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DIOPHANTINE APPLICATIONS OF GEOMETRIC
INVARIANT THEORY

Marco Maculan

Abstract. — This text consists of two parts. In the first one we present a proof of
Thue-Siegel-Roth’s Theorem (and its more recent variants, such as those of Lang for
number fields and that “with moving targets” of Vojta) as an application of Geometric
Invariant Theory (GIT). Roth’s Theorem is deduced from a general formula comparing
the height of a semi-stable point and the height of its projection on the GIT quotient.
In this setting, the role of the zero estimates appearing in the classical proof is played
by the geometric semi-stability of the point to which we apply the formula.

In the second part we study heights on GIT quotients. We generalise Burnol’s
construction of the height and refine diverse lower bounds of the height of semi-stable
points established to Bost, Zhang, Gasbarri and Chen. The proof of Burnol’s formula
is based on a non-archimedean version of Kempf-Ness theory (in the framework of
Berkovich analytic spaces) which completes the former work of Burnol.

Résumé (Applications diophantiennes de la théorie géométrique des inva-
riants)

Ce texte est constitué de deux parties. Dans la première nous présentons une preuve
du théorème de Thue-Siegel-Roth (et des variantes plus récentes, comme celle de Lang
pour le corps de nombres et celle with moving targets de Vojta) basée sur la théorie
géométrique des invariants (GIT). Le théorème de Roth est déduit d’une formule
reliant la hauteur d’un point semi-stable et la hauteur de sa projection dans le quotient
GIT. Dans ce cadre, le rôle du « lemme des zéros » présent dans la preuve classique
est joué par la semi-stabilité géométrique du point auquel on applique la formule.

Dans la deuxième partie nous étudions la hauteur sur les quotients GIT. Nous
généralisons la construction de Burnol de cette hauteur et nous améliorons plusieurs
minorations de la hauteur de point semi-stables précédemment établies par Bost,
Zhang Gasbarri et Chen. La preuve de la formule de Burnol porte sur une version
non-archimédienne de la théorie de Kempf-Ness (dans le langage de la géométrie
analytique de Berkovich), qui complète le travail antérieur de Burnol.
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INTRODUCTION

In its original form, Roth’s Theorem states that given a real algebraic number
α ∈ R which is not rational and a real number κ > 2, there exist only finitely many
rational numbers p/q ∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ < 1

|q|κ

where p, q are coprime integers.
The general strategy to prove Roth’s Theorem stems back to the work of Thue. The

main ingredient is the construction of an “auxiliary” polynomial in several variables
f which vanishes at high order at (α, . . . , α): the crucial step is to prove that it does
not vanish too much at rational points which “approximate” (α, . . . , α).

The original argument of Roth (generalizing those of Thue, Siegel and Gel’fond)
involves arithmetic considerations about the height of the rational approximations.
On the other hand, in the work of Dyson — who proved an earlier version of Roth’s
Theorem — the non-vanishing result (usually called “Dyson’s Lemma”) takes place
over the complex numbers: being free from arithmetic constraints, it is said to be of
geometric nature. The task to generalize Dyson’s Lemma from 2 to several variables
was accomplished by Esnault-Viehweg [EV84]; afterwards Nakamaye [Nak99] was
able to give a proof of it relying on a variant of Faltings’ Product Theorem and
“elementary” concepts of intersection theory.

The advantage of having a geometric proof of Dyson’s Lemma was exploited by
Bombieri in the remarkable paper [Bom82]: he showed that these methods lead to
new effective results in diophantine approximation available before only through the
linear forms of logarithms of Baker.

Using an arithmetic variant of the Product Theorem, Faltings and Wüstholz
[FW94] gave a new proof of Schmidt’s Subspace Theorem, sensibly different from
the original one. Their Zero Lemma, as in Roth and Schmidt, is of arithmetic nature.
Their proof involves a notion of semi-stability for filtered vector spaces (see also
[Fal95]). The role played by semi-stability is anyway rather different from the one
in the present paper: here it collects all the geometric informations coming from
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Dyson’s Lemma (hence from the Product Theorem); in their paper it represents a
combinatorial assumption that permits to perform an inductive step based on the
Product Theorem.

Inspired by work of Osgood [Osg85] and Steinmetz [Ste86] Vojta proved in
[Voj96] a generalised version of Roth’s Theorem — called “with moving targets”
— where the algebraic point can vary along with the rational approximations. Its
proof is based on the use of Schmidt’s Subspace Theorem. However it has been no-
ticed by Bombieri and Gubler [BG06, Theorem 6.5.2 and §6.6] that the techniques
employed to prove Roth’s Theorem suffice to prove the version “with moving targets”
without recurring to Schmidt’s Subspace Theorem.

The study of the interplay between Geometric Invariant Theory and height func-
tions (in the context of Arakelov geometry) has started more than twenty years ago
with the work of several authors.

Burnol [Bur92] defined a height function on the GIT quotient of a projective space
by a reductive group and he expressed it in terms as the sum of the height on the
projective space and of local error terms.

Bost [Bos94, Bos96a], Zhang [Zha96a] and Soulé [Sou95] proved several lower
bounds on the height of semi-stable points (in some explicit representations) and used
them to give lower bounds on the height of semi-stable varieties (e.g. semi-stable
curves, abelian varieties...).

Gasbarri [Gas00] was able to free the arguments of Bost and Zhang from the
constraint of knowing explicitly the representation of GLn. Chen [Che09] proved
an explicit variant of this type of lower bounds and used it — inspired by work of
Ramanan-Ramanathan [RR84] and Totaro [Tot96] — to study the semi-stability of
the tensor product of hermitian vector bundles over a ring of integers.

In the first chapter of this text, we show how a simple version of this general lower
bound on the height of (geometrically) semi-stable point leads to a general lower bound
on the height of suitable families of points (x1, . . . , xn) and (a1, . . . , an) in P1(K)n and
P1(K ′)n respectively to the diverse v-adic distances (where K is a number field and
K ′ is an extension of degree ≥ 2). This lower bound, which constitutes the main result
of the present note, has been established in the case n = 2 by Bombieri [Bom82,
Theorem 2], is effective and implies the version of Roth’s Theorem we present here.

Let us discuss briefly the content of the chapters. For the precise statement of the
results we refer the reader to the first section of each chapter.

In Chapter 1 we introduce the basic tools of Geometric Invariant Theory that are
needed in order to deduce Roth’s Theorem. The results expounded in this chapter
will be refined in Chapter 4, but we preferred to give a succinct and self-containted
account for the reader interested to the proof of Roth’s Theorem in Chapter 2. It
may also serve the reader interested in Chapters 3 and 4 as an introduction to the
results to be improved.

In Chapter 2 we prove Roth’s Theorem (along with some more recent variants) as
a consequence of the Fundamental Formula in Chapter 2 (applied to a suitably chosen
“moduli problem”).
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In Chapter 3 we investigate a variant of the results of Kempf-Ness [KN79] for
complex and non-archimedean geometry.

In Chapter 4 we study deeply the height on the quotient and prove (some of) the
desired refinements of the results of Chapter 1.

An effort has been made in order to keep the different chapters independent one
from the other. In Chapter 2 the only references to Chapter 1 are in section 2.3, while
in Chapter 4 the needed facts from Chapter 3 are recalled in section 1. We invite to
read the chapters separately.
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CHAPTER 0

CONVENTIONS

Here is a list of conventions and definitions that are used throughout the text.

0.1. For a ring A and a positive integer n, let An∨ := HomA(An, A). The projective
line P1

A over the ring A is the A-scheme

P1
A = Proj(SymA2∨).

Rather generally, if M is an A-module of finite type, then M∨ = HomA(M,A) and

P(M) := Proj(SymM∨).

0.2. Let A be a ring, M be an A-module and n be a negative integer. Set

M⊗n := M∨⊗−n = HomA(M,A)⊗−n.

0.3. Hermitian Norms. — Let E, F be finite dimensional complex vector spaces
equipped respectively with hermitian norms ‖ · ‖E , ‖ · ‖F and associated hermitian
forms 〈−,−〉E , 〈−,−〉F . Let r be a non-negative integer.

– On the tensor power E⊗CF let ‖·‖E⊗F be the norm associated to the hermitian
form

〈v ⊗ w, v′ ⊗ w′〉E⊗F := 〈v, v′〉E · 〈w,w′〉F
where v, v′ ∈ E and w,w′ ∈ F .

– On the r-th symmetric power Symr E let ‖ ·‖Symr E be the quotient norm with
respect to the canonical surjection E⊗r → Symr E. If e1, . . . , en denotes an
orthonormal basis of E, where n = dimCE, for every n-uple of non-negative
integers (r1, . . . , rn) such that r1 + · · ·+ rn = r:

‖er11 · · · ernn ‖Symr E =

(
r

r1, . . . , rn

)−1/2

:=

(
r!

r1! · · · rn!

)−1/2

.

This norm is hermitian and it is sub-multiplicative in the following sense: if
f ∈ Symr E and g ∈ SymsE, then

‖fg‖Symr+s E ≤ ‖f‖Symr E‖g‖Syms E .
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Let us also mention that the norm ‖ · ‖Symr E is bigger than the sup-norm on
the unit ball: for f ∈ Symr E,

‖f‖sup := sup
06=x∈E∨

|f(x)|
‖x‖rE∨

≤ ‖f‖Symr E .

– On the r-th external power
∧r

E let ‖ · ‖∧r E be the norm associated to the
hermitian form

〈v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ wr〉∧r E = det (〈vi, wj〉E : i, j = 1, . . . , r)

where v1, . . . , vr and w1, . . . , wr are elements of E. With this notation
Hadamard inequality (1) reads:

(0.3.1) ‖v1 ∧ · · · ∧ vr‖∧r E ≤
r∏
i=1

‖vi‖E .

The hermitian norm ‖ · ‖∧r E is not the quotient norm with respect to the
canonical surjection E⊗r →

∧r
E, but it is

√
r! times the quotient norm (see

[Che09, Lemma 4.1]).
– For every linear homomorphism ϕ : E → F write ϕ∗ for the adjoint homomor-

phism (with respect to the hermitian norms ‖ · ‖E and ‖ · ‖F ). On the vector
space HomC(E,F ) let ‖ · ‖Hom(E,F ) be the hermitian norm associated to the
hermitian form

〈ϕ,ψ〉Hom(E,F ) := Tr(ϕ ◦ ψ∗)
where ϕ,ψ ∈ HomC(E,F ). If e1, . . . , en is an orthonormal basis of E,

‖ϕ‖Hom(E,F ) :=
√
‖ϕ(e1)‖2F + · · ·+ ‖ϕ(en)‖2F .

With these conventions the isomorphism E∨⊗CF → HomC(E,F ) is isometric.

0.4. Non-archimedean norms. — Let K be a field complete with respect to a
non-archimedean absolute value and let o be its ring of integers. In order to do some
computations it is convenient to interpret o-modules as K-vector spaces endowed with
a non-archimedean norm. More precisely, for every torsion free o-module E denote by
E := E ⊗o K its generic fiber and consider the following norm: for every v ∈ E set

‖v‖E := inf{|λ| : λ ∈ K×, v/λ ∈ E}.
The norm ‖·‖E is non-archimedean and its construction is compatible with operations
on o-modules: for instance, if ϕ : E → F is an injective homomorphism with flat
cokernel (resp. surjective homomorphism) between torsion free o-modules then the
norm ‖ · ‖E induced on E := E ⊗oK (resp. the norm ‖ · ‖F induced on F := F ⊗oK)
is the restriction of the norm ‖ · ‖F on F (resp. is the quotient norm deduced from
‖ · ‖E and ϕ, that is, the norm defined by

w 7→ inf
ϕ(v)=w

‖v‖E

1. This inequality is Hadamard’s bound of the volume of a basis of a Euclidean space and not
Hermite-Hadamard’s inequality concerning convex functions.
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for every element w of F .)
For a non-negative integer r ≥ 0, the norm on symmetric powers Symr E (resp. on

exterior powers
∧r E) is the norm deduced by the one on the r-th tensor power E⊗r

through the canonical surjection E⊗r → Symr E (resp. E⊗r →
∧r E). In particular,

it is sub-multiplicative (resp. Hadamard inequality holds).

0.5. Normalisation of places. — For a number field K let oK be its ring of
integers and VK its the set of its places. If v is a place of K, let Kv be the completion
of K with respect to v and Cv the completion of an algebraic closure of Kv (with
respect the unique absolute value extending v). A non-archimedean place v extending
a p-adic one is normalized by

|p|v = p−[Kv :Qp].

0.6. Hermitian vector bundles and Arakelov degree. — Let K be a number
field, oK its ring of integers and VK its set of places. An hermitian vector bundle
E is the data of a flat oK-module of finite type E and, for every complex embedding
σ : K → C, an hermitian norm ‖ · ‖E,σ on the complex vector space Eσ := E ⊗σ C.
These hermitian norms are supposed to be compatible to complex conjugation. For a
place v ∈ VK let ‖ ·‖E,v be the norm induced on the Kv-vector space Ev := E ⊗oK Kv.

If E , F are hermitian vector bundles over oK , a homomorphism of hermitian vector
bundles ϕ : E → F is a homomorphism of oK-modules such that, for every embedding
σ : K → C, it decreases the norms: that is, for every v ∈ E ⊗σ C,

‖ϕ(v)‖F,σ ≤ ‖v‖E,σ.

If L is an hermitian line bundle, that is an hermitian vector bundle of rank 1, its
degree is

d̂eg(L) := log #(L/sL)−
∑

σ : K→C

log ‖s‖L,σ

= −
∑
v∈VK
finite

log ‖s‖L,v −
∑
v∈VK
infinite

[Kv : R] log ‖s‖L,v.

where s ∈ L is non-zero. It appears from the second expression that this, according
to the Product Formula, does not depend on the chosen section s. For a non-zero
hermitian vector bundle E one defines

– its degree:
d̂eg E := d̂eg(

∧rk E E);

– its slope:

µ̂(E) :=
d̂eg(E)

rk E
;

– its maximal slope:
µ̂max(E) := sup

0 6=F⊂E
µ̂(F),

where the supremum is taken on all non-zero sub-modules F of E endowed
with the restriction of the hermitian metric on E .
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Proposition 0.1 (Slopes inequality, [Bos96b]). — Let E ,F be oK-hermitian
vector bundles and let ϕ : E ⊗oK K → F ⊗oK K be an injective homomorphism of
K-vector spaces. Then,

µ̂(E) ≤ µ̂max(F) +
∑
v∈VK

log ‖ϕ‖sup,v,

where, for every place v ∈ VK ,

‖ϕ‖sup,v := sup
06=s∈Ev

‖ϕ(s)‖F,v
‖s‖E,v

.

0.7. Height function with repsect to a hermitian line bundle. — Let K be
a number field, oK its ring of integers and X a projective flat oK-scheme.

A hermitian line bundle L = (L, {‖·‖L,σ}σ : K→C) is the data of a line bundle L on
X and, for σ : K → C, a continuous metric ‖·‖L,σ on the complex line bundle L|Xσ(C).
The data {‖ · ‖L,σ}σ : K→C is supposed compatible with complex conjugation.

LetK ′ be a finite extension ofK, oK′ its ring of integers and P aK ′-point of X . By
the valuative criterion of properness, the point P induces a morphism of oK-schemes
εP : Spec oK′ → X . The invertible oK′ -module ε∗PL is endowed with norms deduced
from the metric on L: the associated hermitian line bundle on oK′ is denoted ε∗PL.

The height of P with respect to L is

hL(P ) :=
1

[K ′ : K]
d̂eg(ε∗PL).

More concretely, if s ∈ H0(X ,L) is a global section not vanishing at P ,

[K ′ : K]hL(P ) = log #(ε∗PL/s(P )ε∗PL)−
∑

σ : K→C

log ‖s‖L,σ(P ).

The real number hL(P ) does not depend on the chosen K ′, thus one has a well-
defined function hL : X (Q̄)→ R called the height function with respect to L.



CHAPTER 1

GEOMETRIC INVARIANT THEORY AND ARAKELOV
GEOMETRY: BASIC RESULTS

In this chapter we introduce the main tool of Geometric Invariant Theory (the
Fundamental Formula, see Theorem 1.6) that we shall apply in Chapter 2 to a specific
“moduli problem” in order to get the Roth’s Theorem: it is a formula relating the
height of a semi-stable point with the height of its projection on the GIT quotient.
In this general framework we also state and prove a lower bound of the height on the
quotient (see Theorem 2.1).

Even though these results will be sharpen in Chapter 4 through some more powerful
techniques, we present them here in a very basic form: this will permit to prove them
in a very elementary way. We hope that this will help the reader willing to proceed
straight to the proof of Roth’s Theorem expounded in Chapter 2.

1. The Fundamental Formula

Let K be a number field and oK its ring of integers.

1.1. Let X be a projective and flat oK-scheme endowed with the action of an oK-
reductive group (1) G and let L be a very ample G-linearized invertible sheaf on X . The
global sections E = Γ(X ,L) are endowed with a linear action of G. Thus the reductive
group G acts on P(E∨) and the invertible sheaf OE∨(1) is G-linearized. The closed
embedding j : X ↪→ P(E∨) and the isomorphism j∗OE∨(1) ' L are G-equivariant.

1. Over an algebraically closed field k an algebraic group G — i.e. a smooth finite type affine
k-group scheme — is said to be reductive if it is connected and every normal smooth connected
unipotent subgroup is trivial. Over an arbitrary scheme S a group scheme G is said to be reductive
(or G is a S-reductive group) if it satisfies the following conditions:

(1) G is affine, smooth and of finite type over S;
(2) for all s ∈ S, the s-group scheme Gs := G×S s is a reductive algebraic group (where s is the

spectrum of an algebraic closure of the residue field κ(s)).
Examples of S-reductive groups are GLn,S , SLn,S and their products. In the first chapter only

oK -reductive group SLn2,oK will be considered. The interested reader can refer to [Bor91b, Chapter
IV] for the theory over a field and [GP11, Con] for the theory over an arbitrary scheme.
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1.2. A point x ∈ X is said to be semi-stable if there exists, for a sufficiently big
d ≥ 1, a G-invariant global section s ∈ Γ(X ,L⊗d) that does not vanish at x.

Consider the oK-graded algebra of finite type A :=
⊕

d≥0 Γ(X ,L⊗d). According
to a theorem of Seshadri [Ses77, II.4, Theorem 4] the graded algebra

AG =
⊕
d≥0

Γ(X ,L⊗d)G

of G-invariants ofA is an oK-algebra of finite type and projective scheme Y := ProjAG
is the categorical quotient of the open subset X ss of semi-stable points of X (with
respect to the action of reductive group G and the invertible sheaf L). For this reason it
is denoted by X//G (or by (X ,L)//G to keep track of the polarisation). Let π : X ss → Y
be the quotient morphism. Since Y is of finite type, for every sufficiently divisible
integer D ≥ 1, there exists an ample invertible sheafMD on Y and a G-equivariant
isomorphism of invertible sheaves

ϕD : π∗MD −→ L⊗D|X ss .

1.3. For every embedding γ : K → C let ‖ · ‖E,γ be an hermitian norm on E ⊗γ C
which is invariant under the action of a maximal compact subgroup of Gγ(C). Suppose
that the family of norms {‖ · ‖E,γ}γ : K→C is compatible under complex conjugation.

Let ‖ ·‖O(1),γ be the Fubini-Study metric on the invertible sheaf OE∨(1) associated
to the hermitian norm ‖ · ‖E∨,γ and let ‖ · ‖L,γ be its restriction to L. Denote by
L the hermitian line bundle on X obtained endowing L with the family of metrics
{‖ · ‖L,γ}γ : K→C. For every y ∈ Yγ(C) and every t ∈ y∗MD set

‖t‖MD,γ(y) := sup
x∈X ss

γ (C)

π(x)=y

‖ϕD(π∗t)‖L⊗D,γ(x).

Lemma 1.1. — Let f ∈ Γ(Y,MD) be a global section.

(1) There exists a unique G-invariant global section f̃ ∈ Γ(X ,L⊗D) which vanishes
identically on X − X ss and such that ϕD(π∗f) = f̃|X ss .

(2) For every complex embedding γ : K → C,

sup
y∈Yγ(C)

‖f‖MD,γ(y) = sup
x∈Xγ(C)

‖f̃‖L⊗D,γ(x).

In particular, ‖t‖MD,γ(y) < +∞ for every t ∈ y∗MD, thus the function ‖ · ‖MD,γ

defines a metric on the invertible sheafMD.

Proof. —

(1) It is a reformulation of the definition of Y andMD.
(2) It follows from (1).
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1.4. LetMD be the associated hermitian invertible sheaf on Y and hMD
the height

function given byMD (see [BG06, 2.7.17]). Define

hmin((X ,L)//G) := inf
Q∈Y(Q̄)

1

D
hMD

(Q) ∈ [−∞,+∞[ .

(which is independent of D).

Lemma 1.2. — hmin((X ,L)//G) > −∞.

Proof. — Let D be such thatMD is very ample and let t1, . . . , tN ∈ Γ(Y,MD) be a
set of generators of the global sections. Let K ′ be a finite extension of K, let Q be a
K ′-point of Y and εQ the associated oK′ -point of Y given by the valuative criterion
of properness. There exists i ∈ {1, . . . , N} such that ti does not vanish at Q. By
definition of the height,

[K ′ : Q]hMD
(Q) := log #

(
ε∗QMD/(ε

∗
Qti · ε∗QMD)

)
−

∑
γ : K′→C

log ‖ti‖MD,γ(Q)

≥ −[K ′ : K]
∑

γ : K→C

sup
y∈Yγ(C)

log ‖ti‖MD,γ(y).

It suffices to show that for every i = 1, . . . , N and every γ : K → C the function
‖ti‖MD,γ is uniformly bounded on Yγ(C). This follows from Lemma 1.1 (2) and
concludes the proof.

Remark 1.3. — Proving this Lemma would have been unnecessary if knew that the
metric ‖ · ‖MD,γ was continuous. This is actually the case but in an attempt to be
self-contained in this chapter we avoided the recourse to such a result. A proof of
the continuity is expounded in Chapter 3 (see Theorem 1.1). In this setting it follows
from the arguments of Kempf-Ness (see Kirwan [MFK94, Chapter 8, §2], Burnol
[Bur92] and Schwarz [Sch00, Chapter 5]). A proof (which is sensibly different from
ours) in the general case is given by Zhang [Zha96b, Theorem 4.10].

1.5. Instability measure. — Let v be a place of K. If v is non-archimedean let
by ‖ · ‖L,v (resp. ‖ · ‖MD,v) be the continuous and bounded metric induced by the
integral model L (resp. MD) (2). For a Cv-point x ∈ X (Cv) its v-adic instability
measure is

ιv(x) := − log sup
g∈G(Cv)

‖g · s‖L,v(g · x)

‖s‖L,v(x)
∈ [−∞, 0].

