendance 1. Let C be the associated algebraic curve.

(1) Show that C can be covered by non-empty open subsets U1, . . . , Un with
Ui = Spm(Ai) for a finitely generated k-algebra Ai.

(2) By choosing generators of Ai, define a closed embedding εi : Ui → Adik .
(3) Show that the intersection U := U1 ∩ · · · ∩ Un is a non-empty open subset

of C and the morphism

ε = (ε1, . . . , εn) : U −→ Ad1k ×k · · · ×k A
d1
k

extends to a morphism ε : C → Pd1k ×k · · · ×k P
d1
k .

(4) Show that ε is a closed embedding.
(5) By composing with Segre’s embedding, show that ε yields a closed embed-

ding of C in a projective space.
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