0.1. Artinian rings.

Definition 0.1. A ring A is *Artinian* if it satisfies the DCC (Descending Chain Condition): every descending chain of ideals of A,

$$I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots$$

is stationary.

Exercise 0.2. Let k be a field. A finite-dimensional k-algebra is Artinian.

Exercise 0.3. An Artinian ring has only finitely many maximal ideals.

Proof. An ideal of a k-algebra is a k-vector space. In a descending chain of ideals of a finite-dimensional k-algebra, the dimension stabilizes eventually.

Exercise 0.4. The Jacobson radical (that is, the intersection of all maximal ideals) of an Artinian ring is nilpotent. (Hint. Use the following form of Nakayama's Lemma: if A is a ring, I ideal of A contained in the Jacobson radical of A and M is a finitely generated A-module such that M = IM, then M = 0.)

Proof. Let I be the Jacobson radical of A. Since A is Artinian, there is $N \in \mathbb{N}$ such that $I^n = I^{n+1}$ for all $n \ge N$. We want to show that I^N is 0. Define

$$I := \{ f \in A : fI^N = 0 \}.$$

Then we have to show that J = A. Suppose by contradiction this is not the case. Then, since A/J is Artinian, there is a minimal ideal J' strictly containing J. Take $x \in J' \setminus J$. Then J' = J + Ax.

Claim 0.5. J' = J + xI.

Proof of the Claim. The ideal J + xI is contained in J' by definition. On the other hand, xI is not contained in J: otherwise, xI^{N+1} would be contained in $JI^N = 0$, thus x would belong to J. By minimality, it follows J' = J + xI.

Consider the finitely generated A-module M := J'/J. Then

$$IM = I(J + Ax)/J = (IJ + Ix + J)/J = (J + Ix)/J = M.$$

By Nakayama's Lemma, one has M = 0, that is $IJ' \subseteq J$. This implies

$$xI^{N+1} \subseteq JI^N = 0.$$

Thus $x \in J$. Contradiction.

Exercise 0.6. Any ring with finitely many maximal ideals and nilpotent Jacobson radical is the product of its localizations at its maximal ideals. Also, all primes are maximal.

Proof. Let I be the Jacobson ideal of A. The nilpotent radical of a ring is the intersections of all its prime ideals. Since I is nilpotent, it coincides with the nilradical of A. It follows that every prime ideal contains I. Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be the maximal ideals of A. By the Chinese Remainder Theorem,

$$A/I \simeq \prod_{i=1}^n A/\mathfrak{m}_i.$$

Since the prime ideals of a product of fields is maximal, we see that every prime ideal of A is maximal.

Claim 0.7. Let B be a ring and J a nilpotent ideal of B. Let $\bar{e} \in B/I$ be an idempotent. Then there is an idempotent $e \in B$ lifting \bar{e} .

Proof of the Claim. If $\tilde{e} \in B$ is any lift of B, then $\tilde{e}^2 - \tilde{e} \in J$ is nilpotent. Suppose having found a lift e of \bar{e} such that $e^2 - e$ belongs to J^k for some $k \in \mathbb{N}$. Then

$$e' := e - x$$

with $x = (2e - 1)(e^2 - e)$ is such that

$$e'^{2} - e' = (e^{2} - e) + x(x - (2e - 1))$$

= $(e^{2} - e)(1 + (2e - 1)(x - 2e + 1))$
= $(e^{2} - e)((2e - 1)x + 4e - 4e^{2})$
= $(e^{2} - e)^{2}((2e - 1)^{2} - 4) \in J^{2k}.$

Therefore, by induction on k, we find a lift e of \overline{e} such that $e^2 - e \in J^{2^k}$. Since J is nilpotent, for k big enough, e will be idempotent.

Consider the idempotent $\bar{e} = (1, 0, ..., 0)$ of $A/I \simeq \prod_{i=1}^{n} A/\mathfrak{m}_i$. By the Claim, the idempotent \bar{e} lifts to an idempotent e. Then e' = 1 - e is also idempotent:

$$(1-e)^2 - (1-e) = e^2 - e = 0.$$

It follows that A as a ring is isomorphic to $Ae \times Ae'$. (Note that multiplication by an idempotent element is a ring map.) The idempotent e belongs to $\mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n$ because its image in $\prod_{i=2}^n A/\mathfrak{m}_i$ is 0. It follows that the map $Ae \to A/\mathfrak{m}_1$ has kernel

$$Ie = (\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_n)e = \mathfrak{m}_1e.$$

The therefore the ideal Ie is maximal and nilpotent in the ring Ae.