2. Let x be a Cv-point of X . Since X is proper, the Cv-point x gives rise to a ov-point εx of X ,
where ov is the ring of integers of Cv . The invertible sheaf ε∗xL is a free ov-module of rank 1: choose
a basis s0. Every other element s ∈ x∗L can be written in a unique way as s = λs0 with λ ∈ Cv .
Set

‖s‖L,v(x) := |λ|v .

This does not depend on the chosen basis s0 of ε∗xL. See also [BG06, Example 2.7.20].
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where s ∈ x∗L is a non-zero section. This does not depend on the chosen section s.
If x̂ is a generator of the line j(x) ∈ P(E∨)(Cv),

ιv(x) = log inf
g∈G(Cv)

‖g · x̂‖E∨,v
‖x̂‖E∨,v

.

Proposition 1.4. — Let v be a place of K. For every Cv-point x ∈ X ss(Cv) and
every non-zero section t ∈ π(x)∗MD,

ιv(x) ≥ − 1

D
log
‖t‖MD,v(π(x))

‖π∗t‖L⊗D,v(x)
.

Proof. — In the archimedean case this is clear by definition of the metric ‖ ·‖MD
and

the G-invariance of π. Suppose that v is non-archimedean. Up to taking a power of
MD one may assume thatMD is very ample.

Let y := π(x) and let εy ∈ Y(ov) the unique ov-valued point of Y associated to y
by the valuative criterion of properness (where ov is the ring of integers of Cv). Up
to rescaling t one may assume that t is basis of the free ov-module ε∗yMD and thus
‖t‖MD,v(y) = 1.

SinceMD is generated by its global sections, there exists f ∈ Γ(Y,MD)⊗ ov such
that ε∗yf = t. According to Proposition 1.1, the rational section π∗f extends uniquely
to a G-invariant global section f̃ ∈ Γ(X ,L⊗D)⊗ ov which vanishes identically outside
X ss.

Fix g ∈ G(Cv). Since the section f̃ is integral,

‖π∗f‖L⊗D,v(g · x) = ‖f̃‖L⊗D,v(g · x) ≤ 1,

and recalling ‖t‖MD,v(y) = 1 this entails ‖π∗t‖L⊗D,v(g ·x) ≤ ‖t‖MD,v(y). Taking the
supremum over all g ∈ G(Cv),

ιv(x) = − 1

D
log sup

g∈G(Cv)

‖π∗t‖L⊗D,v(g · x)

‖π∗t‖L⊗D,v(x)
≥ − 1

D
log

‖t‖MD,v(y)

‖π∗t‖L⊗D,v(x)
.

Remark 1.5. — For a non-archimedean place v, it follows from the proof that in
the preceding Proposition one has equality if the reduction x̃ of the point x at the
place v is semi-stable, i.e. it is a semi-stable Fv-point of the scheme X ×oK Fv under
the action of G(Fv) (where Fv is the residue field of Cv).

In Chapter 3 the converse of the previous assertion is proved: that is, if the equality
holds than the point x is residually semi-stable (see also Theorem 1.16).

1.6. Fundamental formula. — Summing up the previous considerations:

Theorem 1.6 (Fundamental Formula). — Let P ∈ X (K) be a semi-stable point.
Then for almost all places v ∈ VK the instability measure ιv(P ) is zero and

hL(P ) +
1

[K : Q]

∑
v∈VK

ιv(P ) ≥ 1

D
hMD

(π(P )).

In practice one uses Theorem 1.6 through this immediate Corollary:
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Corollary 1.7. — For every semi-stable point P ∈ X ss(K),

hL(P ) +
1

[K : Q]

∑
v∈VK

ιv(P ) ≥ hmin((X ,L)//G).

Remark 1.8. — One of the main tasks of Chapters 3 and 4 is to prove that the
inequality in the statement of the Fundamental Formula is actually an identity (this is
the reason why this result is called “Fundamental Formula”). For details, see Theorem
1.5 in Chapter 4. In the present situation, it had already been proven by Burnol
[Bur92, Proposition 5] (see also Corollary 1.6 in Chapter 4).

2. Lower bound of the height on the quotient

2.1. Statement of the lower bound. — Let E = (E1, . . . , En) be a n-uple of oK-
hermitian vector bundles of positive ranks. Let F be a oK-hermitian vector bundle
and

ρ : GL(E) := GL(E1)×oK · · · ×oK GL(En) −→ GL(F),

a representation, that is, a morphism of oK-group schemes, which is unitary, i.e., for
every embedding σ : K → C, the action of the compact subgroup

U(E)σ := U(‖ · ‖E1,σ)× · · · ×U(‖ · ‖En,σ) ⊂ GL(d)σ(C)

respects the hermitian norm ‖ · ‖F,σ.

Theorem 2.1. — With the notation introduced above, let b = (b1, . . . , bn) be n-uple
of integers and

$ : E⊗b11 ⊗ · · · ⊗ E⊗bnn −→ F ,
a homomorphism of hermitian vector bundles, generically surjective and GL(E)-
equivariant. Then,

hmin((P(F∨),OF∨(1))//SL(E)) ≥
n∑
i=1

bi µ̂(E i)−
1

2

n∑
i=1

|bi| log rk Ei,

where OF∨(1) is equipped with the Fubini-Study metric given by F and SL(E) is the
oK-reductive group SL(E1)×oK · · · ×oK SL(En).

Here, for i = 1, . . . , n and negative bi, E
⊗bi
i is the oK-module Ebii = E∨⊗−bii endowed

with the (−bi)-th tensor power of the dual norm.
A different proof of this result will be given in Chapter 4 (see Theorem 1.11). The

techniques employed therein permit us to get a sharp lower bound in the case when
rk Ei = 2 (which will be the case of our interest when proving Roth’s Theorem).

Remark 2.2. — This statement is more general than [Che09, Theorem 4.2] in the
following sense: with our notation Chen proves that for every semi-stable K-point P
of P(F∨),

hOF∨ (1)(P ) ≥
n∑
i=1

bi µ̂(E i)−
1

2

n∑
i=1

|bi| log rk Ei.
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Chen’s result is deduced from Theorem 2.1 thanks to the inequality given by Corollary
1.7

hOF∨ (1)(P ) ≥ hmin((P(F∨),OF∨(1))//SL(E)).

Remark 2.3. — In the proof of Theorem 2.1 one can limit ourselves to consider the
case where the integer bi are non-negative. Indeed, if the integers bi are not necessarily
non-negative, one can consider, for every i = 1, . . . , n,

E ′i =

{
E i if bi ≥ 0

E∨i otherwise.

Set GL(E ′) := GL(E ′1)× · · · ×GL(E ′n). If $ : E⊗b11 ⊗ · · · ⊗ E⊗bnn → F is a homomor-
phism of hermitian vector bundles as in the statement of Theorem 2.1, it induces a
generically surjective and GL(E ′) homomorphism of hermitian vector bundles

$′ : E ′1
⊗|b1| ⊗ · · · ⊗ E ′n

⊗|bn| −→ F .

The quotients of P(F∨) by SL(E) and SL(E ′) := SL(E ′1)×· · ·×SL(E ′n) are canon-
ically identified and the metrics induced on the polarisation MD are the same. In
particular,

hmin((P(F∨),OF∨(1))//SL(E)) = hmin((P(F∨),OF∨(1))//SL(E ′)).

The remainder of this section is devoted to the proof of Theorem 2.1 when the
integers b1, . . . , bN are non-negative.

Invariant theory for a product of linear groups. —

2.2. Let k be a field. Let n ≥ 1 be a positive integer and E = (E1, . . . , En) a n-uple
of non-zero k-vector spaces of finite dimension. Define

GL(E) := GL(E1)×k · · · ×k GL(En),

SL(E) := SL(E1)×k · · · ×k SL(En).

Definition 2.4. — Let F be a non-zero k-vector space of finite dimension. A rep-
resentation, i.e. a morphism of k-group schemes, ρ : GL(E) → GL(F ) is said to be
homogeneous of weight b = (b1, . . . , bn) ∈ Zn if, for every k-scheme S and all S-points
t1, . . . , tn ∈ Gm(S),

ρ(t1 · idE1
, . . . , tn · idEn) = tb11 · · · tbnn · idF .

Proposition 2.5. — Let ρ : GL(E) → GL(F ) be a homogeneous representation of
weight b = (b1, . . . , bn) and suppose that the subspace of SL(E)-invariant elements of
F is non-trivial. Then:

(1) for every i = 1, . . . , n the dimension ei of Ei divides the integer bi;
(2) for every k-scheme S, any S-point (g1, . . . , gn) of GL(E) and any SL(E)-

invariant element w of F :

(2.2.1) ρ(g1, . . . , gn) · w = det(g1)b1/e1 · · · det(gn)bn/en · w.
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Proof. — This follows from the fact that characters of the general linear group are
powers of the determinant.

2.3. For every non-negative integer N denote by SN the group of permutations on
N elements (if N = 0, then S0 = {id∅}). If E is a k-vector space the group SN

acts on the N -th tensor product E⊗N permuting factors. Explicitly, if σ ∈ SN is a
permutation and x1, . . . , xN are elements of E,

σ · (x1 ⊗ · · · ⊗ xN ) = xσ(1) ⊗ · · · ⊗ xσ(N).

Definition 2.6. — For N ∈ Z the preceding action defines a homomorphism of
non-commutative k-algebras S|N | → Endk(E⊗N ) denoted by ηE,N .

2.4. Let b = (b1, . . . , bn) be a n-uple of non-negative integers. The group

Sb := Sb1 × · · · ×Sbn ,

acts component-wise on the k-vector space E⊗b := E⊗b11 ⊗ · · · ⊗ E⊗bnn . The k-group
scheme GL(E) acts by conjugation on the k-vector space

Endk(E⊗b) = Endk(E⊗b11 )⊗k · · · ⊗k Endk(E⊗bnn ).

The associated representation GL(E) → GL(End(E⊗b)) is homogeneous of weight
0 = (0, . . . , 0). Proposition 2.5 (2) entails that the invariant elements of End(E⊗Db)
with respect to the action of GL(E) and to the action of SL(E) are the same.

Definition 2.7. — The linear action of Sb on E⊗b defines a homomorphism of non-
commutative k-algebras

⊗n
i=1 k[Sbi ]→ End(E⊗b) denoted by ηE,b.

The image of ηE,b is contained in the subspace of invariants of End(E⊗b). The
First Main Theorem of Invariant Theory affirms that in characteristic 0 the converse
inclusion holds too (cf. [Wey39, Chapter III], [Che09, Theorem 3.1, Corollary] and
[ABP73, Appendix 1]):

Theorem 2.8 (First Main Theorem of Invariant Theory)
Suppose that the characteristic of k is zero. The subspace of SL(E)-invariant

elements of the k-vector space End(E⊗b) is the image of the homomorphism ηE,b.

Definition 2.9. — With the notation introduced above suppose that ei divides bi
for every i = 1, . . . , n. Consider the homomorphism of k-vector spaces

ΦEi,bi : End (Ei)
⊗bi ⊗ det(Ei)

⊗bi/ei −→ E⊗bii

defined as the composition of the following homomorphisms:

End (Ei)
⊗bi ⊗ det(Ei)

⊗bi/ei E⊗bii

E⊗bii ⊗ (E⊗eii )∨⊗bi/ei ⊗ det(Ei)
⊗bi/ei E⊗bii ⊗ (det(Ei)

∨ ⊗ det(Ei))
⊗bi/ei

where the horizontal arrow is id⊗det⊗ id. Set ΦE,b := ΦE1,b1 ⊗ · · · ⊗ ΦEn,bn .
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Corollary 2.10. — Suppose that the characteristic of k is zero. Let F be a non-zero
k-vector space of finite dimension and ρ : GL(E)→ GL(F ) be a representation. Let
b = (b1, . . . , bn) be a n-uple of non-negative integers and

ϕ :

n⊗
i=1

E⊗bii −→ F

be a surjective and GL(E)-equivariant homomorphism of k-vector spaces. The repre-
sentation ρ is homogeneous of weight b = (b1, . . . , bn) and if the subspace of SL(E)-
invariant elements of F is non-zero:

(1) For every i = 1, . . . , n the dimension ei of Ei divides the integer bi.
(2) The subspace of SL(E)-invariants of F is the image of the homomorphism

ϕ ◦ ΦE,b ◦ (ηE,b ⊗ id) :

n⊗
i=1

k[Sbi ]⊗
n⊗
i=1

det(Ei)
⊗bi/ei −→ F.

This is just a combination of the First Main Theorem of Invariant Theory with
following:

Remark 2.11. — In characteristic 0 a linear algebraic group is reductive if and
only if for every linear representation E of G there exists a unique G-equivariant
projection RE : E → EG (the so-called Reynolds operator). The uniqueness entails
the functoriality of the projection on the invariants: for every G-equivariant linear
homomorphism ψ : E → F between linear representations of G one has RF ◦ ψ =
ψ ◦ RE . In particular, if ψ is surjective the induced homomorphism ϕ : EG → FG is
surjective too. For details, refer to [MS72, page 182] and [MFK94, Chapter1, §1].

Non-hermitian norms and tensor product. — In this paragraph we briefly discuss
norms on tensor products which are not hermitian. The interested reader can refer
to [Gro53] for the case of two vector spaces and [Gau08, Normes tensorielles, page
33] for the present setting.

Let N ≥ 1 be a positive integer and for every i = 1, . . . , N let Vi be a finite-
dimensional complex vector space endowed with a norm ‖ · ‖Vi . Let ‖ · ‖V ∨i be the
operator norm on V ∨i . Denote by V the tensor product V1 ⊗ · · · ⊗ VN .

Definition 2.12. — The ε-norm and the π-norm on the tensor product V are the
norms respectively defined, for v ∈ V , by

‖v‖V,ε := sup
ϕi∈V ∨i −{0}
i=1,...,N

|ϕ1 ⊗ · · · ⊗ ϕN (v)|
‖ϕ1‖V ∨1 · · · ‖ϕN‖V ∨N

,

‖v‖V,π := inf

{
R∑
α=1

‖vα1‖V1
· · · ‖vαN‖VN : v =

R∑
α=1

vα1 ⊗ · · · ⊗ vαN

}
.

The vector space V equipped with the norm ‖ · ‖V,ε is denoted V1 ⊗ε · · · ⊗ε VN .
Analogously, V equipped with ‖ · ‖V,π is denoted V1 ⊗π · · · ⊗π VN .

If the norms ‖ · ‖Vi are hermitian let V1 ⊗2 · · · ⊗2 VN be the vector space V with
the hermitian norm on the tensor product.
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Proposition 2.13. — With the notation introduced above:
(1) The ε-norm ‖ · ‖ε (resp. the π-norm ‖ · ‖π) is the smallest (resp. the biggest)

among the norms ‖ · ‖ on V such that, for i = 1, . . . , N and vi ∈ Vi,
‖v1 ⊗ · · · ⊗ vN‖ ≥ ‖v1‖V1 · · · ‖vN‖VN ,

(resp. ‖v1 ⊗ · · · ⊗ vN‖ ≤ ‖v1‖V1
· · · ‖vN‖VN ) ,

and, for i = 1, . . . , n and ϕi ∈ V ∨i ,

‖ϕ1 ⊗ · · · ⊗ ϕN‖∨ ≤ ‖ϕ1‖V ∨1 · · · ‖ϕN‖V ∨N ,
(resp. ‖ϕ1 ⊗ · · · ⊗ ϕN‖∨ ≥ ‖ϕ1‖V ∨1 · · · ‖ϕN‖V ∨N

)
,

where ‖ · ‖∨ denotes the operator norm induced by ‖ · ‖ on V ∨.
(2) ‖v‖V,ε ≤ ‖v‖V,π for all v ∈ V .
(3) (Duality) The isomorphism V ∨ ' V ∨1 ⊗C · · · ⊗C V ∨N induces the following

isometries:

(V1 ⊗ε · · · ⊗ε VN )∨
∼−→ V ∨1 ⊗π · · · ⊗π V ∨N ,

(V1 ⊗π · · · ⊗π VN )∨
∼−→ V ∨1 ⊗ε · · · ⊗ε V ∨N .

(4) (Fonctoriality) For every i = 1, . . . , N let Wi be a finite-dimensional complex
vector space equipped with a norm ‖ · ‖Wi

and let ϕi : Vi →Wi be a linear map
decreasing the norms. Then, the induced maps

ϕ1 ⊗ · · · ⊗ ϕN : V1 ⊗ε · · · ⊗ε VN −→W1 ⊗ε · · · ⊗εWN ,

ϕ1 ⊗ · · · ⊗ ϕN : V1 ⊗π · · · ⊗π VN −→W1 ⊗π · · · ⊗π WN ,

decrease the norms.
(5) Let L be a normed vector space of dimension 1. Then,

(V1 ⊗ε · · · ⊗ε VN )⊗ε L = V1 ⊗ε · · · ⊗ε VN ⊗ε L,
(V1 ⊗π · · · ⊗π VN )⊗π L = V1 ⊗π · · · ⊗π VN ⊗π L.

Sketch of the proof. — (1), (4) and (5) follow from the definitions of the norms.
(2) By bi-duality, for all i = 1, . . . , N and all vi ∈ Vi the very definition of the

ε-norms entails

‖v1 ⊗ · · · ⊗ vN‖ε =

N∏
i=1

‖vi‖V ∨∨i ≤
N∏
i=1

‖vi‖Vi ,

and one concludes thanks to (1).
(3) Follows from (1) and (2) by duality.

Proposition 2.14. — Let V andW be finite-dimensional normed vector spaces. The
operator norm on HomC(V,W ) coincides with the ε-norm on V ∨ ⊗C W through the
canonical isomorphism

V ∨ ⊗C W
∼−→ HomC(V,W )

Proof. — This is Theorem [Gro53, §1.1, Théorème 1] for E = V , F = C and
G = W .
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Remark 2.15. — Let L be a normed complex vector line. It follows from the pre-
ceding Proposition that through the isomorphism L⊗L∨ ' C the ε-norm on L⊗L∨
induces the absolute value on C.

Proposition 2.16. — Let W be an hermitian vector space and let r ≥ 1 be a positive
integer. Endow the exterior powers

∧r
W with the hermitian norm defined in 0.3 on

page 11. Then the canonical map det : W⊗πr →
∧r

W decreases the norms.

Proof. — For every element w ∈W⊗r and every writing w =
∑R
α=1 wα1 ⊗ · · · ⊗ wαr

the Hadamard inequality (0.3.1) on page 12 yields

〈detw,detw〉detEi =

R∑
α,β=1

〈wα1 ∧ · · · ∧ wαr, wβ1 ∧ · · · ∧ wβr〉detEi

≤
R∑

α,β=1

‖wα1‖Ei · · · ‖wαr‖Ei‖wβ1‖Ei · · · ‖wβr‖Ei

=

(
R∑
α=1

‖wα1‖Ei · · · ‖wαr‖Ei

)2

,

which concludes the proof.

Application to the lower bound of the height on the quotient. —

2.5. Let us go back to the proof of Theorem 2.1 in the case when the integers bi are
non-negative. Denote by Y the quotient of semi-stable points of P(F) by SL(E) and,
for every sufficiently divisible D, byMD the hermitian invertible sheaf on Y induced
by OF (D). Fix D such thatMD is very ample.

2.6. Application of the First Main Theorem of Invariant Theory. — As-
sume that Y is non-empty. Since the characteristic of K is zero and the homomor-
phism $ decreases the norms, the general statement reduces to the case

F = E⊗b := E⊗b11 ⊗oK · · · ⊗oK E
⊗bn
n .

For every i = 1, . . . , n denote by Ei the K-vector space Ei ⊗oK K and by E⊗b the
K-vector space E⊗b11 ⊗K · · · ⊗K E⊗bnn .

The subspace of SL(E)-invariant elements of SymD F is non-zero becauseMD is
very ample. Therefore for every i = 1, . . . , n the integer ei := dimK Ei divides Dbi.
Consider the maps η := ηE,Db and Φ := ΦE,Db (see Definitions 2.7 and 2.9) and the
surjection:

ϕ : E⊗Db −→ SymD(E⊗b),

where E⊗Db := E⊗Db11 ⊗K · · · ⊗K E⊗Dbnn .

Lemma 2.17. — For every i = 1, . . . , n let δi ∈ det(Ei) be non-zero.
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(1) A set of generators of the SL(E)-invariant elements of the vector space

SymD E⊗b = Γ(P(E⊗b),O(D))

is given by the image through ϕ ◦ Φ of the elements

fσ := η(σ)⊗
(
δ
⊗Db1/e1
1 ⊗ · · · ⊗ δ⊗Dbn/en1

)
where σ = (σ1, . . . , σn) ranges in SDb := SDb1 × · · · ×SDbn .

(2) Through the identification Γ(Y,MD)⊗oK K ' Γ(P(E⊗b),O(D))SL(E):

hmin((P(E⊗b),OF (1))//SL(E))

≥ − 1

D
sup

σ∈SD|b|

{ ∑
v∈VK

log sup
Y(Cv)

‖(ϕ ◦ Φ)(fσ)‖MD,v

}
.

Proof. —
(1) This is a direct consequence of Corollary 2.10 (applied to the representation

SymD E⊗b and the SL(V )-equivariant surjection ϕ).
(2) Let Q ∈ Y(Q̄) be a point defined on a finite extension K ′ of K. Since MD

is very ample, according to (1) there exists σ ∈ SD|b| such that the SL(E)-
invariant polynomial ϕ ◦Φ(fσ) — seen as a global section ofMD — does not
vanish at Q. By definition of the height:

hMD
(Q) =

∑
v∈VK

− log ‖ϕ ◦ Φ(fσ)‖MD,v(Q)

≥
∑
v∈VK

− log sup
y∈Y(Cv)

‖ϕ ◦ Φ(fσ)‖MD,v(y),

from which the conclusion of the Lemma follows.

2.7. Size of the invariants. — Consider the oK-module

E⊗Db = E⊗Db11 ⊗ · · · ⊗ E⊗Dbnn ,

and denote by E⊗εDb (resp. E⊗2Db) the oK-module E⊗Db endowed for every embed-
ding γ : K → C with the ε-norm ‖ · ‖ε on the normed vector space

(E⊗εe11,γ )⊗εDb1/e1 ⊗ε · · · ⊗ε (E⊗εenn,γ )⊗εDbn/en ,

(resp. with the hermitian norm ‖ · ‖2 on tensor product). Consider the oK-module
EndoK (E⊗Db) endowed for all embedding γ : K → C with the operator norm ‖ · ‖ε,2,γ
on

Endε,2(E⊗Dbγ ) := Hom(E⊗εDbγ , E⊗2Db

γ ).

Denote the resulting normed oK-module by Endε,2(E⊗Db). For every γ : K → C

endow the complex vector space SymD(E⊗b)⊗γ C with the sup-norm on polynomials
(see paragraph 0.3 on page 11).
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Lemma 2.18. — With the notation introduced above, the map ΦE,Db ◦ϕ defines an
homomorphism of oK-modules

ϕ ◦ Φ: Endε,2(E⊗Db)⊗ε
n⊗
ε

i=1

(det E i)⊗εDbi/ei −→ SymD(E⊗b),

which decreases the norms.

Proof. — The fact that the homomorphism ΦE,Db ◦ ϕ is defined at the level of oK-
module is clear. The map ϕ ◦ Φ is defined as a composition of the following maps:

(1) E⊗2Db −→ SymD(E⊗2b
);

(2) E⊗2Db ⊗ε

(
n⊗
ε

i=1

(det E i)⊗εDbi/ei
)∨
⊗ε

n⊗
ε

i=1

(det E i)⊗εDbi/ei
∼−→ E⊗2Db;

(3) det :
(
E⊗εeii

)∨
−→ det E∨i ;

(4) Endε,2(E⊗Db) −→ E⊗2Db ⊗ε

(
n⊗
ε

i=1

(det E i)⊗εDbi/ei
)∨

.

For every γ : K → C each of these maps reduces the norms: indeed, (1) it is a
reformulation of the fact that the hermitian norm on polynomials defined in paragraph
0.3 on page 11 is bigger than the sup norm; (2) follows from Propositions 2.13 (5) and
Remark 2.15; (3) follows from the isometric isomorphism (E∨i )⊗πei ' (E⊗εeii )∨ given
by Proposition 2.13 (3) and Proposition 2.16; (4) follows from (3) and Proposition
2.14.

Lemma 2.19. — Let σ = (σ1, . . . , σn) ∈ SDb. For every γ : K → C:

‖η(σ)‖ε,2,γ ≤
√
eDb11 · · · eDbNN .

Proof. — For every i = 1, . . . , n let vi1, . . . , viei be an orthonormal basis of E i. Con-
sider the set R of indices R = (ri,j : 1 ≤ i ≤ n, 1 ≤ j ≤ D|bi|) with integral entries
satisfying 1 ≤ ri,j ≤ ei for every i, j. For every R ∈ R set

vR :=

n⊗
i=1

Dbi/ei⊗
j=1

ei⊗
α=1

viri,jei+α =

n⊗
i=1

Dbi/ei⊗
j=1

viri,jei+1 ⊗ · · · ⊗ viri,jei+ei .

The vectors vR for R ∈ R form an orthonormal basis of E⊗Db. For every T ∈ E⊗Db

write T =
∑
R∈R TRvR. With this notation:

‖T‖22 =
∑
R∈R
|TR|2, ‖T‖ε ≥ max

R∈R
|TR|.
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For every R ∈ R write σ(R) = (ri,σi(j))i,j . By definition of η(σ) for every T one has
η(σ)(T ) =

∑
R∈R TRvσ(R). Therefore ‖η(σ)(T )‖2 = ‖T‖2 and

sup
T 6=0

‖η(σ)(T )‖22
‖T‖2ε

= sup
T 6=0

‖T‖22
‖T‖2ε

≤ sup
T 6=0

∑
R∈R
|TR|2

max
R∈R

{
|TR|2

} = #R = eDb11 · · · eDbnn

(the last supremum is attained for T =
∑
R∈R vR).

2.8. End of the proof of Theorem 2.1. — For every i = 1, . . . , n let δi ∈ det(Ei)
be non-zero. For every σ = (σ1, . . . , σn) ∈ SDb consider

fσ := η(σ)⊗
(
δ
⊗Db1/e1
1 ⊗ · · · ⊗ δ⊗Dbn/en1

)
∈ End(E⊗Db)⊗

n⊗
i=1

det(Ei)
⊗Dbi/ei

Since the elements η are integral and the map ϕ ◦ Φ is defined at the level of oK-
modules, for every non-archimedean place v,

sup
y∈Y(Cv)

‖ϕ ◦ Φ(fσ)‖MD,v(y) ≤
n∏
i=1

‖δi‖Dbi/eidetEi,v
.

According to Lemmata 2.18 and 2.19 for every embedding γ : K → C:

sup
y∈Y(C)

‖ϕ ◦ Φ(fσ)‖MD,γ(y) ≤ ‖ϕ ◦ Φ(fσ)‖sup,γ ≤ ‖η(σ)‖ε,2 ·
n∏
i=1

‖δi‖Dbi/eidetEi,γ

≤
√
eDb11 · · · eDbNN ·

n∏
i=1

‖δi‖Dbi/eidetEi,γ
.

According to Lemma 2.17,

[K : Q]hmin((P(E⊗b),OF (1))//SL(E))

≥ −
n∑
i=1

(
bi
ei

∑
v∈VK

log ‖δi‖detEi,v

)
− log

√
eb11 · · · e

bN
N

≥ bi
ei

d̂eg Ei −
1

2

n∑
i=1

bi log rk Ei,

and one concludes recalling µ̂(Ei) = d̂eg(Ei)/ei.





CHAPTER 2

DIOPHANTINE APPROXIMATION ON P1 VIA
GEOMETRIC INVARIANT THEORY

In this chapter we prove Roth’s Theorem (and some variants) thanks to the tools
of Geometric Invariant Theory developed in Chapter 1. Let us describe briefly the
structure of the present chapter.

In Section 1 we review some material concerning Roth’s Theorem and we state the
main result of this chapter (the Main Theorem, see Theorem 1.12). More precisely,
we show that Roth’s Theorem with moving targets is a consequence of an effective
statement (the Main Effective Lower Bound, see Theorem 1.7) and how this last result
is obtained from the Main Theorem for a suitable choice of parameters.

In Section 2 we introduce the situation of Geometric Invariant Theory that we are
interested in. Admitting the semi-stability of the point that we introduce and some
intermediate computations, we show that the Fundamental Formula translates into
the Main Theorem.

These intermediate computations (upper bounds of the height and the instability
measure of the point) are developed in detail in Sections 3 and 4.

Finally, in Section 5, we show the semi-stability of the point, which is the crucial
result in order to apply the Fundamental Formula. Our proof is based on the Higher
Dimensional Dyson’s Lemma by Esnault-Viehweg-Nakamaye (Theorem 2.2). We also
give an alternative proof in dimension 2 based on the classical constructions of Wron-
skians. This argument provides a simple “GIT proof” of the classical Theorem of
Dyson-Gelfon’d.

1. Statement of the results

1.1. Roth’s Theorem with moving targets and the Main Effective Lower
Bound. —

1.1.1. Height and distance on the projective line. — In order to state the results in
their most precise way it is convenient to make the following definitions.

Definition 1.1. —



30 CHAPTER 2. DIOPHANTINE APPROXIMATION ON P1 VIA GIT

(1) For a K-point x = (x0 : x1) of the projective line P1
Q its absolute (logarithmic)

height is

h(x) =
1

[K : Q]

∑
v∈VK

log ‖(x0, x1)‖v

where VK denotes the set of places of K and, for every place v,

‖(x0, x1)‖v :=

max{|x0|v, |x1|v} if v is non-archimedean√
|x0|2v + |x1|2v if v is archimedean.

(2) Let K be a number field and v ∈ VK a place of K. The v-adic spherical
distance on P1 is defined, for Cv-points x = (x0 : x1) and y = (y0 : y1), by

dv(x, y) :=
|x0y1 − x1y0|v

‖(x0, x1)‖v‖(y0, y1)‖v
∈ [0, 1].

(3) Let x, y be K-points of P1. Then dv(x, y) = 1 for all but finitely many places
v of K. For a subset S ⊂ VK (not necessarily finite) set

mS(x, y) :=
∑
v∈S
− log dv(x, y) ∈ R≥0.

If S = {v} is a singleton write mv(x, y).

Proposition 1.2 ([BG06, Theorem 2.8.21]). — Let x, y be distinct K-rational
points of P1. Then,

1

[K : Q]
mVK (x, y) = h(x) + h(y).

Definition 1.3. — Let a be a point of P1 defined over a finite extension K ′ of K,
S ⊂ VK a finite subset of VK and for every v ∈ S let σv : K ′ → Cv be a K-linear
embedding. Denote by a(σv) the Cv-point of P1 induced by σv and set:

mS(a, x) :=
∑
v∈S

mv(a
(σv), x).

1.1.2. Roth’s Theorem with moving targets. — In this paper we prove the following
form of Roth’s Theorem with moving targets:

Theorem 1.4. — Let K be a number field, S ⊂ VK a finite subset, K ′ a finite
extension of K and κ > 2 a real number. For every place v ∈ S fix an embedding
σv : K ′ → Cv which respects K.

There is no sequence of couples (xi, ai) with i ∈ N made of a K-rational point
xi of P1 and a K ′-rational point ai of P1 distinct from xi satisfying the following
properties:

(1) the sequence {h(xi)} is unbounded;
(2) h(ai) = o(h(xi)) as i goes to infinity;
(3) for all i ∈ N the following inequality is satisfied:

1

[K : Q]
mS(ai, xi) ≥ κh(xi).
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Vojta’s original form of Roth’s Theorem with moving targets is more general, in
the sense that it allows the target points to be K-rational:

Theorem 1.5 (cf. [Voj96, Theorem 1]). — Let K be a number field, S ⊂ VK a
finite subset, q ≥ 1 a positive integer and κ > 2 a real number.

There is no sequence of (q + 1)-uples (xi, a
(1)
i , . . . , a

(q)
i ) (i ∈ N) made of pairwise

distinct (1) K-rational points of P1 satisfying the following properties:
(1) for all σ = 1, . . . , q, h(a

(σ)
i ) = o(h(xi)) as i goes to infinity;

(2) for all i ∈ N the following inequality is satisfied:

1

[K : Q]

q∑
σ=1

mS(a
(σ)
i , xi) ≥ κh(xi).

Theorem 1.5 implies Theorem 1.4 by means of extending scalars from K to a Galois
closure of K ′ over K and taking the points a(σ)

i to be the conjugated points of the
points ai. We ignore at the moment if such a statement can be obtained by the
methods expounded in the present paper.

Let us conclude this introduction remarking that for q = 1, 2 all these results are
a straightforward consequence of Proposition 1.2, which moreover gives an explicit
upper bound for height of the points xi in terms of the height of the points a(σ)

i .
However for q ≥ 3 this result is ineffective in the sense such that an explicit bound is
not known.

1.1.3. Main Effective Lower Bound. — As explained above, there is an intermediate
step in the proof of Roth’s Theorem which is effective and implies Roth’s Theorem
through an elementary argument by contradiction that will be reproduced in the next
paragraph — this is the principal cause of loss of effectiveness.

This intermediate effective result is a lower bound of the height of K-rational
points x1, . . . , xn in terms of their v-adic distances from the algebraic points a1, . . . , an.
Although this type of lower bounds plays a crucial role in the seminal work of Bombieri
[Bom82], it is rarely stated as a stand-alone theorem.

This lower bound is called “Main Effective Lower Bound” and the aim of this paper
is to prove it by means of Geometric Invariant Theory. It involves some auxiliary real
numbers of geometric nature r1, . . . , rn: in the proof they are interpreted as the multi-
degree of an invertible sheaf on (P1)n.

To state it we need to introduce the crucial concepts that govern the combinatorics
in Roth’s Theorem:

Definition 1.6. — Let q, n ≥ 1 be positive integers and let t ≥ 0 and δ ∈ [0, 1] be
real numbers.

(1) Consider the set ∆n(t) := {(ζ1, . . . , ζn) ∈ [0, 1]n : ζ1 + · · ·+ ζn < t}.
(2) Let tq,n(δ) ∈ [0, n] be the unique real number such that

1− q vol ∆n(tq,n(δ)) = δ,

1. i.e. for all i ∈ N one has a(σ)
i 6= a

(τ)
i for every σ 6= τ and one has xi 6= a

(σ)
i for every

σ = 1, . . . , q.
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the volume being taken with respect the Lebesgue measure of Rn.
The function tq,n : [0, 1]→ [0, n] defined in this way is continuous.
(3) Let Rq,n(δ) be the unique positive real number such that(

1 +
q − 1

Rq,n(δ)

)n−1

− 1 = δ
n
√
δ.

(4) For a n-uple of positive real numbers r = (r1, . . . , rn) write |r| = r1 + · · ·+ rn.

We are now able to state the Main Effective Lower Bound (cf. [Bom82, Theorem
2] for n = 2):

Theorem 1.7 (Main Effective Lower Bound). — Let K ′ be a finite extension of
K of degree q ≥ 2 and let S ⊂ VK be a finite set of finite places.

Let n ≥ 2 be a positive integer, let 0 < δ < 1/(2 · n!) be a real number and let
r = (r1, . . . , rn) be an n-uple of positive real numbers such that ri/ri+1 > Rq,n(δ) for
all i = 1, . . . , n− 1.

Then, for all i = 1, . . . , n and for all couples (xi, ai) made of a K-rational point xi
of P1 and a K ′-rational point ai of P1 such that K(ai) = K ′, the following inequality
holds:

1

[K : Q]
tq,n(δ)

∑
v∈S

(
max

σ : K′→Cv

{
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}})

≤ (1 + 2q
n
√
δ)

n∑
i=1

rih(xi) +
q

δ

n∑
i=1

rih(ai) +

(
log
√

2q

δ
+ log 8

)
|r|,

where, for every place v ∈ VK , the embeddings σ : K ′ → Cv are meant to be K-linear.

Remark 1.8. — We do not claim that the constants appearing in the Main Effective
Lower Bound are optimal. For instance, it follows from its proof and Remark 1.13
that the Main Effective Lower Bound holds with log 8 replaced by log

√
12.

Anyway in order to deduce Roth’s Theorem the only thing that matters is the
asymptotic behaviour of the right-hand side.

1.1.4. Deducing Roth’s Theorem from the Main Effective Lower Bound. — Let us
show how the Main Effective Lower Bound (Theorem 1.7) implies Roth’s Theorem
with moving targets (Theorem 1.4).

Let us begin with the following bound which goes back to the work of Roth and
it is based on an explicit version of a phenomenon of concentration of measure (see
[Mil88]). This is where the number 2 in Roth’s Theorem comes from.

Lemma 1.9. — Let q, n ≥ 1 be positive integers. Then,

tq,n(0) ≥ n/2−
√

(n log q)/6.

In particular,
lim inf
n→∞

n

tq,n(0)
= 2.
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Proof. — According to [BG06, Lemma 6.3.5] for every 0 ≤ ε ≤ 1/2:

vol ∆n

((
1

2
− ε
)
n

)
≤ exp(−6nε2).

The result is obtained taking ε := 1/2− tq,n(0)/n.

Proof of Theorem 1.4. — Arguing by contradiction suppose that there exists a se-
quence {(xi, ai)}i∈N verifying the conditions in the statement of Theorem 1.4. Up
to extracting a subsequence and passing to a sub-extension of K ′, one may assume
K(ai) = K ′ for all i ∈ N and q = [K ′ : K] ≥ 2.

Fix a positive real number ε > 0. By a pigeonhole argument (the so-called “Mahler’s
Trick”, see [BG06, 6.4.2]) there exists an infinite subset Iε ⊂ N such that, for every
place v ∈ S there exists a positive real number λ(ε, v) which verifies, for every i ∈ Iε,

λ(ε, v)mS(ai, xi) ≤ mv(ai, xi) ≤
(
λ(ε, v) +

ε

#S

)
mS(ai, xi)

(the writing of the embeddings σv’s has been dropped) and

1− ε ≤
∑
v∈S

λ(ε, v) ≤ 1.

Up to renumbering the subsequence {(xi, ai)}i∈Iε one may assume that the previous
conditions are satisfied for all i ∈ N.

Take an integer n ≥ 2, a positive real number δ and n-uple of positive real numbers
r satisfying the conditions in the statement of Theorem 1.7. Applying the latter to
the couples (xi, ai) for i = 1, . . . , n and using, for every place v ∈ S,

min
σ : K′→Cv

{
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}}
≤ min
i=1,...,n

{
rimv(a

(σv)
i , xi)

}
,

one gets

(1 + 2q
n
√
δ)

n∑
i=1

rih(xi) +
1

δ

(
n∑
i=1

ri (qh(ai) + C)

)

≥ 1

[K : Q]
tq,n(δ)

∑
v∈S

min
i=1,...,n

{rimv(ai, xi)}

≥ 1

[K : Q]
tq,n(δ)(1− ε) min

i=1,...,n
{rimS(ai, xi)} ,

where C := log
√

2q + log 8. By hypothesis, for all i = 1, . . . , n,

mS(ai, xi) ≥ [K : Q]κh(xi),

thus,

κtq,n(δ)(1− ε) min
i=1,...,n

{rih(xi)}

≤ (1 + 2q
n
√
δ)

n∑
i=1

rih(xi) +
1

δ

(
n∑
i=1

ri (qh(ai) + C)

)
.
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Since the xi’s are infinitely many the ratios of the heights h(xi+1)/h(xi) can be
supposed arbitrarily large (larger than Rq,n(δ)). Therefore n-uple r can be taken such
that

rih(xi) = rjh(xj),

for every i, j = 1, . . . , n. Dividing the preceding inequality by r1h(x1):

κtq,n(δ)(1− ε) ≤ (1 + 2q
n
√
δ)n+

q

δ

n∑
i=1

h(ai)

h(xi)
+
|r|
r1

C

δh(x1)
.

Since h(ai) = o(h(xi)) as i goes to infinity one may assume h(ai) ≤ δ n
√
δh(xi). The

ratios ri/ri+1 and the height h(x1) can be supposed arbitrarily big. Thus,

κtq,n(δ)(1− ε) ≤ (1 + 3q
n
√
δ)n.

Letting δ and ε go to 0 and n go to infinity, according to Lemma 1.9,

κ ≤ lim inf
n→∞

n

tq,n(0)
= 2,

which contradicts the hypothesis κ > 2.

1.2. Statement of the Main Theorem. —

1.2.1. More combinatorial data. — It is convenient to fix some more notations on
the combinatorics appearing in the study.

Definition 1.10. — Let q, n ≥ 1 be positive integers, r = (r1, . . . , rn) be a n-uple
of positive real numbers and t ≥ 0 be a non-negative integer.

(1) Consider the following subsets of Rn:

�r := {(ζ1, . . . , ζn) ∈ Rn : 0 ≤ ζi ≤ ri for all i = 1, . . . , n} =

n∏
i=1

[0, ri],

∇r(t) :=

{
(ζ1, . . . , ζn) ∈ �r :

ζ1
r1

+ · · ·+ ζn
rn
≥ t
}
,

∆r(t) :=

{
(ζ1, . . . , ζn) ∈ �r :

ζ1
r1

+ · · ·+ ζn
rn

< t

}
= �r −∇r(t).

Add Z in superscript to denote the intersection of these sets with Zn: write
�Z
r , ∇Z

r (t) and ∆Z
r (t). For r = (1, . . . , 1) write �n, ∇n(t) and ∆n(t).

(2) If λn is the Lebesgue measure on Rn, let µn : [0, n]→ R,

µn(t) :=

∫
∇n(t)

(2ζ1 − 1) dλn =

∫
∆n(t)

(1− 2ζ1) dλn.

(3) Define:

εq,r :=

n−1∏
i=1

(
1 + max

i+1≤j≤n

{
rj
ri

}
(q − 1)

)
− 1.

(4) Denote by uq,r(t) the unique real number in [0, n] such that

vol ∆n(uq,r(t)) = min {max {1 + εq,r − q vol ∆n(t), 0} , 1} .
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Lemma 1.11. — The function µn : [0, n] → R is strictly concave (2). Moreover the
following properties are satisfied:

(1) For all t ∈ [0, 1],

µn(t) =
tn

n!

(
1− 2

t

n+ 1

)
;

(2) µn(t) ≥ 0 for all t ∈ [0, n];
(3) µn(n− t) = µn(t) for all t ∈ [0, n];
(4) The function µn is increasing on [0, n/2] and decreasing on [n/2, n].

Proof. — (1) and (3) are easy computations left to the reader. When n = 1 statement
(1) entails the strict concavity of µ1. For n > 1 arbitrary the strict concavity of µn is
proved by induction thanks to the relation

µn(t) =

∫ min{t,1}

0

µn−1(t− ζn) dλ1(ζn).

(2) Follows from µn(0) = µn(n) = 0 and the concavity of µn.
(4) Follows from (3) and the strict concavity of µn.

1.2.2. Main Theorem. — Keeping the notation just introduced, the main technical
result of the present paper is the following:

Theorem 1.12 (Main Theorem). — Let K ′ be a finite extension of K of degree
q ≥ 2 and let S ⊂ VK be a finite subset. Let n ≥ 2 be an integer, ta, tx ≥ 0 non-
negative real numbers and let r = (r1, . . . , rn) be an n-uple of positive real numbers.
If the following inequality is satisfied,

(SS) µn(uq,r(ta)) > µn(tx) + εq,r,

then, for all i = 1, . . . , n and for all couples (xi, ai) made of a K-point x of P1 and
K ′-point ai of P1 such that K(ai) = K ′, the following inequality holds:

1

[K : Q]
(1− q vol ∆n(ta))ta

∑
v∈S

(
max

σ : K′→Cv

{
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}})

≤ C(1)
q,r (ta, tx)

n∑
i=1

rih(xi) + qC(2)
q,r (ta, tx)

n∑
i=1

rih(ai) + C(3)
q,r (ta, tx)|r|,

where

C(1)
q,r (ta, tx) :=

∫
∇n(tx)

ζ1 dλn + q
vol ∆(uq,r(ta))− µn(tx)

2
,

C(2)
q,r (ta, tx) := q vol ∆n(ta) + q

vol ∆(uq,r(ta))− µn(tx)

2
,

C(3)
q,r (ta, tx) := vol ∆n(uq,r(ta)) log

√
6 + vol∇n(tx) log

√
8 + q vol ∆n(ta) log

√
2q.

2. That is, for every t1 < t2 in [0, n] and every ξ ∈ ]0, 1[,

µn(ξt1 + (1− ξ)t2) > ξµn(t1) + (1− ξ)µn(t2).
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Theorem 1.12 is interesting only when condition (SS) is close to its limit of validity
(that is, µn(uq,r(ta))−µn(tx)− εq,r is very small) and 1− q vol ∆n(ta) tends to zero.
This is the case that leads to Theorem 1.12 in the proof given in the next paragraph.

The fact that this is the only interesting case may be formulated more precisely
saying that, as soon as 1− q vol ∆n(ta) = δ, Theorem 1.7 entails Theorem 1.12 with
slightly bigger error terms, which are insignificant for applications and arise from
simplifications in computations in the proof that follows.

Remark 1.13. — The constant C(3)
q,r (ta, tx) can be slightly sharpen by employing

Theorem 1.11 in Chapter 4 instead of Theorem 2.1 in Chapter 1 in the proof of the
Main Theorem. Doing like this, one finds that Theorem 1.12 holds with C(3)

q,r (ta, tx)
replaced by

vol ∆n(uq,r(ta)) log
√

3 + vol∇n(tx) log 2 + q vol ∆n(ta) log
√

2q,

(see also Remark 2.8).

1.3. From the Main Theorem to the Main Effective Lower Bound. — In
this section the Main Effective Lower Bound (Theorem 1.7) is deduced from the Main
Theorem (Theorem 1.12). Since ri/ri+1 > Rq,n(δ) for every i = 1, . . . , n − 1, then
εq,r < δ n

√
δ.