Claim 0.8. Let B be a ring having a nilpotent maximal ideal \mathfrak{n} . Then \mathfrak{n} is the unique prime ideal of B.

Proof of the Claim. Indeed a prime ideal \mathfrak{p} of B contains the nilradical of B, which contains \mathfrak{n} since the latter is nilpotent. Since \mathfrak{n} is maximal, we have $\mathfrak{p} = \mathfrak{n}$.

It follows that the ring Ae is local with maximal ideal $\mathfrak{m}_1 e$. It follows that, if $a \in A \setminus \mathfrak{m}_1$, then $ae \in Ae$ is invertible. The surjective map $A \to Ae$ therefore factors through a surjective map $\varphi \colon A_{\mathfrak{m}_1} \to Ae$. The map φ is also injective: indeed if $a \in A$ is such that $\varphi(a) = ae = 0$ then a = 0 in $A_{\mathfrak{m}_1}$ because $e \notin \mathfrak{m}_1$.

Summing up, we proved that A is isomorphic to $A_{\mathfrak{m}_1} \times A'$. By induction on n we conclude the proof.

Definition 0.9. Let A be a ring. The *length* of A-module M is the supremum of the $n \in \mathbb{N}$ for which there exists a chain of A-submodules

$$\{0\} = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M.$$

Exercise 0.10. A ring A is Artinian if and only if it has finite length as a module over itself. Any such ring A is both Artinian and Noetherian, any prime ideal of A is a maximal ideal, and A is equal to the (finite) product of its localizations at its maximal ideals.

Proof. A ring which has finite length as a module over itself satisfies both the ascending and descending chain conditions.

Suppose that A is Artinian. Then by the previous exercises the Jacobson radical is nilpotent and it has finitely many prime ideals. It follows that A is isomorphic to the product of the localization at its maximal ideals. In order to prove that it has finite length over itself (thus it is Noetherian), we may assume that A is local with maximal ideal \mathfrak{m} and residue field k. It suffices to exhibit a chain of ideals whose successive quotients have finite length.

The maximal ideal \mathfrak{m} coincides with the Jacobson radical of A, therefore it is nilpotent. Let $n \in \mathbb{N}$ be such that $\mathfrak{m}^n = 0$. Consider the chain of ideals

$$0 = \mathfrak{m}^n \subseteq \mathfrak{m}^{n-1} \subseteq \cdots \subseteq \mathfrak{m} \subseteq A.$$

We conclude because, for each $i \in \mathbb{N}$, the k-vector space $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is finite-dimensional (otherwise, it would furnish an infinite descending chain of ideals). \Box

Remark 0.11. The above argument permits to show the following variation. A Noetherian ring A of dimension 0 is of finite length (hence Artinian).

Indeed, since A is a Noetherian ring, it has finitely minimal prime ideals. These ideals are maximal because A is of dimension 0. In particular, the Jacobson radical coincides with the nilradical, hence it is nilpotent (because A is Noetherian). Therefore A is the product of the localization at its prime ideals. In order to conclude that A has finite length over itself, we may assume that A is local with maximal ideal \mathfrak{m} and residue field k. It suffices to exhibit a descending chain of ideals whose successive quotients are of finite length. Let $n \in \mathbb{N}$ be such that $\mathfrak{m}^n = 0$. Consider the chain of ideals

$$0 = \mathfrak{m}^n \subseteq \mathfrak{m}^{n-1} \subseteq \cdots \subseteq \mathfrak{m} \subseteq A.$$

We conclude that, for each $i \in \mathbb{N}$, the k-vector space $\mathfrak{m}^{i}/\mathfrak{m}^{i+1}$ is finite-dimensional (because A is Noetherian).