1.3.1. Choice of the parameters. — The Main Effective Lower Bound is deduced from
Theorem 1.12 setting

ta := tq,n(δ).

Write also ũq,r(δ) := uq,r(tq,n(δ)).

Lemma 1.14. — With the notation introduced above:
(1) vol ∆n(ũq,r(δ)) = δ + εq,r ≤ 1/n!, hence ũq,r(δ) ≤ 1;

(2)
∫

∆n(ũq,r(δ))

ζ1 dλn ≤ 1
2 (δ + εq,r)

n+1
n ;

(3) µn(ũq,r(δ)) > εq,r;
(4) µn(ũq,r(δ)) ≤ εq,r + µn( n

√
n!δ).

Proof. —
(1) By hypothesis δ < 1/(2 · n!) thus tq,n(δ) ≤ 1. Thus,

vol ∆n(ũq,r(δ)) = δ + εq,r ≤ 1/n!.

Since vol ∆n(t) = tn/n! for t ≤ 1 one concludes

ũq,r(δ) = n

√
n!(δ + εq,r).

(2) The expression of ũq,r(δ) found in (1) gives∫
∆n(ũq,r(δ))

ζ1 dλn =
ũq,r(δ)

n+1

(n+ 1)!
= (δ + εq,r)

n+1
n

n
√
n!

n+ 1
.

Conclude by noticing n
√
n!/(n+ 1) ≤ 1/2 for all n ≥ 1.



1. STATEMENT OF THE RESULTS 37

(3) Follow from the explicit expression given by Lemma 1.11 (1),

µn(ũq,r(δ)) = (δ + εq,r)

(
1− 2

n+ 1
n

√
n!(δ + εq,r)

)
,

and the hypotheses on δ and εq,r.
(4) Similar to (3).

For what concerns the choice of the parameter tx, roughly speaking, one stresses
the validity of condition (SS) to its limit. More precisely, since the function µn is
strictly decreasing on [n/2, n], there exists a unique real number wq,r(δ) ∈ [n/2, n[
such that

µn(ũq,r(δ)) = µn(wq,r(δ)) + εq,r.

Lemma 1.15. — With the notation introduced above:
(1) vol∇n(wq,r(δ)) ≤ δ;

(2)
∫
∇n(wq,r(δ))

ζ1 dλn ≤ δ;

(3) vol ∆n(ũq,r(δ))− µn(wq,r(δ)) ≤ 3δ
n
√
δ.

Proof. —
(1) Lemma 1.14 (3) entails wq,r(δ) ≥ n− n

√
n!δ.

(2) Follows from (1): for every t ∈ [n− 1, n],∫
∇n(t)

ζ1 dλn ≤ vol∇n(t).

(3) By definition of wq,r(δ) and by Definition 1.10 (2):

vol ∆n(ũq,r(δ))− µn(wq,r(δ)) = vol ∆n(ũq,r(δ)) + εq,r − µn(ũq,r(δ))

= 2

∫
∆n(ũq,r(δ))

ζ1 dλn + εq,r

≤ (δ + εq,r)
n+1
n + εq,r,

where in the last inequality one uses Lemma 1.14 (2). The result follows from
the hypotheses εq,r < δ n

√
δ and δ < 1/(2 · n!).

1.3.2. Application of the Main Theorem. — Lemma 1.14 (3) permits us to apply
Theorem 1.12 with ta = tq,n(δ) and tx ∈ ]wq,r(δ), n[ close enough to wq,r(δ). Letting
tx tend to wq,r(δ) and taking in account the estimates given by Lemma 1.15:

1

[K : Q]
δtq,n(δ)

∑
v∈S

(
max

σ : K′→Cv

{
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}})

≤ δ
(

1 +
3

2
q
n
√
δ

) n∑
i=1

rih(xi) + q

n∑
i=1

rih(ai) + |r|Cq,r(δ),

where Cq,r(δ) := δ(1 + n
√
δ) log

√
6 + δ log

√
8 + (1 − δ) log

√
2q. This concludes the

proof.
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2. From the Fundamental Formula to the Main Theorem

2.1. Interlude on the index. — Let K be a field of characteristic 0.

2.1.1. Index. — Let n ≥ 1 be a positive integer and P = (P1)n be the product of n
copies of the projective line over K. For every i = 1, . . . , n let pri : P → P1 be the
projection onto the i-th factor.

Let z = (z1, . . . , zn) be a K-point of P and b = (b1, . . . , bn) be a n-uple of positive
real numbers. For every i = 1, . . . , n let ti be a local parameter around zi ∈ P1(K).

Definition 2.1. — Let f ∈ OP,z be a non-zero regular function on P defined on an
open neighbourhood of z. The function f develops into power series

f =
∑

`=(`1,...,`n)∈Nn

f`t
`1
1 · · · t`nn ,

with f` ∈ K. The index of f at z with respect to the weight b is

indb(f, z) := min {b1`1 + · · ·+ bn`n : f` 6= 0} ;

If f = 0, then indb(0, z) := +∞.

If b = (b1, . . . , bn) is a n-uple of positive real numbers, the n-uple (1/b1, . . . , 1/bn)
is denoted 1/b and the index with the respect the weight 1/b by ind1/b. The notion of
index can be extended to meromorphic sections s of an invertible sheaf L on P which
are regular at z: it suffices to choose a trivialising section s0 of L around z and set

indb(s, z) := indb(s/s0, z).

2.1.2. Higher dimensional Dyson’s Lemma. — The main result concerning the index
is the Higher Dimensional Dyson’s Lemma: the version stated here is due to Nakamaye
[Nak99]. The original version of Esnault-Viehweg [EV84] (which has a slightly bigger
error term) would work as well.

Let r = (r1, . . . , rn) be a n-uple of positive integers. Consider the following invert-
ible sheaf on the projective scheme P:

OP(r) := pr∗1OP1(r1)⊗ · · · ⊗ pr∗nOP1(rn).

Theorem 2.2 (Higher dimensional Dyson’s Lemma). — Let z(0), . . . , z(q) be
K-points of P and t(0), . . . , t(q) be non-negative real numbers. Suppose that

– pri(z
(σ)) 6= pri(z

(τ)) for every i = 1, . . . , n and every σ 6= τ ;
– there exists a non-zero global section f ∈ Γ(P,OP(r)) such that, for every
σ = 0, . . . , q,

ind1/r(f, z
(σ)) ≥ t(σ).

Then the following inequality is satisfied:
q∑

σ=0

vol ∆n(t(σ)) ≤ 1 + εq,r,

where

εq,r :=

n−1∏
i=1

(
1 + max

i+1≤j≤n

{
rj
ri

}
max{q − 1, 0}

)
− 1.
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2.1.3. Index at a single point. — Let z = (z1, . . . , zn) be a K-point of P, t ≥ 0 a
non-negative real number and r = (r1, . . . , rn) a n-uple of positive integers.

Definition 2.3. — Let Zq,r(z, t) be the subscheme of P defined by the ideal sheaf of
regular sections f such that ind1/r(f, z) ≥ t. Consider the following linear subspace
of Γ(P,OP(r)):

Kr(z, t) := Ker (Γ(P,OP(r))→ Γ(Zr(z, t),OP(r)))

=
{
f ∈ Γ(P,OP(r)) : ind1/r(f, z) ≥ t

}
.

Proposition 2.4. — Keeping the notation introduced above, for every i = 1, . . . , n
let Ti0, Ti1 be a basis of K2∨ such that Ti1 vanishes at zi.

(1) The monomials Tz(`) =
⊗n

i=1 T
ri−`i
i0 T `ii1 for ` ∈ ∇Z

r (t) form a basis of the
K-vector space Kr(z, t).

(2) dimK Kr(z, t) = #∇Z
r (t) and

lim
α→∞

dimK Kαr(z, t)

αn(r1 · · · rn)
= vol∇n(t).

(3) dimK Γ(Zr(z, t),OP(r)) = #∆Z
r (t) and

lim
α→∞

dimK Γ(Zαr(z, t),OP(αr))

αn(r1 · · · rn)
= vol ∆n(t).

Proof. — Left to the reader as an easy exercise.

2.1.4. Index at multiple points. — Let r = (r1, . . . , rn) be a n-uple of positive integers
and let t ≥ 0 be a non-negative real number and let N ≥ 1 be a positive integer.

For σ = 1, . . . , q let z(σ) = (z
(σ)
1 , . . . , z

(σ)
n ) be a K-point of P. Suppose z(σ)

i 6= z
(τ)
i

for every σ 6= τ and every i = 1, . . . , n.

Definition 2.5. — Consider the q-uple z = (z(1), . . . , z(q)). Consider the closed
subscheme of P,

Zq,r(z, t) :=

q⋃
σ=1

Zr(z
(σ), t).

Consider the following linear subspace of Γ(P,OP(r)):

Kq,r(z, t) := Ker(Γ(P,OP(r))→ Γ(Zq,r(z, t),OP(r)))

=
{
f ∈ Γ(P,OP(r)) : ind1/r(f, z

(σ)) ≥ t for all σ = 1, . . . , q
}
.

Recall that uq,r(t) is defined as the unique real number belonging to [0, n] and such
that

vol ∆n(uq,r(t)) = min {max {1 + εq,r − q vol ∆n(t), 0} , 1} .

Proposition 2.6. — Keeping the notation introduced above:

(1) Γ(Zq,r(z, t),OP(r)) =

q⊕
σ=1

Γ(Zr(z
(σ), t),OP(r)).
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(2) dimK Kq,r(z, t) ≥
n∏
i=1

(ri + 1)− q#∆Z
r (t). In particular,

(2.1.1) lim inf
α→∞

dimK Kq,αr(z, t)

αn(r1 · · · rn)
≥ 1− q vol ∆n(t).

(3) Suppose uq,r(t) < n. Let z(0) ∈ P1(K) be a point such that for i = 1, . . . , n

and σ = 1, . . . , q, one has pri(z
(0)) 6= pri(z

(σ)). Then, for t(0) > uq,r(t),

Kq,r(z, t) ∩Kr(z
(0), t(0)) = 0.

(4) lim sup
α→∞

dimK Kq,αr(z, t)

αn(r1 · · · rn)
≤ vol ∆n(uq,r(t)).

Remark that (3) and (4) are consequences of the Higher Dimensional Dyson’s
Lemma.

Proof. —
(1) This is because the closed subschemes Zr(z(σ), t)’s are pairwise disjoint (see

[EV84, Lemma 2.8]).
(2) Using the definition of Kq,r(z, t) as Ker(Γ(P,OP(r)) → Γ(Zq,r(z, t),OP(r))),

the preceding point yields

dimK Kq,r(z, t) ≥ dimK Γ(P,OP(r))− dimK Γ(Zq,r(z, t),OP(r))

= dimK Γ(P,OP(r))−
q∑

σ=1

dimK Γ(Zr(z
(σ), t),OP(r))

=

n∏
i=1

(ri + 1)− q#∆Z
r (t),

where in the last equality ones uses Proposition 2.4 (3).
(3) By contradiction suppose that there exists a non-zero element f in the in-

tersection Kq,r(z, t) ∩Kr(z
(0), t(0)). The Higher Dimensional Dyson’s Lemma

entails
q∑

σ=1

vol ∆n(t) + vol ∆n(t(0)) ≤ 1 + εq,r,

and thus vol ∆n(t(0)) ≤ vol ∆n(uq,r(t)). This yields t(0) ≤ uq,r(t) which con-
tradicts the hypothesis t(0) > uq,r(t).

(4) If vol ∆n(uq,r(t)) = 1, which implies uq,r(t) = n, the statement is trivial.
Assume uq,r(t) < n. According to (3), for t(0) > uq,r(t),

Kq,r(z, t) ∩Kr(z
(0), t(0)) = 0.

Therefore Grassman’s formula of dimensions gives

dimK Kq,r(z, t) ≤ dimK Γ(P,OP(r))− dimK Kr(z
(0), t(0))

= dimK Γ(P,OP(r))−#∇Z
r (t(0)),
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where one uses Proposition 2.4 (2) in the last equality. The statement is then
obtained by applying this inequality to any positive multiple of r and then
letting t(0) tend to uq,r(t).

2.2. Definition of the “moduli problem”. — Let K be a number field and let
VK be its set of places.

2.2.1. Linear actions on grassmannians. — Let E be a flat oK-module of finite rank.
For every non-negative integer N let GrassN (E) be the grassmannian of subspaces
of rank N of E , i.e. the oK-scheme representing the functor

GrN (E) : {oK-schemes} −→ {sets}

(f : X → Spec oK) 7−→
{

locally free sub-OX -modules F
of f∗E of rank N with flat cokernel

}
.

Suppose that an oK-group scheme G acts linearly on the oK-module E . Then, for
every integer N ≥ 0, the oK-group scheme G acts on the grassmannian GrassN (E) of
subspaces of rank N , on the projective space P(

∧N E) and in an equivariant way on
the invertible sheaf O∧N E(1). The Plücker embedding $ : GrassN (E) → P(

∧N E)
is G-equivariant.
2.2.2. Back to the Main Effective Lower Bound. — Let K ′ be a finite extension of
K of degree q ≥ 2. Let n ≥ 1 be a positive integer. Let P = (P1

oK )n be the product
of n copies of the projective line over oK . Let r = (r1, . . . , rn) be a n-uple of positive
integers and let OP(r) be the following invertible sheaf on P,

OP(r) := pr∗1OP1(r1)⊗ · · · ⊗ pr∗nOP1(rn).

For all i = 1, . . . , n let xi be a K-point of P1
oK and let ai be a K ′-point of P1

oK
such that K(ai) = K ′. Consider the following points of P:

x := (x1, . . . , xn),

a := (a1, . . . , an).

Set a := {a(σ) : σ ∈ HomK-alg(K ′, Q̄)}. Let tx, ta ≥ 0 be non-negative real numbers
and consider the following K-vector spaces

Kr(x, tx) := {f ∈ Γ(PK ,OP(r)) : ind1/r(f, x) ≥ tx},
Kq,r(a, ta) := {f ∈ Γ(PK ,OP(r)) : ind1/r(f, a) ≥ ta},
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where PK denotes the generic fiber of P. (3) Since f is K-rational and a is not,
imposing index at a automatically imposes the same index condition at all conjugates
of a.

Denote kr(tx) and kq,r(ta) respectively the dimension of the K-vector spaces
Kr(x, tx) and Kq,r(a, ta). In such a way, these sub-vector spaces of the global
sections Γ(PK ,OP(r)) define the following K-points of grassmannians:

[Kr(x, tx)] ∈ Grasskr(tx)(Γ(P,OP(r))),

[Kq,r(a, ta)] ∈ Grasskq,r(ta)(Γ(P,OP(r))).

The oK-reductive group SLn2,oK acts on the product P =
(
P1

oK

)n and thus on the
grassmannians mentioned above. Write

Fr(tx) :=

kr(tx)∧
Γ(P,OP(r)),

Fq,r(ta) :=

kq,r(ta)∧
Γ(P,OP(r),

and consider the Plücker embeddings, which are equivariant morphisms with respect
to the action of SLn2,oK :

Grasskr(tx)(Γ(P,OP(r))) −→ P(Fr(tx)),

Grasskq,r(ta)(Γ(P,OP(r))) −→ P(Fq,r(ta)).

2.2.3. The geometric invariant theory data. — We shall apply the Fundamental For-
mula to the following situation:

Pr = ([Kr(x, tx)], [Kq,r(a, ta)]),

Xr = Grasskr(tx)(Γ(P,OP(r)))×oK Grasskq,r(ta)(Γ(P,OP(r))),

G = SLn2,oK ,

Lr = polarization of Xr given by the Plücker embeddings of the grassmannians,

and the closed embedding:

jr : Xr −→ P(Fr(tx))×oK P(Fq,r(ta)) −→ P(Fr(tx)⊗oK Fq,r(ta)).

3. Here the index of the section f , which is defined over K, at the point a, which is defined over
K′, means the index of the extension of f to K′. Alternatively, one may define the Q̄-vector space

Kq,r(a, ta) := {f ∈ Γ(P,OP(r))⊗oK Q̄ : ind1/r(f, a
(σ)) ≥ ta for all σ : K′ → Q̄}

and notice that it is invariant under Galois action, thus it comes from a K-vector space Kq,r(a, ta).
In any case,

Kq,r(a, ta)⊗K Q̄ =
⋂

σ : K′→Q̄

Kr(a
(σ), ta),

where Kr(a(σ), ta) := {f ∈ Γ(P,OP(r))⊗oK Q̄ : ind1/r(f, a
(σ)) ≥ ta}.
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(The first arrow is the Plücker embedding of the Grassmannians and the second one
is the Segre embedding). For every embedding γ : K → C the complex vector spaces

Fr(tx)⊗γ C =

kr(tx)∧ (
n⊗
i=1

Symri C2∨

)
,

Fq,r(ta)⊗γ C =

kq,r(ta)∧ (
n⊗
i=1

Symri C2∨

)
,

are respectively equipped with the hermitian norms ‖ · ‖Fr(tx),γ and ‖ · ‖Fq,r(ta),γ

obtained by tensor operations (see paragraph 0.3 on page 11). Endow the complex
vector space Fr(tx)γ ⊗C Fq,r(ta)γ with the tensor norm associated to these norms.
The result hermitian norm is invariant under the action of SUn

2 . Denote Lr for the
associated hermitian invertible sheaf on Xr.

2.3. Proof of the Main Theorem. —

2.3.1. In this section Theorem 1.12 is deduced admitting a semi-stability result (The-
orem 2.7) that is proved in section 5.2 and some intermediate computations (namely
Propositions 3.1, 3.2 and 4.1) detailed in sections 3 and 4.

To show Theorem 1.12, by an approximation argument, the n-uple r = (r1, . . . , rn)
is assumed to be made of positive rational numbers. Even better, r can be taken with
integer coefficients as the Main Effective Lower Bound is homogeneous in r.

2.3.2. Semi-stability conditions. — To prove Theorem 1.12 one applies the Funda-
mental Formula to the point Pr, so one must show that Pr is semi-stable. In Section
5.2 the following is proved:

Theorem 2.7. — Let n ≥ 1 be a positive integer and r = (r1, . . . , rn) be a n-uple of
positive integers. Let tx, ta ≥ 0 be real numbers with ta < tq,n(0). If the inequality

µn(uq,r(ta)) > µn(tx) + εq,r,

is satisfied then there exists a positive integer α0 = α0(q, n, r, ta, tx) such that, for
every integer α ≥ α0, the K-point Pαr ∈ Xαr(K) is semi-stable under the action of
SLn2 with respect to the polarization given by the Plücker embeddings.

2.3.3. Applying the Fundamental Formula. — The numerical condition appearing in
the previous statement is exactly the condition (SS) in Theorem 1.12. Thus according
to Theorem 2.7 there exists a positive integer α0 = α0(q, n, r, ta, tx) such that, for
every integer α ≥ α0, the K-point

Pαr = ([Kαr(x, tx)], [Kq,αr(a, ta)])

is semi-stable. The Fundamental Formula (or, better, Corollary 1.7 in Chapter 1)
applied for every α ≥ α0 to the point Pαr gives the following inequality:

hLαr (Pαr) +
1

[K : Q]

∑
v∈S

ιv(Pαr) ≥ hmin((Xαr,Lαr)//G),
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where one uses that the instability measures are non-positive. Dividing the previous
expression by αn+1(r1 · · · rn) and letting α go to infinity,

(2.3.1) − 1

[K : Q]

∑
v∈S

lim sup
α→∞

ιv(Pαr)

αn+1(r1 · · · rn)

≤ lim sup
α→∞

hLαr (Pαr)

αn+1(r1 · · · rn)
− lim sup

α→∞

hmin

(
(Xαr,Lαr)//G

)
αn+1(r1 · · · rn)

.

In the following paragraphs the terms appearing in the preceding inequality are
estimated.

The bound of the term involving the height of the point Pr will make appear the
height of the points xi’s and ai’s. It is the counterpart of the classical upper bound
of the size of the auxiliary polynomial made by means of Siegel’s Lemma. Here it will
be a direct consequence of basic definitions in Arakelov geometry.

The term where the instability measure occurs is of local nature and will make
intervene the distance between the algebraic and the rational point. In the classi-
cal framework this corresponds to the Taylor expansion of the auxiliary polynomial
around the algebraic point.

The term involving the lowest height on the quotient will finally play the role of
the constant terms.

2.3.4. Upper bound of the height. — The Plücker embeddings give a closed isometric
embedding of Xr into P(Fq,r(ta))×P(Fr(tx)). Thus:

hLr (Pr) = hFr(tx)([Kr(x, tx)]) + hFq,r(ta)([Kq,r(a, ta)]).

Some elementary estimates of Arakelov degrees (see Propositions 3.1-3.2) give:

hFr(tx)([Kr(x, tx)]) ≤
n∑
i=1

∑
`∈∇Z

r (tx)

`ih(xi),

hFq,r(ta)([Kq,r(a, ta)]) ≤

(
n∏
i=1

(ri + 1)− kq,r(ta)

)(
q

n∑
i=1

rih(ai) + |r| log
√

2q

)
.

Applying these estimates to every positive integer multiple of r:

(2.3.2) lim sup
α→∞

hLαr (Pαr)

αn+1(r1 · · · rn)
≤

(∫
∇n(tx)

ζ1 dλ

)
n∑
i=1

rih(xi)

+ q vol ∆n(ta)

(
q

n∑
i=1

rih(ai) + |r| log
√

2q

)
.
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2.3.5. Upper bound of the instability measure. — Let v be a place of K. If the place
v is non-archimedean:

−ιv(Pr) ≥ max
σ : K′→Cv

{
kq,r(ta)ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}

+

n∑
i=1

 ∑
`∈∇Z

r (tx)

`i −
kr(tx) + kq,r(ta)

2
ri

mv(a
(σ)
i , xi)

}
,

whereas in the archimedean case the previous lower bound holds when the error term

kq,r(ta)

n∑
i=1

log
√
ri + 1 + kq,r(ta)|r| log

√
3 + kr(tx)|r| log 2

is subtracted from the right-hand side of the previous lower bound. These bounds
are proved in Section 4 (see Proposition 4.1). If v is non-archimedean, then applying
these estimates to every positive integer multiple of f , and using Propositions 2.6 (2),
2.4 (2) and 2.6 (4):

− lim sup
α→∞

ιv(Pαr)

αn+1(r1 · · · rn)
≥ max
σ : K′→Cv

{
(1− q vol ∆n(ta))ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}
+
µn(tx)− vol ∆n(uq,r(ta))

2

n∑
i=1

rimv(a
(σ)
i , xi)

}

If v is archimedean, the term |r|(vol ∆n(uq,r(ta)) log
√

3 + vol∇n(tx) log 2) has to be
subtracted from the right-hand side. By Definition 1.10 (2),

µn((uq,r(ta)) ≤ vol ∆n(uq,r(ta)),

thus condition (SS) entails µn(tx)−vol ∆n(uq,r(ta)) < 0. Bound from above the term
mv(a

(σ)
i , xi) by ∑

w|v

mw(ai, xi),

the sum being taken over the places w of K ′ over v. Taking the sum over the places
of S and noticing that by Proposition 1.2,∑

v∈S

∑
w|v

mw(ai, xi) ≤
∑
v∈S

∑
w∈VK′

mw(ai, xi) = [K ′ : Q](h(x) + h(ai)),

conclude that the term

− 1

[K : Q]

∑
v∈S

lim sup
α→∞

ιv(Pαr)

αn+1(r1 · · · rn)
,
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is bounded below by

(2.3.3)
1

[K : Q]
(1− q vol ∆n(ta))ta

∑
v∈S

max
σ : K′→Cv

{
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}}

+
µn(tx)− vol ∆n(uq,r(ta))

2

n∑
i=1

riq(h(xi) + h(ai))

− |r|(vol ∆n(uq,r(ta)) log
√

3 + vol∇n(tx) log 2).

2.3.6. Lower bound of the height on the quotient. — For i = 1, . . . , n set E i = o2
K and

bi = −ri(kq,r(ta) + kr(tx)). Apply the lower bound given by Theorem 2.1 in Chapter
1 to the representation

G = SL(E1)×oK · · · ×oK SL(En) −→ GL(Fq,r(ta)⊗Fr(tx)),

and to the surjection

$ :

n⊗
i=1

E⊗bii =

n⊗
i=1

(
o2∨
K

)⊗ri(kq,r(ta)+kr(tx)) −→ Fq,r(ta)⊗Fr(tx).

The hermitian vector bundle E i is trivial, thus µ̂(E i) = 0 for i = 1, . . . , n. Through the
closed G-equivariant embedding jr : Xr → P(Fq,r(ta)⊗Fr(tx)) Theorem 2.1 yields

hmin((Xr,Lr)//G) ≥ hmin ((P(Fq,r(ta)⊗Fr(tx)),O(1))//G)

≥ −(kq,r(ta) + kr(tx))|r| log
√

2− 1

2
(log kq,r(ta)! + log kr(tx)!) ,

where the term −1/2 (log kq,r(ta)! + log kr(tx)!) is due to the ratio between the her-
mitian norm on the alternating product and the quotient norm with the respect to
surjection $ (see 0.3 on page 11). Thanks to Stirling’s approximation,

lim
α→∞

log kq,r(ta)!

αn+1(r1 · · · rn)
= 0,

and similarly for kr(tx). The previous estimates, applied to every positive multiple of
r, give:

(2.3.4) − lim sup
α→∞

hmin((Xαr,Lαr)//G)

αn+1(r1 · · · rn)

≤ (vol ∆n(uq,r(ta)) + vol∇n(tx)) |r| log
√

2.

Remark 2.8. — The refined version of Theorem 2.1 in Chapter 1 given by Theorem
1.11 in Chapter 4, gives

hmin((Xr,Lr)//G) ≥ − 1
2 (log kq,r(ta)! + log kr(tx)!),

thus,

− lim sup
α→∞

hmin((Xαr,Lαr)//G)

αn+1(r1 · · · rn)
≤ 0.

To conclude the proof of the Main Theorem it suffices to bound the asymptotic
terms in (2.3.1) taking in account the inequalities (2.3.2), (2.3.3) and (2.3.4).



3. UPPER BOUND OF THE HEIGHT 47

3. Upper bound of the height

3.1. Rational point. —

Proposition 3.1. — With the notation introduced in Section 2.2,

hFr(tx)([Kr(x, tx)]) ≤
n∑
i=1

∑
`∈∇Z

n(r,tx)

`ih(xi).

Proof. — Let T0, T1 be the canonical basis of K2∨. For every i = 1, . . . , n let
(xi0, xi1) ∈ K2 be a generator of the line xi ∈ P1(K). Suppose that xi0 is non-
zero. For every n-uple of non-negative integers ` ∈ �r define

T (`) :=

n⊗
i=1

T ri−`i0 T `ixi

where Txi = xi0T1 − xi1T0. A basis of the K-vector space Kr(x, tx) is given by the
elements T (`) while ` ranges in ∇Z

r (tx).
Let v be a place of K. The Hadamard inequality (0.3.1) on page 12 gives

log

∥∥∥∥∥∥
∧

`∈∇Z
r (t,x)

T (`)

∥∥∥∥∥∥
Fr(tx),v

≤
∑

`∈∇Z
r (tx)

log ‖T (`)‖Γ(P,OP(r)),v.

For every n-uple of non-negative integers ` ∈ �r the sub-multiplicativity of the norm
on symmetric powers gives

log ‖T (`)‖Γ(P,OP(r)),v =

n∑
i=1

log ‖T ri−`i0 T `ixi‖v

≤
n∑
i=1

(ri − `i) log ‖T0‖v +

n∑
i=1

`i log ‖Txi‖v =

n∑
i=1

`i log ‖xi‖v.

Conclude the proof by taking the sum over all places.

3.2. Target points. —

Proposition 3.2. — With the notation introduced in Section 2.2,

hFq,r(ta)([Kq,r(a, ta)]) ≤

(
n∏
i=1

(ri + 1)− kq,r(ta)

)(
q

n∑
i=1

rih(ai) + |r| log
√

2q

)
.

The rest of this section is devoted to the proof of this upper bound.

3.2.1. Equip the oK-module Γ(P,OP(r)) with the hermitian metric induced by the
identification

Γ(P,OP(r)) =

n⊗
i=1

Symri
(
o2∨
K

)
.
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Denote by Γ(P,OP(r)) the resulting oK-hermitian vector bundle. The oK-hermitian
vector bundle Γ(P,OP(r)) is not trivial since the basis of Γ(P,OP(r)) given by the
elements

T (`) =

n⊗
i=1

T ri−`i0 T `i1

is orthogonal but not orthonormal. Anyway, for every place v, the sub-multiplicativity
of the norm on symmetric powers gives

log ‖T (`)‖Γ(P,OP(r)),v ≤
n∑
i=1

(ri − `i) log ‖T0‖v +

n∑
i=1

`i log ‖T1‖v = 0.

In particular,

(3.2.1) µ̂(Γ(P,OP(r))) ≥ −
∑
v∈VK

∑
`∈�Z

r

log ‖T (`)‖Γ(P,OP(r)),v ≥ 0.

3.2.2. Endow the K-vector space Kq,r(a, ta) with the structure of oK-hermitian vec-
tor bundle induced by the one of Γ(P,OP(r)). The oK-module

Kq,r(a, ta) = Γ(P,OP(r)) ∩Kq,r(a, ta),

is equipped with the restriction of the hermitian norms on Γ(P,OP(r)), and

C = Γ(P,OP(r))/Kq,r(a, ta)

is endowed it with quotient norms deduced from Γ(P,OP(r))→ C. Denote by C the
oK-hermitian vector bundle obtained in this way. With these choices and according
to (3.2.1):

[K : Q]hFq,r(ta)([Kq,r(a, ta)]) = − d̂egKq,r(a, ta)

= d̂eg C − d̂eg Γ(P,OP(r)) ≤ d̂eg C.

3.2.3. Denote by E the K-vector space Γ(Zq,r(a, ta),OP(r)) and let Ω be a Galois
closure of K ′ over K. Endow the Ω-vector space E ⊗K Ω with a structure of oΩ-
hermitian vector bundle as follows. According to Proposition 2.6:

E ⊗K Ω =

q⊕
σ=1

E(σ)(3.2.2)

where, for embedding σ : K ′ → Q̄, E(σ) := Γ(Zr(a
(σ), ta),OPΩ

(r)) (4).
For i = 1, . . . , n let (a

(σ)
i0 , a

(σ)
i1 ) ∈ Ω2 a generator of the line a(σ)

i ∈ P1(K). Since a(σ)

is not K-rational assume a(σ)
i0 may be taken non-zero and, up to rescaling, a(σ)

i0 = 1.
For an embedding σ : K ′ → Q̄, a basis of the Ω-vector space E(σ) is given by

Ta(σ)(`) =

n⊗
i=1

T ri−`i0 T `i
a

(σ)
i

,

4. Here the point a(σ) is seen as an Ω-point of P1
Ω = P1

K ×K Ω and Zr(a(σ), ta) denotes the
subscheme of P1

Ω of index ta on the point a(σ).
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where T
a

(σ)
i

= T1 − a(σ)
i1 T0 and ` = (`1, . . . , `n) ranges in the elements of ∆Z

r (ta). Let

E(σ) be the oΩ-submodule of ⊂ E(σ) generated by the elements T (`)’s. Equip it with
the hermitian norm having the elements T (`)’s as an orthonormal basis. Denote by
E(σ)

the associated oΩ-hermitian vector bundle.
Finally, according with (3.2.2), endow K-vector space E ⊗K Ω with the structure

of oΩ-hermitian vector bundle given by the orthogonal direct sum of the oΩ-hermitian
vector bundles E(σ)

’s. Denote by EΩ the so-obtained hermitian vector bundle.

3.2.4. The evaluation homomorphism η : Γ(PK ,OP(r))→ E = Γ(Zq,r(a, ta),OP(r))
factors through an injection ε : C ⊗oK K → E. Applying the slope inequality (Propo-
sition 0.1 on page 14), one gets
(3.2.3)

hFq,r(ta)([Kq,r(a, ta)]) ≤ d̂eg C
[K : Q]

≤ rk C
[Ω : Q]

(
µ̂max(EΩ) +

∑
v∈VΩ

log ‖ε‖sup,v

)

where, for a place v ∈ VΩ, ‖ε‖sup,v is the v-adic operator norm of ε,

‖ε‖sup,v := sup
0 6=f∈C⊗Ω

‖ε(f)‖E,v
‖f‖C,v

.

This coincides with the operator norm ‖η‖sup,v of η. The oΩ-hermitian vector bundle
E is trivial hence µ̂max(EΩ) = 0.

3.2.5. It remains to bound the v-adic size of the evaluation homomorphism η. For
an embedding σ = 1, . . . , q let η(σ) : Γ(PΩ,OP(r))→ Eσ be the composition of η and
the canonical projection E ⊗K Ω → E(σ). Denote by ‖η(σ)‖sup,v the operator norm
of η(σ). With this notation:

– if v non-archimedean: ‖η‖sup,v = max
σ=1,...,q

‖η(σ)‖sup,v;

– if v archimedean: ‖η‖sup,v ≤
√
q max
σ=1,...,q

{
‖η(σ)‖sup,v

}
.

For σ = 1, . . . , q and i = 1, . . . , n let ϕ(σ)
i be the linear automorphism of Ω2∨ defined

by

ϕ
(σ)
i :

{
T0 7→ T0

T1 7→ T
a

(σ)
i

= T1 − a(σ)
i1 T0.

Consider the linear automorphism ϕ
(σ)
r = Symr1 ϕ

(σ)
1 ⊗ · · · ⊗ Symrn ϕ

(σ)
n on the Ω-

vector space

Γ(PK ,OP(r))⊗K Ω = Symr1(Ω2∨)⊗Ω · · · ⊗Ω Symrn(Ω2∨),

where for any i = 1, . . . , n the linear automorphism ϕ
(σ)
i its acting on the i-th factor

through its action on symmetric powers.
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With this notation the homomorphism η(σ) ◦ϕ(σ)
r : Γ(PΩ,OP(r))→ E(σ) coincides

with the evaluation morphism at the closed subscheme Zr((1 : 0), ta):

T (`) =

n⊗
i=1

T ri−`i0 T `i1 7→

{
Ta(σ)(`) if ` ∈ ∆Z

r (ta)

0 otherwise.

By definition the elements Ta(σ)(`)’s form an orthonormal basis of the trivial oΩ-
hermitian vector bundle E(σ)

. Thus one has ‖η(σ) ◦ ϕ(σ)
r ‖sup,v ≤ 1 and

‖η(σ)‖sup,v ≤ ‖(ϕ(σ)
r )−1‖sup,v.

By recalling that for an endomorphism ψ of a oK-hermitian vector bundle V the
sup-norm of ψ is smaller than its norm as an element of V∨ ⊗ V,

‖(ϕ(σ)
r )−1‖sup,v ≤ log

∥∥∥(ϕ(σ)
r )−1

∥∥∥
End(Γ(P,OP(r))),v

≤
n∑
i=1

ri log ‖(ϕ(σ)
i )−1‖End(o2∨

K ),v.

The archimedean and the non-archimedean cases have to be distinguished. By defi-
nition of ϕ(σ)

i one has (ϕ
(σ)
i )−1(T0) = (1, 0) and (ϕ

(σ)
i )−1(T1) = (a

(σ)
i1 , 1). Thus,

– if v is non-archimedean:

log ‖(ϕ(σ)
i )−1‖End(o2∨

Ω ),v = log max{‖(ϕ(σ)
i )−1(T0)‖v, ‖(ϕ(σ)

i )−1(T1)‖v}

= log ‖(a(σ)
i0 , a

(σ)
i1 )‖v.

– if is v archimedean:

log ‖(ϕ(σ)
i )−1‖End(o2∨

Ω ),v = log

√
‖(ϕ(σ)

i )−1(T0)‖2v + ‖(ϕ(σ)
i )−1(T1)‖2v

≤ log ‖(a(σ)
i0 , a

(σ)
i1 )‖v + log

√
2.

Taking the sum over all the places of K:∑
v∈VΩ

log ‖η‖sup,v ≤
∑
v∈VΩ

max
σ : K′→Q̄

{
n∑
i=1

ri log ‖(a(σ)
i0 , a

(σ)
i1 )‖v

}
+ |r|[Ω : Q] log

√
2q

≤
∑
v∈VΩ

∑
σ : K′→Q̄

n∑
i=1

ri log ‖(a(σ)
i0 , a

(σ)
i1 )‖v + |r|[Ω : Q] log

√
2q

= [Ω : Q]

 ∑
σ : K′→Q̄

n∑
i=1

rih(a
(σ)
i ) + |r| log

√
2q

 .

Dividing by [Ω : Q], writing h(a
(σ)
i ) = h(ai) for σ : K ′ → Q̄ and according to (3.2.3),

hFq,r(ta)([Kq,r(a, ta)]) ≤ rk C

(
q

n∑
i=1

rih(ai) + |r| log
√

2q

)
.
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Using rk C = rk Γ(P,OP(r))− rkKq,r(a, ta) and

rk Γ(P,OP(r)) =

n∏
i=1

(ri + 1),

rkKq,r(a, ta) = kq,r(ta),

one concludes the proof.

4. Upper bound of the instability measure

4.1. Notations and first reductions. — Let v be a place of K.

Proposition 4.1. — With the notation introduced in Section 2.2, if the place v is
non-archimedean,

ιv(Pr) ≤ − max
σ : K′→Cv

{
kq,r(ta)ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}

+

n∑
i=1

 ∑
`∈∇Z

r (tx)

`i −
kr(tx) + kq,r(ta)

2
ri

mv(a
(σ)
i , xi)

}
,

whereas, in the v archimedean case, the previous inequality holds with

kq,r(ta)

n∑
i=1

log
√
ri + 1 + kq,r(ta)|r| log

√
3 + kr(tx)|r| log 2

added on the right-hand side.

Throughout this section fix for i = 1, . . . , n and σ : K ′ → Cv:
(1) a generator (xi0, xi1) ∈ K2

v of xi ∈ P1(Kv) such that ‖(xi0, xi1)‖v = 1.
(2) a generator (a

(σ)
i0 , a

(σ)
i1 ) ∈ C2

v of a(σ)
i ∈ P1(Cv) such that ‖(a(σ)

i0 , a
(σ)
i1 )‖v = 1;

(3) a square root θ(σ)
i ∈ Cv of (a

(σ)
i0 xi1 − a(σ)

i1 xi0)−1.

4.1.1. Elements of SL2 measuring distances. —

Definition 4.2. — For i = 1, . . . , n and σ = 1, . . . , q let g(σ)
i be the linear automor-

phism of C2
v given by the matrix:

g
(σ)
i :=

((
a

(σ)
i0 a

(σ)
i1

xi0 xi1

)>)−1

=
1

a
(σ)
i0 xi1 − a(σ)

i1 xi0

(
xi1 −xi0
−a(σ)

i1 a
(σ)
i0

)
∈ GL2(Cv).

Consider the n-uple g(σ) := (g
(σ)
1 , . . . , g

(σ)
n ) ∈ GL2(Cv)

n.

Proposition 4.3. — With the notation introduced above, for all i = 1, . . . , n and
σ = 1, . . . , q,

(1) det g
(σ)
i = (a

(σ)
i0 xi1 − a(σ)

i1 xi0)−1;

(2) log |det g
(σ)
i |v = mv(a

(σ)
i , xi);
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(3) For a non-zero vector (y0, y1) ∈ C2
v such that ‖(y0, y1)‖v = 1,

‖g(σ)
i · (y0T1 − y1T0)‖v =


max

{
dv(a

(σ)
i , [y]),dv(xi, [y])

}
v non-archimedean√

dv(a
(σ)
i , [y])2 + dv(xi, [y])2 v archimedean

where T0, T1 denotes the canonical basis of C2∨
v and [y] ∈ P1(Cv) the line

generated by (y0, y1).

Proof. —
(1) Clear: the points (xi0, xi1) and (a

(σ)
i0 , a

(σ)
i1 ) are of norm 1.

(2) Clear from (1).
(3) The automorphism g

(σ)
i of C2

v acts on the dual vector space C2∨
v through the

transposed inverse automorphism, whose matrix (with respect to the canonical
basis T0, T1) is (

a
(σ)
i0 a

(σ)
i1

xi0 xi1

)
.

The remainder is an elementary computation.

4.1.2. Proof of Proposition 4.1. — In this paragraph Proposition 4.1 is deduced from
Proposition 4.6 and 4.7: the latter are proved in the following sections.

Definition 4.4. — For h = (h1, . . . , hn) ∈ GL2(Cv)
n define

– ιv(h, [Kr(x, tx)]) := log
‖h · wx‖Fr(tx),v

‖wx‖Fr(tx),v
,

– ιv(h, [Kq,r(a, ta)]) := log
‖h · wa‖Fq,r(ta),v

‖wa‖Fq,r(ta),v
,

where wx ∈ Fr(tx) ⊗ K (resp. wa ∈ Fq,r(ta) ⊗ K) is a non-zero representative of
Plücker embedding of the point [Kr(x, tx)] (resp. [Kq,r(a, ta)]).

Definition 4.5. — For i = 1, . . . , n and σ : K ′ → Cv consider the linear automor-
phism g̃

(σ)
i := g

(σ)
i /θ

(σ)
i , which is of determinant 1. Set g̃(σ) := (g̃

(σ)
1 , . . . , g̃

(σ)
n ).

Employing this notation the instability measure ιv(Pr) can be written as

ιv(Pr) = inf
h∈SL2(Cv)n

{ιv(h, [Kr(x, tx)]) + ιv(h, [Kq,r(a, ta)])}

≤ min
σ : K′→Cv

{
ιv(g̃

(σ), [Kr(x, tx)]) + ιv(g̃
(σ), [Kq,r(a, ta)])

}
.

The representations Fr(tx) and Fr(ta) of GLn2,oK are respectively homogeneous of
weights kr(tx)r and kr(ta)r. By Proposition 4.3 (2), log |θ(σ)

i | = mv(a
(σ)
i , xi)/2 and

ιv(g̃
σ, [Kr(x, tx)]) = ιv(g

(σ), [Kr(x, tx)]) +
kr(tx)

2

n∑
i=1

rimv(a
(σ)
i , xi),

ιv(g̃
σ, [Kq,r(a, ta)]) = ιv(g

(σ), [Kq,r(a, ta)]) +
kq,r(ta)

2

n∑
i=1

rimv(a
(σ)
i , xi).
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One concludes the proof of Proposition 4.1 applying the following:

Proposition 4.6. — With the notation introduced above, if v is non-archimedean,

ιv(g
(σ), [Kr(x, tx)]) ≤ −

n∑
i=1

∑
`∈∇Z

r (tx)

`imv(a
(σ)
i , xi)

whereas, if v is archimedean, the preceding inequality holds with kr(tx)|r| log 2 be added
on the right-hand side.

Proposition 4.7. — With the notation introduced above, if v is non-archimedean,

ιv(g
(σ), [Kq,r(a, ta)]) ≤ −kq,r(ta)ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}
,

whereas, if v is archimedean, the preceding inequality holds with

kq,r(ta)

2

n∑
i=1

log(ri + 1) + kq,r(ta)|r| log
√

3,

added on the right-hand side.

4.2. Taylor expansion at the single point: proof of Proposition 4.6. —
Keep the notations introduced in Section 4.1.

4.2.1. Let i ∈ {1, . . . , n} and consider the linear form

Ti1 := −xi1T0 + xi0T1 ∈ K2∨
v .

Since the point (xi0, xi1) ∈ K2
v is of norm 1 the linear form Ti1 is of norm 1. If v is

non-archimedean let Ti0 ∈ o2∨
v be a linear form such that Ti0, Ti1 is a basis of the

ov-module o2∨
v . If v is archimedean let Ti0 ∈ K2∨

v be a linear form such that Ti0, Ti1
is an orthonormal basis of K2∨

v .
Since the linear form Ti1 vanishes at xi for every i = 1, . . . , n, Proposition 2.4 (1)

implies that a basis of the K-vector space Kr(x, tx) is given by the monomials

T (`) =

n⊗
i=1

T ri−`ii0 T `ii1

where ` = (`1, . . . , `n) ranges in ∇Z
r (tx). The following vector of Fr(tx)⊗oK Kv,

w :=
∧

`∈∇Z
r (tx)

T (`)

is a non-zero representative of the Plücker embedding of [Kr(x, tx)]. If v is non-
archimedean the elements T (`)’s form a basis of the ov-module

(Kr(x, tx)⊗Kv) ∩ (Γ(P,OP(r))⊗ ov) .

Thus
log ‖w‖Fr(tx),v = 0.
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If v is archimedean the elements T (`)’s are orthogonal but they are not of norm 1 and

log ‖w‖Fr(tx),v =
∑

`∈∇Z
r (tx)

log ‖T (`)‖Γ(P,OP(r)),v = −1

2

∑
`∈∇Z

r (tx)

n∑
i=1

log

(
ri
`i

)
.

Bounding the binomial
(
ri
`i

)
by 2ri ,

log ‖w‖Fr(tx),v = −1

2

∑
`∈∇Z

r (tx)

n∑
i=1

log

(
ri
`i

)
≥ −1

2

∑
`∈∇Z

r (tx)

n∑
i=1

ri log 2

= −kr(tx)|r| log
√

2.

4.2.2. For any ` ∈ ∇Z
r (t) the sub-multiplicativity of the norm on symmetric powers

yields

log ‖g(σ) · T (`)‖Γ(P,OP(r)),v ≤
n∑
i=1

((ri − `i) log ‖g(σ)
i · Ti0‖v + `i log ‖g(σ)

i · Ti1‖v).