0.2. Morphisms between curves.

Exercise 0.12. Let A be a DVR with fractions field K. Let K' be a finite extension of K such that the integral closure A' of A in K' is finitely generated as an A-module. Let \mathfrak{m} be the maximal ideal of A. Show the following assertions:

- (1) The ring A' is Dedekind with only finitely many maximal ideals.
- (2) For each maximal ideal \mathfrak{m}' of A', there is an integer $e(\mathfrak{m}') \ge 1$ such that $\mathfrak{m}A'_{\mathfrak{m}'} = \mathfrak{m}'^{e(\mathfrak{m}')}$.
- (3) For each maximal ideal \mathfrak{m}' of A', the field $k' = A'/\mathfrak{m}'$ is a finite extension of $k = A/\mathfrak{m}$. Let $f(\mathfrak{m}') = [k':k]$.
- (4) The following formula holds

$$[K':K] = \sum_{\mathfrak{m}' \in \operatorname{Max}(A')} e(\mathfrak{m}') f(\mathfrak{m}').$$

Proof. (1) The ring A' is normal by hypothesis and Noetherian because it is a finite module over the Noetherian ring A. Let $\mathfrak{p} \subseteq A'$ be a nonzero prime ideal. Then $\mathfrak{p} \cap A$ is a nonzero prime ideal (it contains the norms of the elements of \mathfrak{p}). Therefore $\mathfrak{m} := \mathfrak{p} \cap A$ is the unique maximal ideal of A. In particular, the ring A'/\mathfrak{p} is an integral domain and a finite-dimensional A/\mathfrak{m} -vector space. It follows that A'/\mathfrak{p} is a field, that is, the prime ideal \mathfrak{p} is maximal. The ring $A'/\mathfrak{m}A'$ is thus Noetherian and 0-dimensional, hence it has only finitely many maximal ideals.

(2) This is true because $A'_{\mathfrak{m}'}$ is a DVR.

(3) This follows from the finiteness of A' as an A-module.

(4) The A-module A' is flat (because it is without torsion) and finitely generated. Therefore it is free of rank [K':K]. Let $k = A/\mathfrak{m}$. Then $A' \otimes_A k = A'/\mathfrak{m}A'$ is a k-vector space of dimension [K':K].

On the other hand, the ring $A'/\mathfrak{m}A'$ is Artinian and therefore it is the product of the localization at its maximal ideals:

$$A'/\mathfrak{m}A' \simeq \prod_{\mathfrak{m}' \in \operatorname{Max}(A')} A'_{\mathfrak{m}'}/\mathfrak{m}A'_{\mathfrak{m}'} = \prod_{\mathfrak{m}' \in \operatorname{Max}(A')} A'_{\mathfrak{m}'}/\mathfrak{m}'^{e(\mathfrak{m}')}.$$

In particular,

$$[K':K] = \dim_k(A'/\mathfrak{m}A') = \sum_{\mathfrak{m}' \in \operatorname{Max}(A')} \dim_k(A'_{\mathfrak{m}'}/\mathfrak{m}'^{e(\mathfrak{m}')}).$$

Let \mathfrak{m}' be a maximal ideal of A'. In order to simplify notation, write B = A', $\mathfrak{n} = \mathfrak{m}'$ and $e = e(\mathfrak{n}')$. For $i \in \mathbb{N}$, consider the short exact squence of *B*-modules

$$0 \longrightarrow \mathfrak{n}^i/\mathfrak{n}^{i+1} \longrightarrow B/\mathfrak{n}^{i+1} \longrightarrow B/\mathfrak{n}^i \longrightarrow 0.$$

The k'-vector space $\mathfrak{n}^i/\mathfrak{n}^{i+1}$ is of dimension 1. One deduces, by induction,

$$\dim_k(B/\mathfrak{n}^e) = e \dim_k(k') = e(\mathfrak{m}')f(\mathfrak{m}').$$

This concludes the proof.