Therefore applying the Hadamard inequality,

log ‖g(σ) · w‖Fr(tx),v ≤
∑

`∈∇Z
r (tx)

log ‖g(σ) · T (`)‖Γ(P,OP(r)),v

≤
∑

`∈∇Z
r (tx)

n∑
i=1

((ri − `i) log ‖g(σ) · Ti0‖v + `i log ‖g(σ) · Ti1‖v).

For i = 1, . . . , n Proposition 4.3 (3) entails

– ‖g(σ)
i · Ti0‖v ≤

{
1 v non-archimedean
√

2 v archimedean

– ‖g(σ)
i · Ti1‖v = dv(a

(σ)
i , xi).

Summarising if v is non-archimedean:

ιv(g
(σ), [Kr(x, tx)]) = log ‖g(σ) · w‖Fr(tx),v ≤ −

n∑
i=1

 ∑
`∈∇Z

r (tx)

`i

mv(a
(σ)
i , xi).

If v is archimedean:

ιv(g
(σ), [Kr(x, tx)]) ≤ log ‖g(σ) · w‖Fr(tx),v + kr(tx)|r| log

√
2

≤ −
n∑
i=1

 ∑
`∈∇Z

r (tx)

`i

mv(a
(σ)
i , xi) + kr(tx)|r| log 2,

which concludes the proof.

4.3. Taylor expansion at the algebraic points: proof of Proposition 4.7.
— Keep the notations introduced in Section 4.1.
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4.3.1. If v is non-archimedean let ov be the ring of Kv and let f1, . . . , fkq,r(ta) be a
basis of the ov-module:

(Kq,r(a, ta)⊗K Kv) ∩ (Γ(P,OP(r)⊗oK ov) .

If v is archimedean let f1, . . . , fkq,r(ta) be an orthonormal basis of Kq,r(a, ta) ⊗Kv.
With these notations the vector of Fq,r(a, ta)⊗oK Kv,

w :=

kq,r(ta)∧
α=1

fα

is a non-zero representative of the Plücker embedding of [Kq,r(a, ta)]. In order
to simplify notation denote by ‖ · ‖v the induced norm on the Cv-vector space
Γ(P,OP(r)) ⊗oK Cv. With this notation Hadamard’s inequality (0.3.1) on page 12
entails

ιv(g
(σ), [Kq,r(a, ta)]) = log ‖g(σ) · w‖Fq,r(ta),v ≤

kq,r(ta)∑
α=1

log ‖g(σ) · fα‖v.

and it remains to prove the following:

Lemma 4.8. — Let f be a non-zero element of Kq,r(a, ta). With the notation in-
troduced above, if v is non-archimedean,

log
‖g(σ) · f‖v
‖f‖v

≤ ta max
i=1,...,n

{
ri log dv(a

(σ)
i , xi)

}
whereas, if v is archimedean, the preceding inequality holds with

1

2

n∑
i=1

log(ri + 1) + |r| log
√

3

added on the right-hand side.

4.3.2. For i = 1, . . . , n consider the linear form:

Ti1 := −a(σ)
i1 T0 + a

(σ)
i0 T1 ∈ C2∨

v .

Since the point (a
(σ)
i0 , a

(σ)
i1 ) ∈ C2

v is of norm 1 the linear form Ti1 is of norm 1. If v
is non-archimedean let ov be the ring of integers of Cv and let Ti0 ∈ o2∨

v be a linear
form such that Ti0, Ti1 is a basis of the ov-module o2∨

v . (5) If v is archimedean let
Ti0 ∈ C2∨

v be a linear form such that Ti0, Ti1 is an orthonormal basis of C2∨
v . For

every n-uple of integers ` = (`1, . . . , `n) ∈ �r define

T (`) =

n⊗
i=1

T ri−`ii0 T `ii1 .

5. Such a Ti0 exists because the ov-module o2∨
v /Ti1ov is torsion-free, thus free ([BGR84, 1.6.1

Proposition 2]). One can avoid using this result by taking Ti1 defined over a finite extension of Kv .
In the latter case the existence of Ti0 follows from the widely-know fact that a finite type, torsion-free
module over a discrete valuation ring is free.
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The monomials T (`)’s form a basis of the Cv-vector space Γ(P,OP(r))⊗KCv. If v is
non-archimedean the elements T (`)’s form a basis of the ov-module Γ(P,OP(r))⊗oK

ov. If v is archimedean the monomials T (`)’s are orthogonal and for every ` ∈ �r,

‖T (`)‖v =

(
r

`

)−1/2

:=

n∏
i=1

(
ri
`i

)−1/2

.

4.3.3. If v is non-archimedean, a computation similar to the one in paragraph 4.2.2
yields

log ‖g(σ) · T (`)‖v ≤
n∑
i=1

`i log dv(a
(σ)
i , xi) = −

n∑
i=1

`imv(a
(σ)
i , xi),

whereas, if v is archimedean, the preceding inequality holds when kq,r(ta)|r| log
√

2 is
added to the right-hand side.

4.3.4. Write f =
∑
` f`T (`) with f` ∈ Cv. If v is non-archimedean,

‖f‖v = max
{
|f`|v : ` ∈ �Z

r

}
.

If v is archimedean,

‖f‖2v =
∑
`∈�Z

r

|f`|2v
(
r

`

)−1

.

Since the real numbers mv(a
(σ)
i , xi) are non-negative for every ` ∈ ∇Z

r (ta):

n∑
i=1

`imv(a
(σ)
i , xi) ≥

(
n∑
i=1

`i
ri

)
min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}
≥ ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}
.

By definition the global section f satisfies ind1/r(f, a
(σ)) ≥ ta, that is, f` = 0 for

every ` ∈ ∆Z
r (ta). In the non-archimedean case this yields:

log ‖g(σ) · f‖v ≤ max
`∈∇Z

r (ta)

{
log |f`|v + log ‖g(σ) · T (`)‖v

}
≤ −ta min

i=1,...,n

{
rimv(a

(σ)
i , xi)

}
+ log ‖f‖v,

which concludes the proof in the non-archimedean case.

4.3.5. Suppose henceforth v archimedean. Proposition 4.3 (3) and the triangle in-
equality give:

‖g(σ) · f‖v ≤
∑

`∈∇Z
r (ta)

|f`|v‖g(σ) · T (`)‖v

≤ max
i=1,...,n

{
dv(a

(σ)
i , xi)

ri
}ta ∑

`∈∇Z
r (ta)

|f`|v
n∏
i=1

√
2
ri−`i

.(4.3.1)
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Comparing `1 and `2 norms on Γ(P,OP(r)) thanks to Jensen’s inequality:

∑
`∈∇Z

r (ta)

|f`|v
n∏
i=1

√
2
ri−`i ≤

√√√√( n∏
i=1

(ri + 1)

) ∑
`∈∇Z

r (ta)

|f`|2v
n∏
i=1

2ri−`i ,

where one uses rk Γ(P,OP(r)) =
∏n
i=1(ri+ 1). The right term can be compared with

the norm of f :∑
`∈∇Z

r (ta)

|f`|2v
n∏
i=1

2ri−`i ≤ max
`∈∇Z

r (ta)

{(
r

`

) n∏
i=1

2ri−`i

} ∑
`∈∇Z

r (ta)

|f`|2v
(
r

`

)−1

= max
`∈∇Z

r (ta)

{(
r

`

) n∏
i=1

2ri−`i

}
‖f‖2v.

Using
∑b
a=0

(
b
a

)
2b−a = 3b,

max
`∈∇Z

r (ta)

{(
r

`

) n∏
i=1

2ri−`i

}
≤ 3|r|

According to (4.3.1) this concludes the proof.

5. End of the proof: semi-stability in the general case

5.1. Basic facts about the semi-stability of subspaces. —

5.1.1. Instability coefficient. — LetK be a field and let G aK-reductive group acting
on a proper K-scheme X equipped with a G-equivariant invertible sheaf L. Let x be
a K-point of X. Let λ : Gm → G be a one-parameter subgroup of G (which means
that λ is a morphism of algebraic groups) and consider the morphism λx : Gm → X
given by

λx(τ) := λ(τ) · x.
By properness of X, the morphism λx extends in a unique way to a morphism
λx : A1 → X. Denote by x0 the K-point λx(0). Since it is a fixed point under
the action of Gm, then Gm acts on the K-vector space x∗0L through a character

τ 7→ τ−µL(λ,x)

with µL(λ, x) ∈ Z. It is called the instability coefficient of x with respect to the
one-parameter subgroup λ and the invertible sheaf L. (6)

Theorem 5.1 (Hilbert-Mumford criterion). — Suppose that K is perfect and L
is ample. With the notation introduced above, the point x is semi-stable if and only if

µL(λ, x) ≥ 0

for every one-parameter subgroup λ : Gm → G.

6. We follow here the convention adopted in [MFK94, Definition 2.2].
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When K is algebraically closed, this theorem has been proved by Mumford
[MFK94, Theorem 2.1]. The general case has been proved independently by Kempf
[Kem78, Theorem 4.2] and Rousseau [Rou81] (7).

5.1.2. Instability coefficient of linear subspaces. — Let V be a finite dimension K-
vector space and r be a positive integer. Consider the grassmannian of r-dimensional
subspaces Grassr(V ) and its Plücker embedding $ : Grassr(V )→ P(

∧r
V ).

Suppose that a K-reductive group G acts linearly on V . Then it acts on the grass-
mannianGrassr(V ), on the projective space P(

∧r
V ) and in a equivariant way on the

invertible sheaf O(1) on P(
∧r

V ). Since the Plücker embedding $ is G-equivariant
with respect to this action, the ample invertible sheaf $∗O(1) on Grassr(V ) is en-
dowed with a G-equivariant action.

Definition 5.2. — Let λ : Gm → G be a one-parameter subgroup.
(1) Let W ⊂ V be a linear subspace of dimension r. Set

µ(λ, [W ]) := µ$∗O(1)(λ, [W ])

omitting the polarisation $∗O(1).
(2) For every integer p ∈ Z consider the subspace Vλ,p := {v ∈ V : λ(τ) · v = τpv}.

Let pλ,min (resp. pλ,max) be the smallest (resp. the biggest) integer p such that
Vλ,p is non-zero.

(3) For every integer p ∈ Z set V [p] :=
⊕

q≥p Vλ,q.

Since the action of a torus is diagonalisable, one has V =
⊕

p∈Z Vλ,p. In particular,

V [p] =

{
0 if p > pλ,max

V if p < pλ,min.

Proposition 5.3. — Let W ⊂ V be a linear subspace of dimension r. For every
integer p set W [p] := W ∩ V [p].

(1) The subspaces W [p] form a decreasing filtration of W and

µ(λ, [W ]) =
∑
p∈Z

p (dimKW [p]− dimKW [p+ 1])

= −pλ,min dimKW −
pλ,max∑

p=pλ,min+1

dimKW [p].

(2) Let w1, . . . , wr be a basis of W . For every i = 1, . . . , r let µ(λ, [wi]) be the
instability coefficient of the point [wi] ∈ P(V ). Then the vector wi writes as

λ(τ) · wi = τ−µ(λ,[wi])wi,min + terms of higher order in τ,

7. In order to understand that [Kem78, Theorem 4.2] translates into Theorem 5.1 it is useful to
consult the dictionary between Kempf’s and Mumford’s notations given in the table in [MFK94,
Appendix to Chapter 2, section B].
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with wi,min ∈ V . If the elements w1,min, . . . , wr,min ∈ V are linearly indepen-
dent, then

µ(λ, [W ]) =

r∑
i=1

µ(λ, [wi]).

(3) With the notations of (2), there exists a basis w1, . . . , wr of W such that their
components of minimal weight w1,min, . . . , wr,min ∈ V are linearly independent.

Proof. — This is a reformulation of the computations in [MFK94, Chapter 4, §4].
See also [Tot96, §2, Lemma 2].

Proposition 5.4. — Let W1, W2 be subvector spaces of V . Then:
(1) (Inclusion formula) If W1 is contained in W2, then

(5.1.1) µ(λ, [W1]) ≥ µ(λ, [W2])− pλ,min(dimKW1 − dimKW2).

(2) (Grassmann formula)

(5.1.2) µ(λ, [W1]) + µ(λ, [W2]) ≥ µ(λ, [W1 +W2]) + µ(λ, [W1 ∩W2]).

Proof. —
(1) Clear.
(2) For every integer p the usual Grassmann formula for linear subspaces gives

dimKW1[p] + dimKW2[p] = dimK(W1[p] +W2[p]) + dimK(W1[p] ∩W2[p]).

Conclude by noticing that W1[p] +W2[p] ⊂ (W1 +W2)[p].

Remark 5.5. — The second statement of the previous Proposition is a generalisa-
tion of the following fact: if V writes is the direct sum of W1 and W2 then the couple
([W1], [W2]) is semi-stable (as point in a product of suitable grassmannians of V ).
Indeed, both terms in the right-hand side of (2) vanish.

5.2. Asymptotic semi-stability: proof of Theorem 2.7. —

5.2.1. Go back to the notation introduced in Section 2.2. The construction of invari-
ant elements is compatible with flat base change [Ses77, §2 Lemma 2]. It follows that
the semi-stability of the points Pαr is only a matter of the generic fiber of Xαr. From
now on we silently work over K (for instance P will denote the projective scheme
(P1

K)n).

Theorem 5.6. — Let n ≥ 1 be a positive integer and r = (r1, . . . , rn) be a n-uple of
positive integers. Let tx, ta ≥ 0 be real numbers with ta < tq,n(0). If the inequality

µn(uq,r(ta)) > µn(tx) + εq,r,

is satisfied then there exists a positive integer α0 = α0(q, n, r, ta, tx) such that, for
every integer α ≥ α0, the K-point Pαr ∈ Xαr(K) is semi-stable under the action of
SLn2 with respect to the polarization given by the Plücker embeddings.
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5.2.2. Computation of the instability coefficients. — For every n-uple of positive in-
tegers r = (r1, . . . , rn), every non-negative real number t ≥ 0 and every i ∈ {1, . . . , n}
set:

µZ
r,i(t) :=

∑
`∈∇Z

r (t)

2`i − ri

Arguments similar to those in Lemma 1.11 show that µZ
r,i(t) is non-negative.

Definition 5.7. — Let λ : Gm → SLn2,K be a one-parameter subgroup.
(1) For i = 1, . . . , n, there exist a basis Ti0, Ti1 of K2∨ and a non-negative integer

mλ,i ≥ 0 such that

λ(τ) · Ti0 = τmλ,iTi0, λ(τ) · Ti1 = τ−mλ,iTi1,

for every τ ∈ Gm(K).
The n-uple of non-negative integers mλ = (mλ,1, . . . ,mλ,n) is called the

weight of λ and the bases Ti0, Ti1 (for i = 1, . . . , n) is called an adapted basis
for λ.

The integer mλ,i does not depend on the choice of an adapted basis. If mλ,i

is non-zero then the lines {Ti0 = 0} and {Ti1 = 0} are determined by λ.
(2) With the notations introduced above, for every Q̄-point y of P set

χλ,i(y) :=

{
1 if Ti0 vanishes at y
0 otherwise.

Denote by yλ the uniqueK-point of P such that χλ,i(yλ) = 1 for all i = 1, . . . , n
and call it the instability point of λ (with respect to the chosen adapted bases).

Proposition 5.8 (Instability coefficient at the single point)
Let λ : Gm → SLn2 be a one-parameter subgroup. With the notation introduced

above, for i = 1, . . . , n,

µ(λ, [Kr(x, tx)]) =

n∑
i=1

(−1)χλ,i(x)mλ,iµ
Z
r,i(tx).

Proposition 5.9 (Instability coefficient at the algebraic point)
Let δ be a positive real number. Under the assumptions of Theorem 2.7 there exist a

positive real number ρ0 and a positive integer α0 (the two of them possibly depending
on n, q, r, ta and tx) satisfying the following properties: for every one-parameter
subgroup λ : Gm → SLn2 , every integer α ≥ α0 and every real number 0 < ρ < ρ0,

µ(λ, [Kq,αr(a, ta)]) ≥
n∑
i=1

mλ,i

[
µZ
αr,i(uq,r(ta) + ρ)− αn+1ri(r1 · · · rn)(εq,r + δ)

]
.

Proof of Theorem 2.7. — According to the Hilbert-Mumford criterion (Theorem 5.1)
it suffices to show that there exists α0 such that for every α ≥ α0 and every one-
parameter subgroup λ : Gm → SLn2 ,

µ(λ, Pαr) = µ(λ, [Kαr(x, tx)]) + µ(λ, [Kαr(a, ta)]) ≥ 0.
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Let δ be a positive real number. Let α0, δ0 and ρ0 given by Proposition 5.9. Up to
increasing α0 and decreasing δ and ρ0 assume, for i = 1, . . . , n, α ≥ α0 and 0 < ρ < ρ0:

(SS′) µZ
αr,i(uq,r(ta) + ρ) > µZ

αr,i(tx) + αn+1ri(r1 · · · rn)(εq,r + δ),

Fix α ≥ α0 and 0 < ρ < ρ0. Propositions 5.8 and 5.9 yield that µ(λ, Pαr) is non-
negative if:
n∑
i=1

mλ,i

[
µZ
αr,i(uq,r(ta) + ρ)− αn+1ri(r1 · · · rn)(εq,r + δ) + (−1)χλ,i(x)µZ

αr,i(tx)
]
≥ 0.

Since the integers mλ,i are supposed to be non-negative, this is satisfied according to
(SS′). This concludes the proof.

Proof of Proposition 5.8. — Consider adapted bases Ti0, Ti1 for λ (i = 1, . . . , n).
Suppose χλ,i(x) = 0 for i = 1, . . . , n (in the other cases the argument is similar).

Under this assumption there exists ξi ∈ K such that Ti1 − ξiTi0 vanishes at xi.
According to Proposition 2.4 (1), a basis of the K-vector space Kr(x, tx) is given by
polynomials of the form

T (`) :=

n⊗
i=1

T ri−`ii0 (Ti1 − ξiTi0)`i .

where ` = (`1, . . . , `n) ∈ ∇r(tx). The action of the one-parameter subgroup λ is given
by

λi(τ) · T (`) =

n⊗
i=1

τmλ,i(ri−2`i)
(
T ri−`ii0 (Ti1 − τ2mλ,iξiTi0)`i

)
Since the integers mλ,i are supposed to be non-negative, the component of T (`) of
minimal weight is the polynomial multiplied by

∑n
i=1mλ,i(ri − 2`i), that is

T (`)min =

n⊗
i=1

T ri−`ii0 T `ii1 .

The elements T (`)min for ` ∈ ∇Z
r (tx) are linearly independent, thus Proposition 5.3

(2) yields

µ(λ, [Kr(x, tx)]) =

n∑
i=1

∑
`∈∇Z

r (tx)

mλ,i(2`i − ri) =

n∑
i=1

mλ,iµ
Z
r,i(tx).

5.2.3. Proof of Proposition 5.9. —

Lemma 5.10. — Let λ : Gm → SLn2 be a one-parameter subgroup. Suppose (8)

uq,r(ta) 6= 0, n.

8. If uq,r(ta) = 0, n then Condition (SS) in Theorem 2.7 is not satisfied because µn(0) = µn(n)

vanishes.
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Let a(0) be a K-rational point of P1. Then, for ρ > 0,

µ(λ, [Kq,r(a, ta)]) + µ(λ, [Kr(a
(0), uq,r(ta) + ρ)])

≥ (kq,r(ta) + kr(uq,r(ta) + ρ)− dim Γ(P,OP(r)))

n∑
i=1

mλ,iri.

Proof. — The hypothesis uq,r(ta) 6= 0, n implies, by Definition 1.10 (4),

vol ∆n(uq,r(ta)) = 1 + εq,r − q vol ∆n(ta).

Since the point a(0) is K-rational one has pri(a
(0)) 6= pri(a

(σ)) for every i = 1, . . . , n
and every σ : K ′ → Q̄. According to Proposition 2.6 (3),

Kq,r(a, ta) ∩Kr(a
(0), uq,r(ta) + ρ) = 0

(apply it over Q̄ to deduce it over K). Grassmann’s formula for instability coefficients
(Proposition 5.4 2) applied to the subspaces Kq,r(a, ta) and Kr(a

(0), uq,r(ta) + ρ)
yields:

µ(λ, [Kq,r(a, ta)]) + µ(λ, [Kr(a
(0), uq,r(ta) + ρ)])

≥ µ(λ, [Kq,r(a, ta) +Kr(a
(0), uq,r(ta) + ρ)]).

With the notations introduced in paragraph 5.1.2, the smallest integer b such that
the vector space Γ(P,OP(r))b is non-zero is −

∑n
i=1mλ,iri (it occurs only for the

monomial T r110 ⊗ · · · ⊗ T
rn
n0 ). The inclusion formula (Proposition 5.4 1) applied to

Kq,r(a, ta) +Kr(y, uq,r(ta) + ρ) ⊂ Γ(P,OP(r))

gives the result.

Lemma 5.11. — Let δ be a positive real number. Under the assumption of Theorem
2.7 there exist a positive real number ρ0 and a positive integer α0 (the two of them
possibly depending on n, d, r, ta and tx) such that, for every integer α ≥ α0 and
every real number 0 < ρ < ρ0:

(1)
∣∣∣∣dimK Γ(P,OP(αr))

αn(r1 · · · rn)
− 1

∣∣∣∣ < δ

3
;

(2)
∣∣∣∣#∇Z

αr(uq,r(ta) + ρ)

αn(r1 · · · rn)
− (q vol ∆n(ta)− εq,r)

∣∣∣∣ < δ

3
;

(3)
kq,αr(ta)

αn(r1 · · · rn)
> (1− q vol ∆n(ta))− δ

3
.

Proof. —
(1) Clear.
(2) Follows from the definition of uq,r(ta).
(3) Follows from Proposition 2.6 (2).
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Proof of Proposition 5.9. — Let δ be a positive real number and let α0 and ρ0 given
by Lemma 5.11. Take an integer α ≥ α0 and a real number 0 < ρ < ρ0.

Let a(0) ∈ P(K) be the unique point such that χλ,i(a(0)) = 1 for every i = 1, . . . , n.
Applying Proposition 5.8 to the point a(0):

µ(λ, [Kαr(a
(0), uq,r(ta) + ρ)]) = −

n∑
i=1

mλ,iµ
Z
αr,i(uq,r(ta) + ρ).

According to Lemma 5.11 and Proposition 2.4 (2):

kq,αr(ta) + kαr(uq,r(ta) + ρ)− dim Γ(P,OP(αr)) ≥ −αn(r1 · · · rn)(εq,r + δ),

Therefore Lemma 5.10 yields:

µ(λ, [Kq,αr(a, ta)]) ≥
n∑
i=1

mλ,i

[
µZ
αr,i(uq,r(ta) + ρ))− αn+1ri(r1 · · · rn)(εq,r + δ)

]
,

which concludes the proof.

6. Semi-stability on P1 ×P1 and the Wronskian determinant

In this section a different proof of the semi-stability is given in the case n = 2
emphasizing the role of the Wronskian determinant. Set

εq,r = (q − 1)
min{r1, r2}
max{r1, r2}

.

When r1 ≥ r2 this coincides with the previous definition.

6.1. The semi-stability statement will be the following one:

Theorem 6.1. — Let r = (r1, r2) be a couple of positive integers such that r1 ≥ r2.
Let tx, ta ≥ 0 be non-negative real numbers such that

0 ≤ 1− q vol ∆2(ta) + εq+1,r ≤ 1
2 .

If the inequality

(6.1.1) µ2(tx) < (1− q vol ∆2(ta))

(
1− 2

√
2 (1− q vol ∆2(ta) + εq+1,r)

)
is satisfied then there exists a positive integer α0 = α0(q, r, ta, tx) such that, for every
integer α ≥ α0, the K-point Pαr ∈ Xαr(K) is semi-stable under the action of SL2

2

with respect to the polarization given by the Plücker embeddings.

In particular, given 0 < δ < 1 one can apply it with

– ta = tq,2(δ) =

√
2

q
(1− δ);

– tx that tends to the unique real number w ∈ [1, 2] such that

µ2(w) = δ

(
1− 2

√
2 (δ + εq+1,r)

)
.

This is enough to derive the Main Effective Lower Bound in the case n = 2.
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Proposition 6.2 (Instability coefficient at the algebraic point)
Let δ be a positive real number. Under the assumptions of Theorem 6.1 there exists

a positive integer α0 (possibly depending on q, r, ta and tx) satisfying the following
properties: for every one-parameter subgroup λ : Gm → SL2

2,K and every integer
α ≥ α0:

µ(λ, [Kq,αr(a, ta)]) ≥ α3r1r2〈mλ, r〉 (1− q vol ∆2(ta)− δ)×

×
(

1− 2
√

2 (1− q vol ∆2(ta) + εq+1,r)

)
,

where 〈−,−〉 denotes the standard scalar product on R2.

An argument similar to the proof of Theorem 2.7 permits to deduce Theorem 6.1
from Proposition 6.2. The key point in the proof of Proposition 6.2 is the following:

Proposition 6.3. — Let f ∈ Kr(a, ta) be a non-zero section. If

1− q vol ∆2(ta) + εq+1,r ≤ 1
2 ,

then, for every one parameter subgroup λ : Gm → SL2
2,K ,

µ(λ, [f ]) ≥ 〈mλ, r〉
(

1− 2
√

2 (1− q vol ∆2(ta) + εq+1,r)

)
,

the instability coefficient of f being taken as a point of P(Γ(P,OP(r))) and with
respect to the invertible sheaf O(1).

Proof of Proposition 6.2. — Let δ be a positive real number. Analogously to the
proof of Lemma 5.11 one may find a positive integer α0 such that for every integer
α ≥ α0:

(6.1.2)
kq,αr(ta)

α2r1r2
> (1− q vol ∆2(ta))− δ.

Let f1, . . . , fkq,αr(ta) be a basis of Kq,αr(a, ta) such that their components of minimal
weight (with respect to λ) f1,min, . . . , fkq,αr(ta),min are linearly independent (such a
basis exists according to Proposition 5.3). Then Proposition 5.3 (2) entails

µ(λ, [Kq,αr(a, ta)]) =

kq,αr(ta)∑
`=1

µ(λ, [f`])

≥ αkq,αr(ta)〈mλ, r〉
(

1− 2
√

2 (1− q vol ∆2(ta) + εq+1,r)

)
,

where the second inequality follows from Proposition 6.3. Conclude using (6.1.2).

The result proved in what follows is actually the following version of Dyson’s
Lemma:

Theorem 6.4 (cf. Corollary 6.15). — Let f ∈ Γ(P,O(r)) be a non-zero global
section and let b = (b1, b2) be a couple of non-negative real numbers.

Let y be a Q̄-point of P1. Let q ≥ 1 be an integer and for every σ = 1, . . . , q let
z(σ) be a Q̄-point of P. For every i = 1, 2 suppose:
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(1) pri(z
(σ)) 6= pri(z

(τ)) for every σ 6= τ ;
(2) pri(z

(σ)) 6= pri(y) for every σ = 1, . . . , q.
For every σ = 1, . . . , q suppose tσ ≤ 1 and

(6.1.3) 1−
q∑

σ=1

vol ∆2(ind1/r(f, z
(σ))) + εq+1,r <

1

2
.

Then, indb(f, y) < max {biri} and

vol ∆2

(
indb(f, y)

max {biri}

)
≤ 1−

q∑
σ=1

vol ∆2(ind1/r(f, z
(σ))) + εq+1,r.

A similar version of Dyson’s Lemma with two different weights is indicated to
hold in [EV84, page 489]. The hypothesis (6.1.3) makes quantitative the assertion of
Esnault-Viehweg that indb(f, y) should be “very small” (see loc.cit.).

In order to prove Proposition 6.3 let us link the instability coefficient and index
through the following easy fact (whose proof is left to the reader):

Proposition 6.5. — Let λ : Gm → SL2
2,K be a one parameter subgroup and fix an

adapted basis for λ. Then, for every non-zero element f ∈ Γ(P,OP(r)),

µ(λ, [f ]) = 〈mλ, r〉 − 2 indmλ(f, yλ),

where yλ is the instability point of λ (with respect to the chosen adapted bases).

Proof of Proposition 6.3. — It suffices to apply Theorem 6.4 to the points z(σ) = a(σ)

for σ : K ′ → Q̄, the weight b = mλ and the point y = yλ (the instability point of λ):
since ta ≤ 1 (otherwise (6.1.1) is not satisfied), vol ∆2(ta) = t2a/2.

The rest of this section is therefore devoted to prove Theorem 6.4.
In view of Proposition 6.5, one would like to use this interpretation of the instability

measure to apply the usual Dyson’s Lemma — i.e. Theorem 2.2 when n = 2 (9) —
in order to derive the semi-stability of the point. Unfortunately, the usual Dyson’s
Lemma can be applied when the weight of the index is the same at all points: here
instead one has to apply it to weight 1/r at the points z(σ) for σ = 1, . . . , q and the
weight mλ at the point yλ.

The key point in the proof of Theorem 6.4 is that in general the index of a poly-
nomial taken with respect to two different weights are not comparable. Anyway this
is the case when the polynomial is a product of polynomials in separate variables:

Proposition 6.6. — Let b = (b1, b2) and c = (c1, c2) be couples of non-negative real
numbers. Suppose that is made of positive real numbers.

For all i = 1, 2 let fi ∈ Γ(P1,OP1(ri)) be a non-zero section. Then, for all Q̄-point
z of P1,

indb(f1 ⊗ f2, z) ≤ max{bi/ci} indc(f1 ⊗ f2, z).

9. This is case originally treated by Dyson [Dys47], whose proof has then been revisited by
several authors (see [Bom82], [Vio85] and [Voj89]).
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In a nutshell, in the proof of Theorem 6.4 the Wronskian permits to reduce to the
latter case.

6.2. Homogeneous Wronskian. — In this paragraph we introduce the wronskian
as an invariant under of SL2,K . We follow the presentation given in [AC07, 2.8]. Let
r, ρ be non-negative integers such that ρ ≤ r + 1.

Definition 6.7. — Let f1, . . . , fρ ∈ SymrK2∨ and let T0, T1 be the canonical basis
of K2∨. The homogeneous Wronskian of the polynomials f1, . . . , fρ is:

Wr(f1, . . . , fρ) :=

(
(r − ρ+ 1)!

r!

)ρ
· det

(
∂ρ−1f`

∂T ρ−j0 ∂T j−1
1

)
j,`=1,...,ρ

.

It is an element of Symρ(r−ρ+1)K2∨, that is, a homogeneous polynomial of degree
ρ(r−ρ+ 1) in the variables T0, T1 (each entry is a homogeneous polynomial of degree
r − (ρ− 1)).

The reader may consult [AC07, 2.9] for the relation with the classical notion of
Wronskian. It follows from Wronski’s criterion of linear independence [BG06, Propo-
sition 6.3.10] that f1, . . . , fρ are linearly independent if and only if Wr(f1, . . . , fρ) does
not vanish.

The Wronskian is an alternating multi-linear map on SymrK2∨ and therefore it
can be extended to a linear map

Wr:

ρ∧
SymrK2∨ −→ Symρ(r−ρ+1)K2∨.

Proposition 6.8 ([AC07, 2.3, 2.5 and 2.8]). — The following properties are satis-
fied:

(1) If T ′0, T ′1 is a basis and Wr′ :
∧ρ

SymrK2∨ → Symρ(r−ρ+1)K2∨ is the Wron-
skian map taken with respect to the latter basis, then as linear maps,

Wr′ = det(T ′0, T
′
1)ρ(r−ρ+1) Wr,

where (T ′0, T
′
1) is the linear map sending Ti on T ′i for i = 0, 1.

(2) The linear map Wr is equivariant under the action of SL2,K on the vector
spaces

∧ρ
SymrK2∨ and Symρ(r−ρ+1)K2∨.

6.3. Tensorial rank. — Let V1, V2 be finite-dimensional K-vector spaces.

Definition 6.9. — The tensorial rank of a non-zero vector v ∈ V1 ⊗K V2 is the
minimal integer ρ ≥ 0 such that v can be written in the form v11⊗v21 + · · ·+v1ρ⊗v2ρ

with vi` ∈ Vi for i = 1, 2 and ` = 1, . . . , ρ. Denote it by rk(v).

The tensorial rank is invariant under homotheties and under GL(V1) × GL(V2)
(acting component-wise). The tensorial rank of v coincides with the rank of the
linear map V ∨1 → V2 associated to v through the canonical isomorphism

V1 ⊗K V2 ' HomK(V ∨1 , V2)

(analogously it is the rank of the dual map V ∨2 → V1).



6. SEMI-STABILITY ON P1 ×P1 AND THE WRONSKIAN DETERMINANT 67

For i = 1, 2 let vi1, . . . , vi rk(v) ∈ Vi be such that v =
∑rk(v)
`=1 v1` ⊗ v2`. Then, for

i = 1, 2, vi1, . . . , vi rk(v) are linearly independent.

6.4. Splitting polynomials through the Wronskian. — Let r = (r1, r2) be a
couple of positive integers and for i = 1, 2 set Vi := Symri K2∨. With this notation,

Γ(P,OP(r)) ' V1 ⊗ V2.

For every non-zero f ∈ Γ(P,OP(r)) one can consider its tensorial rank rk(f) with
respect to this decomposition. With the notations of [Bom82, page 266],

s2(f) = rk(f) + 1.

For every i = 1, 2 fix a basis Ti0, Ti1 of K2∨.

Definition 6.10. — Let f ∈ Γ(P,OP(r)) be a non-zero section and let ρ = rk(f)
be its tensorial rank. For every couple of positive integers ` = (`1, `2) such that `i ≤ ρ
for i = 1, 2, set:

∂
2(ρ−1)
` f :=

∂2(ρ−1)f

∂T ρ−`110 ∂T `1−1
11 ∂T ρ−`220 ∂T `2−1

21

,

which is a global section of OP(r1−(ρ−1), r2−(ρ−1)). The homogeneous Wronskian
Wr(f) is the determinant

Wr(f) :=

[
2∏
i=1

(
(ri − ρ+ 1)!

ri!

)ρ]
· det

(
∂

2(ρ−1)
` f

)
`1,`2=1,...,ρ

,

seen as a global section of OP(r1 − (ρ− 1), r2 − (ρ− 1))⊗ρ.

Let f ∈ Γ(P,OP(r)) be a non-zero section and let ρ = rk(f) be its tensorial rank.
Write f =

∑ρ
`=1 f1` ⊗ f2` with fi` ∈ Γ(P1,O(ri)) for all i = 1, 2 and all ` = 1, . . . , ρ.

For i = 1, 2 consider the homogeneous Wronskian

Wri(f) := Wr(fi1, . . . , fiρ),

computed with respect to the basis Ti0, Ti1. An elementary computation shows:

Proposition 6.11. — With the notations introduced above,

Wr(f) = Wr1(f)⊗Wr2(f).

6.5. Index of the Wronskian. — In this section the index of Wronskian is linked
with the one of the original polynomial.

Proposition 6.12. — Let f ∈ Γ(P,OP(r)) be a non-zero section and let b = (b1, b2)
be a couple of non-negative real numbers. Then, for every Q̄-point z of P,

indb(Wr(f), z) ≥ max {biri}
(

(rk(f)− 1)

(
2− rk(f)− 1

r2

)
vol ∆2(t)− rk(f)ε2,r

)
,

where t := min{1, infb(f, z)/max{biri}}.
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Proof. — Since the Wronskian does not depend (up to a non-zero scalar factor) on
the chosen basis (Proposition 6.8), then for i = 1, 2 one can chose a basis Ti0, Ti1 of
K2∨ such that Ti0(pri(z)) 6= 0 and Ti1(pri(z)) = 0.

Let t := indb(f, z) be the index of f at z. Let ρ = rk(f) be the tensorial rank of
f and, up to permuting the coordinates suppose r1 ≥ r2. Since deriving with respect
to T10 and T20 does not affect the index on z, for every `1, `2 = 1, . . . , ρ,

indb

(
∂

2(ρ−1)
(`1,`2) f, z

)
≥ max {0, t− 〈b, (`1 − 1, `2 − 1)〉}

≥ max

{
0, t− `2 − 1

r2
max {biri}

}
− ε2,r max {biri}

where,

〈b, (`1 − 1, `2 − 1)〉 ≤ max {biri} 〈1/r, (`1 − 1, `2 − 1)〉 ≤ max {biri}
(
ε2,r +

`2 − 1

r2

)
,

(recall 1/r = (1/r1, 1/r2) and use `1 − 1 ≤ ρ − 1 ≤ r2). Let Sρ be the permutation
group on {1, . . . , ρ}. Since the index is a valuation,

indb(Wr(f), z) ≥ min
π∈Sρ

{
ρ∑
`=1

indb

(
∂

2(ρ−1)
(π(`),`)f, z

)}

≥ min
π∈Sρ

{
ρ∑
`=1

max

{
0, t− `− 1

r2
max {biri}

}}
− ρε2,r max {biri} .

Writing t′ := t/max {biri} and u = min{(ρ− 1)/r2, t
′},

ρ∑
`=1

max

{
0, t− `− 1

r2
max {biri}

}
= max{biri}

(
r2u∑
`=0

(
t′ − `

r2

))
.

Finally,
r2u∑
`=0

(
t′ − `

r2

)
= (r2u+ 1)

(
t′ − u

2

)
≥ r2u

(
t′ − u

2

)
.

Conclude by:

Lemma 6.13. — With the notations introduced above, let t̃ := min{t′, 1}. Then,

u
(
t′ − u

2

)
≥ ρ− 1

r2

(
2− ρ− 1

r2

)
vol ∆2(t̃).

Proof of Lemma 6.13. — Two cases have to be considered:
(1) Suppose u = t′. Then, u(t′ − u/2) = t′2/2 and

ρ− 1

r2

(
2− ρ− 1

r2

)
≤ 1,

because ρ− 1 ≤ r2.
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(2) Suppose u = (ρ− 1)/r2. Then,

u
(
t′ − u

2

)
≥ u

(
t̃− u

2

)
.

The function
ξ
(
t̃− ξ/2

)
ξ (2− ξ)

=
t̃− ξ/2
2− ξ

,

is decreasing for ξ ∈ [0, 1] because t̃ ≤ 1. By assumption, u ≤ t̃, therefore
applying this consideration with ξ = u = (ρ− 1)/r2,

u
(
t̃− u/2

)
u(2− u)

≥ t̃2/2

t̃(2− t̃)
≥ t̃,

where in the last inequality one uses again the inequality t̃(2 − t̃) ≤ 1. This
terminates the proof of the lemma.

This concludes the proof of the Proposition.

Proposition 6.14. — Let f ∈ Γ(P,OP(r)) be non-zero and b = (b1, b2) a couple of
non-negative real numbers.

Let q ≥ 1 be an integer and for every σ = 0, . . . , q let z(σ) be a Q̄-point of P. For
every i = 1, 2 suppose pri(z

(σ)) 6= pri(z
(τ)) for every σ 6= τ . Then,

q∑
σ=0

vol ∆2(t(σ)) ≤ 1 + εq+1,r,

where

t(σ) =

{
min

{
1, ind1/r(f, z

(σ))
}

if σ = 1, . . . , q

min
{

1, indb(f, z
(0))/max {biri}

}
if σ = 0.

Proof. — Suppose rk(f) > 1. The proof is done bounding from above and from below
the index indb(Wr(f), z(0)).

Upper bound. Borrow the notations from Proposition 6.6. Since

Wr(f) = Wr1(f)⊗Wr2(f),

Proposition 6.6 applied to the weight c = 1/r gives

indb(Wr(f), z(0)) ≤ max{biri} ind1/r(Wr(f), z(0)).

It remains to estimate ind1/r(Wr(f), z(0)). Set ρ := rk(f). Using the definition of the
index, the fact that Wri(f) is a section of O(ρ(ri − ρ+ 1)) on P1 and the hypothesis
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that the projection of the points z(σ) are pairwise distinct:

ind1/r(Wr(f), z(0)) =

2∑
i=1

1

ri
mult(Wri(f),pri(z

(0)))

≤
2∑
i=1

1

ri

(
ρ(ri − ρ+ 1)−

q∑
σ=1

mult(Wri(f),pri(z
(σ)))

)

= ρ

(
2−

2∑
i=1

ρ− 1

ri

)
−

q∑
σ=1

ind1/r(Wr(f), z(σ)),

For σ = 1, . . . , q, Proposition 6.12 (applied to z = z(σ) and b = 1/r) entails:

ind1/r(Wr(f), z(σ)) ≥ (ρ− 1)

(
2− ρ− 1

r2

)
vol ∆2(t(σ)),

where t(σ) = min
{

1, ind1/r(f, z
(σ))
}
. Summing up, the index indb(Wr(f), z(0)) is

bounded above by

max {biri}

[
ρ

(
2−

2∑
i=1

ρ− 1

ri
+ εq+1,r

)
− (ρ− 1)

(
2− ρ− 1

r2

)( q∑
σ=1

vol ∆2(t(σ))

)]
,

where qε2,r = εq+1,r.

Lower bound. Proposition 6.12 applied to the point z = z(0) and to the weight b
gives:

indb(Wr(f), y) ≥ max {biri} (ρ− 1)

(
2− ρ− 1

r2

)
vol ∆2(t(0)),

where t(0) := min
{

1, infb(f, z
(0))/max{biri}

}
.

Combining the lower bound and the upper bound of indb(f, z
(0)):

(ρ− 1)

(
2− ρ− 1

r2

)( q∑
σ=0

vol ∆2(t(σ))

)
≤ ρ

(
2− ρ− 1

r2

)
+ ρεq+1,r,

(in the right-hand side −(ρ−1)/r1 has been neglected). Dividing by (ρ−1)
(

2− ρ−1
r2

)
and using 2− (ρ− 1)/r2 ≥ 1:

q∑
σ=0

vol ∆2(t(σ)) ≤ ρ

ρ− 1
+

ρ

ρ− 1

(
2 +

ρ− 1

r2

)−1

εq+1,r

≤ 1 + εq+1,r +
1

ρ− 1
(1 + εq+1,r) .

Taking powers of f and multiplying by suitable linear polynomials, one can show that
ρ can be taken arbitrarily large (even though it could be small compared to r2) — see
[Bom82, Lemma 2 and II.4] for more details. This concludes the proof in the case
rk(f) > 1.

The same argument shows that one can suppose rk(f) > 1.
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Corollary 6.15. — Under the assumptions of Proposition 6.14, suppose

ind1/r(f, z
(σ)) ≤ 1

for σ = 1, . . . , q and

(6.5.1) 1−
q∑

σ=1

vol ∆2(ind1/r(f, z
(σ))) + εq+1,r <

1

2
.

Then, indb(f, z
(0)) < max {biri} and

vol ∆2

(
indb(f, z

(0))

max {biri}

)
≤ 1−

q∑
σ=1

vol ∆2(ind1/r(f, z
(σ))) + εq+1,r.

Proof. — If indb(f, y) ≥ max {biri}, Proposition 6.14 entails

1

2
≤ 1−

q∑
σ=1

vol ∆2(ind1/r(f, z
(σ))) + εq+1,r,

which contradicts (6.5.1).

6.6. Wronskian as a covariant. — Let us conclude with a final remark. Fix a
positive integer ρ ≥ 1. The Wronskian furnishes a “covariant” for the action of SL2

2,K ,
i.e. a rational SL2

2,K-equivariant map

Wr : P(Γ(P,OP(r))) 99K P(Symρ(r1−ρ+1)K2∨ ⊗K Symρ(r2−ρ+1)K2∨),

which is defined on the open subset Uρ ⊂ P(Γ(P,OP(r))) of lines generated by non-
zero sections f ∈ Γ(P,OP(r)) of tensorial rank≥ ρ. The Wronskian map Wr moreover
induces a SL2

2,K-equivariant isomorphism of line bundles Wr∗O(1) ' O(ρ)|Uρ . In the
early stages of the present work, this constituted for us one of the main evidences
that the proof of Roth’s theorem was connected with Geometric Invariant Theory.

To make this intuition more precise, for such a morphism one has

µO(1)(λ, [f ]) ≥ 1

ρ
µO(1)(λ, [Wr(f)]),

for every global section f of OP(r) of tensorial rank ≥ ρ and every one-parameter
subgroup λ : Gm → SL2

2,K . If yλ is the instability point associated to the choice of
admissible bases for λ, Proposition 6.5 leads to the lower bound

indmλ(Wr(f), yλ) ≥ ρ indmλ(f, yλ)− ρ(ρ− 1)

2
(mλ,1 +mλ,2).

As explained before, we want to apply Theorem 6.4 to the point y = yλ and the
weight b = mλ. Unfortunately, this lower bound is not sharp enough to deduce the
semi-stability of the point Pr (for µ2(tx) small enough). Instead we had to use the
lower bound given by Proposition 6.12 in the proof of Proposition 6.14.





CHAPTER 3

KEMPF-NESS THEORY IN NON-ARCHIMEDEAN
GEOMETRY

In this chapter we investigate an analogue in non-archimedean geometry of a clas-
sical result of Kempf and Ness [KN79] concerning the behaviour of hermitian norms
on a (finite dimensional) representation of a complex reductive group. Even though
the aim is to study the problem in the non-archimedean framework, the techniques
that we employ are well-suited to work both in the complex and non-archimedean case
at the same time. Therefore we decided to treat the two cases on the same footing,
hoping that this will ease the task of the reader.

In Section 1 we recall the original result of Kempf and Ness and we show how one
has to modify the statements in order to port them in the context of non-archimedean
geometry. This sections serves as an introduction to the results of this chapter and
some of which will be necessary for the developments of Chapter 4.

In Section 2 we introduce the three objects that will play the main role in the
proof: analytic spaces (in the sense Berkovich in the non-archimedean case), maxi-
mal compact subgroups and plurisubharmonic functions. Complying with the choice
of developing the complex and the non-archimedean case at the same time, these
concepts are presented trying to stress the analogies between these two realms.