Exercise 0.13. Let k be a perfect field. Let K, K' be finitely generated fields over k of transcendence degree 1. Let C, C' be the associated algebraic curves. Let $\pi: C' \to C$ be a morphism of algebraic varieties (*i.e.* of k-locally ringed spaces). Show the following assertions:

- (1) The image of π is either a single point (in which case we say that π is constant) or the whole C.
- (2) If f is non-constant, then it induces a k-algebra homomorphism $K \to K'$ making K' a finite extension of K. For each $x \in C$ show that the following formula holds

$$\deg(\pi) := [K':K] = \sum_{\pi(x')=x} e(x')[k(x'):k(x)],$$

where, for $x' \in \pi^{-1}(x)$, the integer e(x') is the ramification index at x':

$$\mathfrak{m}_x\mathcal{O}_{C',x'}=\mathfrak{m}_{x'}^{e(x')}$$
 .

- (3) Conversely, for each k-algebra homomorphism $\varphi \colon K \to K'$ show that there is a unique non-constant morphism of algebraic varieties $\pi_{\varphi} \colon C' \to C$ inducing φ .
- (4) Let $V \subseteq C'$ be a non-empty open subset. Let $f: V \to C$ be a non-constant morphism of algebraic varieties. Show that f extends uniquely to a morphism $C' \to C$.

Proof. (1) Let U = Spm(A) be a non-empty open subset of X for some finitely generated k-algebra A. Let $U' \subseteq \pi^{-1}(U)$ be a non-empty open subset with such that U' = Spm(A') for some finitely generated k-algebra A'. The morphism $\pi: U' \to U$ corresponds to a homomorphism of k-algebras $\varphi: A \to A'$.

Suppose φ not injective. Since A' is an integral domain. Then $\mathfrak{m} := \operatorname{Ker}(\varphi)$ is a nonzero prime ideal of A, hence it is maximal. Therefore the homomorphism φ factors as $A \to A/\mathfrak{m} \to A'$. Let x the point of U corresponding to \mathfrak{m} . It follows that the image of $\pi: U' \to U$ is $\{x\}$. By continuity π is constant of value x.

Suppose φ injective. In this case $\varphi: A \to A'$ extends to a injective homomorphism of k-algebras $\varphi: K \to K'$, making K' a finite extension of K. Let $v: K \to \mathbb{Z} \cup \{\infty\}$ be a surjective valuation whose restriction to k is trivial. Then v can be extended to K'.¹

(2) Let U = Spm(A) be a non-empty open subset of X for some finitely generated k-algebra A. Let A' be the normalization of A in K'.

Claim 0.14. $Spm(A') = \pi^{-1}(U).$

¹There are many ways to see this. Here is one. Let K_v be the completion of K with respect to v. Let \bar{K}_v be an algebraic closure of K. Then the valuation v extends in a unique way to a valuation \bar{v} on \bar{K}_v by setting, for $\alpha \in \bar{K}_v$ with minimal polynomial $x^d + a_{d-1}x^{d-1} + \cdots + a_0 \in K[x]$, the value to be $\bar{v}(\alpha) = v(a_0)/d$. The choice of an embedding $K' \to \bar{K}_v$ gives the wanted valuation.

Proof of the Claim. (\subseteq) Clear. Given a maximal ideal \mathfrak{m}' of B, the prime ideal $\mathfrak{m}' \cap A$ is maximal. (\supseteq) Let $v' \colon K' \to \mathbb{Z} \cup \{\infty\}$ be a valuation such that $v := v' \circ \varphi$ belongs to U. It follows that the integral closure of A' of A is contained in the valuation ring of v'. Therefore v' corresponds to a maximal ideal of A'.

The formula is just the preceding exercise.

Exercise 0.15 (Valuative criterion of properness). Let k be a perfect field. Let Kbe finitely generated fields over k of transcendence degree 1. Let C be the associated algebraic curve. Let $U \subseteq C$ be a open subset, and $x \in U$. Let $f: U \setminus \{x\} \to \mathbb{P}^n_k$ be a morphism of algebraic varieties. Show that f extends uniquely to a morphism $U \to \mathbb{P}^n_k.$

0.3. Some algebraic geometry. Let k be a field. For a finitely generated kalgebra A let

$$\operatorname{Spm}(A) := (\operatorname{Max}(A), \mathcal{O}_{\operatorname{Max}(A)}).$$

Exercise 0.16. Let X be an algebraic variety. Let $Y \subseteq X$ be a closed subset. For each open subset $U \subseteq X$, consider

$$I(U) := \{ f \in \mathcal{O}_X(U) : f(y) = 0, y \in Y \cap U \}.$$

- (1) Show that I(U) is an ideal of $\mathcal{O}_X(U)$ and $U \mapsto I(U)$ is a sheaf on X.
- (2) For each affine open subset $V \subseteq X$, set $Q(V) := \mathcal{O}_X(V)/I(V)$. Show that Q extends uniquely to a sheaf on X. (Hint: start by considering X affine and then conclude by taking an affine cover.)
- (3) Show that the k-locally ringed space $(Y, Q|_Y)$ is an algebraic variety. It called the *reduced* structure on Y.
- (4) Take $X = \mathbb{A}_k^2 \setminus \{(0,0)\}$ and Y = V(y) where x, y are the coordinates on \mathbb{A}_k^2 . Compute $\mathcal{O}_X(X)$ and Q(X), and conclude that the natural map $\mathcal{O}_X(X) \to Q(X)$ is not surjective.

Exercise 0.17. Let X, Y be algebraic varieties over k.

- (1) Show that there exists a unique (up to a unique isomorphism) an algebraic variety Z, called the product of X and Y and denoted $X \times_k Y$, endowed with morphisms $p: Z \to X$ and $q: Z \to Y$ with the following universal property: given algebraic variety S and morphisms of algebraic varieties $f: S \to X$ and $g: S \to Y$, there exists a unique morphism of algebraic varieties $h: S \to Z$ such that $p \circ h = f$, $q \circ h = g$. (Hint: If X = Spm(A), Y = Spm(B) for finitely generated k-algebras A, B, then $Z = \text{Spm}(A \otimes_k B)$. Then glue.)
- (2) Show that $\mathbb{A}_{k}^{m} \times_{k} \mathbb{A}_{k}^{n} = \mathbb{A}_{k}^{m+n}$. (3) Show that $\mathbb{P}^{1} \times_{k} \mathbb{P}_{k}^{1}$ is not isomorphic to \mathbb{P}^{2} .

Exercise 0.18 (Segre embedding). Let $m, n \in \mathbb{N}$. Consider the morphism of algebraic varieties $s: \mathbb{P}_k^m \times_k \mathbb{P}_k^n \to \mathbb{P}_k^{(m+1)(n+1)-1}$ defined by

 $[x_0:\cdots:x_m], [y_0:\cdots:y_n]\longmapsto [x_iy_j:i=0,\ldots,m, j=0,\ldots,n].$

- (1) Show that the image X of s is closed, by writing the (quadratic) equations x = 1that it satisfies.
- (2) Show that s induced an isomorphism of $\mathbb{P}_k^m \times_k \mathbb{P}_k^n$ with X endowed with its reduced structure. (That is, s is a closed embedding.)

0.4. Embeddings.

Definition 0.19. Let k be a field. An algebraic variety X is said to be reduced if, for each open subset U of X, the k-algebra $\mathcal{O}_X(U)$ is reduced.

Let X be a reduced algebraic variety. A morphism $f: X \to Y$ of algebraic varieties is said to be a closed immersion if the image Z of f is closed and f induces an isomorphism of X with Z endowed of its reduced structure.

Exercise 0.20. Let k be a perfect field. Let K be a finitely generated field over kof degree of transcendance 1. Let C be the associated algebraic curve.

- (1) Show that C can be covered by non-empty open subsets U_1, \ldots, U_n with $U_i = \text{Spm}(A_i)$ for a finitely generated k-algebra A_i .
- (2) By choosing generators of A_i , define a closed embedding $\varepsilon_i \colon U_i \to \mathbb{A}_k^{d_i}$.
- (3) Show that the intersection $U := U_1 \cap \cdots \cap U_n$ is a non-empty open subset of ${\cal C}$ and the morphism

$$\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \colon U \longrightarrow \mathbb{A}_k^{d_1} \times_k \dots \times_k \mathbb{A}_k^{d_k}$$

extends to a morphism $\varepsilon \colon C \to \mathbb{P}_k^{d_1} \times_k \cdots \times_k \mathbb{P}_k^{d_1}$. (4) Show that ε is a closed embedding.

- (5) By composing with Segre's embedding, show that ε yields a closed embedding of C in a projective space.

 $\mathbf{6}$