Concerning maximal compact subgroups and plurisubhamonic functions, the analo-
gies could have been pushed further. We deliberately opted to give naive definitions
which are enough for our purposes instead of being brought into far-reaching results on
these subjects (namely the theory of Bruhat-Tits buildings and Thuillier’s potential
theory on curves which are not rational).

Section 3 is the core of the chapter: we prove the main result concerning the
behaviour of invariant plurisubharmonic functions on the orbit of a point and its
closure (see Theorem 3.3). This leads to the understanding of the analytic topology
on the GIT quotient (which is new in the non-archimedean case, see Theorem 1.6).
The proof of the latter relies ultimately on the local compactness of the analytic
spaces use and, in the non-archimedean case, recurring to Berkovich spaces seems
unavoidable.

In the last section we translate the previous results into the continuity of the metric
on the GIT quotient. We also take profit of the occasion to prove the compatibility of
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the construction this metric with integral models, where the original result of Burnol
takes place. These latter results will be crucial for Chapter 4.

1. Statement of the main results

1.1. A result of Kempf and Ness. — Let G be a complex (connected) reductive
group and let V be a (finite dimesional) representation of G endowed with an hermi-
tian norm ‖ · ‖ : V → R+. Suppose that the hermitian norm ‖ · ‖ is invariant under
the action of a maximal compact subgroup U of G.

Let v be a vector in V . Kempf and Ness studied in their celebrated paper [KN79]
the properties of the function pv : G→ R+ defined by

pv(g) := ‖g · v‖2.
Among the results therein presented, the following are of particular interest for us:

Theorem 1.1. — With the notations introduced above:
(1) The function pv obtains its minimum value if and only if the orbit of v is

closed.
(2) Any critical point of pv is a point where pv obtains its minimum.
(3) If pv obtains its minimum value, then the set where pv obtains this value con-

sists of a single U - Gv coset (here Gv is the stabiliser of v in G).

1.2. Interpretation via the moment map. — As discovered by Guillemin-
Sternberg and Mumford, these results permit to link the Geometric Invariant Theory
of Kähler varieties with the concept of moment map in symplectic geometry.

In the present situation a moment map µ : P(V ) → (LieU)∨ for the action of G
on V is defined as follows. For every non-zero vector v ∈ V , consider the linear map
µ[v] : LieU→ R defined for every a ∈ LieU by (1)

µ[v](a) :=
1

i2π
· 〈ad(a, v), v〉

‖v‖2
.

Here 〈−,−〉 denotes the hermitian form associated to the norm ‖·‖, i denotes a square
root of −1 and ad : LieU× V → V denotes the adjoint action.

Say that v ∈ V is minimal (2) if pv(g) ≥ pv(e) for every g ∈ G and denote by
P(V )min the set of points having a non-zero representative which is minimal.

Proposition 1.2. — A non-zero vector v ∈ V is minimal if and only if the linear
map µ[v] is identically zero.

(For a proof the reader can consult the proof of [MFK94, Theorem 8.3]). With
this notation statement (2) in Theorem 1.1 is translated into the equality:

µ−1(0) = P(V )min.

1. Other conventions on the scalar factor of µ can be found in the literature.
2. The name minimal refers to the fact that the minimum of the norm on the orbit G·v is attained

on v.
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Moreover consider the open subset P(V )ss of semi-stable points of P(V ) with respect
to G and O(1). Let Y be categorial quotient of P(V )ss by G. Then the map

µ−1(0)/U −→ Y (C)

is a homeomorphism [MFK94, Theorem 8.3]. When the action of U is free, the
quotient µ−1(0)/U is called the Marsden-Weinstein reduction or symplectic quotient.
The interested reader can refer to the original papers of Guillemin-Sternberg [GS82a,
GS82b, GS84], or the more introductory accounts of Kirwan [MFK94, Chapter 8]
and Woodward [Woo10].

1.3. Present setting. — In this text we study what happens when one replaces:
– the field C by a field k complete with respect to an absolute value;
– the vector space V by a k-affine schemeX endowed with an action of a reductive
k-group G;

– the norm ‖·‖ by a plurisubharmonic function u : Xan → [−∞,+∞[ (see Defini-
tion 2.29) invariant under a maximal compact subgroupU of G (see Definitions
2.20 and 2.21).

Azad-Loeb [AL93] studied the case when X is a complex smooth affine scheme (or
more generally a smooth Stein space) and u : X(C) → R is a U-invariant strongly
plurisubharmonic function which is twice differentiable. Statement (1) and (3) in
Theorem 1.1 are not longer valid in general when the function is not strongly plurisub-
harmonic:

Example 1.3. — Consider the action of the multiplicative group C× on C2 given
by

t · (x, y) = (tx, y).

The `∞ norm ‖(x, y)‖∞ = max{|x|, |y|} is plurisubharmonic and invariant under the
action of the maximal compact subgroup U(1). However the orbit of (1, 1) is given
by the points of the form (t, 1) with t ∈ C×, thus

‖(t, 1)‖∞ ≥ 1 = ‖(1, 1)‖∞
for every t ∈ C×. Therefore the point (1, 1) is “minimal” in its orbit but its orbit is
not closed. Moreover every point of the form (t, 1) with |t| ≤ 1 is “minimal” and they
do not belong to the same orbit under U(1).

In order to discuss what is a right analogue of the result of Kempf-Ness in this
new context, let us first go back to the classical algebraic framework of Geometric
Invariant Theory.

1.4. Algebraic setting. — Let k be a field. Let G be a reductive k-group acting
on an affine k-scheme X = SpecA of finite type. Denote by Y the spectrum of the
subalgebra of invariants AG and by π : X → Y the morphism induced by the inclusion
AG ⊂ A.

The fundamental theorem of Geometric Invariant Theory in the affine case can be
stated as follows (see [MFK94, Theorem 1.1 and Corollay 1.2] for characteristic 0,
[Hab75] on positive characteristic and [Ses77, Theorem 3] over more general bases).
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Theorem 1.4. — The k-scheme Y is of finite type and the morphism π satisfies the
following properties:

(1) π is surjective and G-invariant;
(2) let K be a field extension of k and πK : XK := X×kK → YK := Y ×kK be the

morphism obtained extending scalars to K; then for all points x, x′ ∈ X(K),

πK(x) = πK(x′) if and only if GK · x ∩GK · x′ 6= ∅,

the orbits being taken in XK .
(3) for every G-stable closed subset F ⊂ X its image π(F ) ⊂ Y is closed;
(4) the structural morphism π] : OY → π∗OX induces an isomorphism

π] : OY
∼−−→ (π∗OX)G.

In particular Y is the categorical quotient of X by G in the category of k-schemes,
i.e. every G-invariant morphism π′ : X → Y ′ factors in a unique way through Y . For
this reason, for the rest of this paper Y is called the quotient of X by G and π the
quotient morphism or the projection (on the quotient).

1.5. Analytic setting. — Suppose moreover that the field k is complete with
respect to an absolute value | · |. Keeping the notations introduced above denote by
Gan (resp. Xan, resp. Y an) the k-analytic space obtained by analytification of the
k-affine scheme G (resp. X, resp. Y ). Here, a real analytic space is the quotient of a
complex analytic space by an anti-holomorphic involution; non-archimedean analytic
spaces are taken in the sense of Berkovich. We summarised the needed material on
the construction of the analytification in Section 2.1: the reader can refer to that
section for the definitions.

The k-analytic group Gan acts on the k-analytic space Xan and the morphism of
k-analytic spaces π : Xan → Y an induced by the canonical projection (still denoted
π) is surjective and Gan-invariant.

Let σ : G×kX → X be the morphism of k-schemes defining the action of G on X.

Definition 1.5. — The orbit of a point x ∈ Xan is the subset of Xan defined by

Gan · x := σan(pr−1
1 (x)).

A subset F ⊂ Xan is said to be Gan-stable (resp. Gan-saturated) if for every point
x ∈ F , its orbit Gan · x (resp. the closure Gan · x of its orbit) is contained in F .

In the complex case these are just the usual notions. In any case, for two points
x, y ∈ Xan,

y ∈ Gan · x⇐⇒ x ∈ Gan · y,

(in the non-archimedean case the statement is not obvious because x and y may have
different complete residue field; see [Ber90, Proposition 5.1.1]).
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1.6. Analytic topology of the GIT quotient. — Our first main result is the
analogue of points (1)-(3) in Theorem 1.4 in the setting of k-analytic spaces:

Theorem 1.6 (cf. Propositions 3.1 and 3.9). — With the notation introduced
above, the morphism πan : Xan → Y an satisfies the following properties:

(1) πan is surjective and Gan-invariant;
(2) for every x, x′ ∈ Xan:

πan(x) = πan(x′) if and only if Gan · x ∩Gan · x′ 6= ∅;
(3) if F is a Gan-stable closed subset of Xan, then its projection πan(F ) is a closed

subset of Y an.

In the complex case statements (1) and (2) are deduced from their “algebraic”
version (Theorem 1.4 (1)-(2)). In order show (2), the crucial observation is that the
orbit G ·x of a point x ∈ X(C) is a constructible subset of X: its closure with respect
to the complex topology coincide with its Zariski closure. This theorem is already
known as a consequence of the results of Kempf and Ness. Another proof has been
given also by Neeman [Nee85].

Theorem 1.6 permits to derive formally the following consequences, whose proof is
left to the reader:

Corollary 1.7. — With the notation introduced above, the following properties are
satisfied:

(1) for every point x ∈ Xan there exists a unique closed orbit contained in Gan · x;
(2) for every Gan-saturated subsets F, F ′ ⊂ Xan:

πan(F ) ∩ πan(F ′) 6= ∅ if and only if F ∩ F ′ 6= ∅;
(3) a subset V ⊂ Y an is open if and only (πan)−1(V ) ⊂ Xan is open;
(4) let U be an open subset of Xan; then U is Gan-saturated if and only if

U = (πan)−1(πan(U));

if U satisfies one of this two equivalent properties, then its projection πan(U)
is an open subset of Y an.

In particular the topological space Y an is separated and is the categorical quotient
in the category of T1 topological spaces (3) of Xan by the equivalence relation:

x RG x′ ⇐⇒ Gan · x = Gan · x′.
In the complex case, the isomorphism π] : OY → (π∗OX)G is known to hold also

at the level of holomorphic functions, that is, the homomorphism of sheaves,

π] : Oan
Y −→ (π∗Oan

X )G
an
,

is an isomorphism. This can be shown either by general techniques of Stein spaces (see
for instance [Sch00, Chapter 5, Proposition 4 (3)]) or as an application of Luna’s Slice
Theorem (in both cases, one averages functions on a maximal compact subgroup).

3. A topological space S is said to be T1 if the points of S are closed.



78 CHAPTER 3. KEMPF-NESS THEORY IN NON-ARCHIMEDEAN GEOMETRY

Now, neither of the two approaches is available in non-archimedean geometry —
the reasons being that Stein spaces are far to be understood, étale morphisms are
not local isomorphisms and one cannot interpret (in characteristic 0) the Reynolds
operator as an average on maximal compact subgroup.

Question. — In the non-archimedean case, is the homomorphism of sheaves,

π] : Oan
Y −→ (π∗Oan

X )G
an
,

an isomorphism?

1.7. A variant of the result of Kempf-Ness. —

Definition 1.8. — A function u : Xan → [−∞,+∞[ is said to be invariant under a
maximal compact subgroup of G if there exists a maximal compact subgroupU ⊂ Gan

with the following property: for every point t ∈ Gan ×k Xan such that pr1(t) ∈ U,

u(σan(t)) = u(pr2(t)),

where σ : G×k X → X is the morphism defining the action of G on X.

Theorem 1.9 (cf. Theorem 3.3). — Let u : Xan → [−∞,+∞[ be a plurisubhar-
monic function which is invariant under the action of a maximal compact subgroup
of G. For every point x ∈ Xan,

inf
πan(x′)=πan(x)

u(x′) = inf
x′∈Gan·x

u(x′).

Definition 1.10. — Let u : Xan → [−∞,+∞[ be a function. A point x ∈ Xan is
said to be:

– u-minimal on π-fibre if u(x) ≤ u(x′) for all x′ ∈ Xan such that π(x) = π(x′);
– u-minimal on G-orbit if u(x) ≤ u(x′) for all x′ ∈ Gan · x.

The set of u-minimal points on π-fibres (resp. u-minimal points on G-fibres) is
denoted by Xmin

π (u) (resp. Xmin
G (u)).

Corollary 1.11 (cf. Corollary 3.4). — Let u : Xan → [−∞,+∞[ be a plurisub-
harmonic function which is invariant under the action of a maximal compact subgroup
of G. Then,

(1) a point x is u-minimal on π-fibre if and only if it is u-minimal on G-orbit;
(2) Xmin

π (u) = Xmin
G (u);

(3) if u is moreover continuous, the set of u-minimal points on π-fibres Xmin
π (u)

is closed.

In order to understand better the relation with the result of Kempf and Ness remark
the following consequence of Theorem 1.9:

Corollary 1.12. — With the notation introduced above, let u be topologically proper.
Let x ∈ Xan be a u-minimal point on its G-orbit (thus on its π-fibre). Then there
exists a point x0 ∈ Gan · x such that its orbit is closed and u(x0) = u(x).

Proof. — Indeed let x′ ∈ Gan · x be a point whose orbit is closed. It suffices to take a
minimal point x0 in the orbit of x′ (this exists because u is topologically proper).
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The techniques employed to prove Theorem 1.9 permit to analyse the positivity
conditions that a U-invariant function has to satisfy in order to obtain a statement
generalizing the one of Kempf and Ness. This aspect is discussed in Section 3.5.

1.8. Metric on GIT quotients. — Let X be a projective k-scheme acted upon
by a reductive group G. Let L be a G-linearized ample invertible sheaf. Suppose
that L is endowed with an extended metric ‖ · ‖L: this is the data, for every analytic
open subset U ⊂ Xan and every section s ∈ Γ(U,Lan), of a function ‖s‖L,U : U → R+

satisfying the following properties for all x ∈ U :
– ‖s‖L,U (x) = 0 if and only if s(x) = 0;
– ‖λs‖L,U (x) = |λ|‖s‖L,U (x) for all λ ∈ k;
– for an open subset V ⊂ U , ‖s‖L,V = ‖s‖L,U |V .

Note that in the complex case this notion coincide with the usual notion of metric on
the line bundle L.

Let Xss be the open subset of semi-stable points of X and the let Y be the cate-
gorical quotient of Xss by G. Let π : Xss → Y be the quotient map. For every D ≥ 1
divisible enough there exist an ample invertible sheaf MD on Y and an isomorphism
of invertible sheaves,

ϕD : π∗MD −→ L⊗D|Xss ,

compatible with the action of G (see [MFK94, Theorem 1.10]). Define an extended
metric on MD as follows: for a point y ∈ Y an and a section t of MD defined on a
open neighbourhood of y, set

‖t‖MD
(y) := sup

π(x)=y

‖π∗t‖L⊗D (x).

One checks that this is actually a metric, i.e. the right-hand side is not +∞ (see
Proposition 4.5).

Theorem 1.13 ([Zha96a, Theorem 4.10], cf. Theorem 4.6 in Chapter 3)
Make the following assumption:

– the metric ‖ · ‖L is invariant under the action of a maximal compact subgroup
of G;

– for every analytic open subset U ⊂ Xan and every section s ∈ Γ(U,Lan) that
does not vanish on U , the function − log ‖s‖L : U → R is plurisubharmonic.

Then, the metric ‖ · ‖MD
is continuous.

Remark 1.14. — In the complex case, if the metric ‖ · ‖L,σ is the restriction of a
Fubini-Study metric this result follows from the results of Kempf-Ness. Zhang shows
that the general case can be led back to the case of a Fubini-Study metric thanks to
an approximation result due to Tian and to an argument of extension of sections of
small size (see [Zha94, Theorem 2.2] and [Bos04, Appendix A]). The latter argument
permits to show that the Kähler form of the metric ‖ ·‖MD,σ is semi-positive [Zha95,
Theorem 2.2].
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Remark 1.15. — In the non-archimedean case, the main example of a metric with
such properties is given by metrics coming from integral models. More precisely, let X
be a projective k◦-scheme endowed with an action of a reductive k◦-group G. Suppose
that X comes equipped with a G-linearized ample invertible sheaf L. Let X, G and
L be respectively the generic fibre of X , G and L.

The continuous and bounded metric associated to the integral model L extends to
an extended metric ‖ · ‖L (see paragraph 4.1.3). Then, the extended metric ‖ · ‖L is
invariant under the action of the maximal compact subgroup of G associated to G (see
Definition 2.21) and, since L is ample, the function − log ‖s‖L is plurisubharmonic
for every analytic open subset U ⊂ Xan and every invertible section s ∈ Γ(U,Lan)
(see Corollary 4.4).

Theorem 1.16 (cf. Theorem 4.6). — Under the assumptions of Theorem 1.13
suppose that k is non-trivially valued and algebraically closed. Let x ∈ Xss(k) be
a semi-stable k-point of X and t ∈ π(x)∗MD be a non-zero section. Then,

sup
π(x′)=π(x)

‖π∗t‖L⊗D (x′) = sup
g∈G(k)

‖π∗t‖L⊗D (g · x),

(where the supremum on the left-hand side is ranging on k-points x′ in the fibre of
π(x)).

Suppose that k is either a finite extension of Qp or of the form F((t)) for a field F.
With the notations of Remark 1.15 let X ss be the open subset of semi-stable points
of X and Y the categorical quotient of X ss. For every D ≥ 1 divisible enough there
exist an ample invertible sheaf MD on Y and an isomorphism of invertible sheaves
on X ss,

ϕD : π∗MD
∼−→ L⊗D|X ss .

Let ‖ · ‖MD
be the continuous and bounded metric associated toMD.

Theorem 1.17 (cf. Theorem 4.11). — Let k be either a finite extension of Qp or
of the form F((t)) for a field F and let K be the completion of an algebraic closure of
k. Let y be a K-point of Y and let t ∈ y∗MD be a section. Then,

‖t‖MD
(y) = sup

π(x)=y

‖π∗t‖L⊗D (x),

where the supremum on the right-hand side is ranging on K-points x of X in the fibre
of y.

2. Preliminaries to the local part

Let k be a field complete with respect to an absolute value | · |k.

2.1. Analytic spaces. —
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2.1.1. Overview. — Our framework will be that of analytic spaces over k. There are
three cases: (4)

(1) The complex case: a C-analytic space will be a complex analytic space in the
usual sense.

(2) The real case: an R-analytic space will be a R-locally ringed space isomorphic
to a quotient X/ι where X is a complex analytic space and ι : X → X is an
anti-holomorphic involution. (5)

(3) The non-archimedean case: if the field k is complete with respect to a non-
archimedean absolute value (possibly trivial) k-analytic spaces in the sense of
Berkovich are considered. References for the latter theory are the foundational
papers of Berkovich [Ber90, Ber93]; a self-contained introduction is given in
[RTW10, §1.2], while a reference linking other approaches to non archimedean
analytic geometric to Berkovich’s one may be [Con08].

We are interested in analytic spaces obtained from algebraic k-schemes. Instead
of giving the general definitions, we present a construction of the analytification of
a finite type k-scheme X following Berkovich [Ber90, §1.5, §3.4 and §3.5], Poineau
[Poi13a], Nicaise [Nic14, §2], which works for all three cases.

2.1.2. Underlying topological space. — Let X be a k-scheme of finite type.

Definition 2.1. — The topological space Xan underlying the analytification of X
is the set couples (x, | · |) made of a point x ∈ X (not necessarily closed) and of an
absolute value | · | : κ(x)→ R+ such that its restriction to k coincides with the original
absolute on k (here κ(x) denotes the residue field at x).

The set |Xan| is endowed with the coarsest topology such that, for every open
subset U ⊂ X,

(1) the subset |Uan| = {(x, | · |) ∈ |Xan| : x ∈ U} is open in |Xan|;
(2) for every function f ∈ Γ(U,OX), the map |f | : |Uan| → R+ defined by

|f | : (x, | · |) 7→ |f(x)|,

is continuous.
This topology is called the analytic topology of X.

Not to burden notation denote a point (x, | · |) of |Xan| simply by x.

4. The fields R and C are always assumed to be endowed with the usual archimedean absolute
value.

5. Namely the quotient X/ι is the R-locally ringed space (|X/ι|,OX/ι) defined as follows:
– the topological space |X/ι| is the quotient X/ι endowed with the quotient topology;
– if π : X → |X/ι| denotes the canonical projection, for every open subset U ⊂ |X/ι| the

sections of the structural sheaf OX/ι are defined by

Γ(U,OX/ι) = Γ(π−1(U),OX)ι = {f ∈ Γ(U,OX) : ι](f) = f},

where ι] : OX → ι∗OX is the anti-holomorphic homomorphism of sheaves of R-algebras
associated to the involution ι.
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Theorem 2.2. — If X is non-empty, the topological space |Xan| is non-empty, lo-
cally separated and locally compact. Moreover,

(1) it is Hausdorff if and only if X is separated over k;
(2) it is compact if and only if X is proper over k.

Proof. — The proof of the local compactness can be found in [Ber90, §1.5]. (1) and
(2) are respectively statements (i) and (ii) in [Ber90, Theorems 3.4.8 and 3.5.3].

Definition 2.3. — Let (x, | · |) be point of Xan. The complete residue field κ̂(x) at
x is the completion of the residue field κ(x) with respect to the absolute value | · |.

This notation differs from the one that usually occurs in the literature, where the
complete residue field is denoted by H(x).

The topological space underlying the analytification of a scheme is functorial on
the scheme: that is, if f : X → Y is a morphism between finite type k-schemes, then
f induces a continuous map |fan| : |Xan| → |Y an|.

Forgetting the absolute value gives rise to a continuous map αX : |Xan| → X, where
X is the topological space underlying the scheme X.

Remark 2.4. — The pre-image by αX of a closed point of x is a singleton: since
κ(x) is a finite extension, there is a unique absolute value on κ(x) extending | · |k.
Distinguish three cases:

(1) In the complex case, a theorem of Gel’fand-Mazur affirms that a complete
field containing C (isometrically) coincides with C. The map αX induces a
homeomorphism αX : |Xan| → X(C) whereX(C) is endowed with the complex
topology.

(2) In the real case, the map αX gives a homeomorphism

αX : |Xan| −→ X(C)/Gal(C/R).

(3) In the non-archimedean case, this is the topological space underlying the ana-
lytification of X in the sense of Berkovich. In this case the map αX is surjec-
tive. (6)

Proposition 2.5. — If k be an algebraically closed field and the absolute value on k
non-trivial, then the set of k-points X(k) is dense in Xan.

An important feature for us will be the behaviour of the closure with respect to
the Zariski and analytic topology:

Proposition 2.6. — Let X be a k-scheme of finite type. For every constructible set
Z ⊂ X,

α−1
X (Z) = α−1

X (Z),

where on the left-hand side the closure is taken with respect the analytic topology and
on the right-hand side to the Zariski one.

6. For instance, when X = A1
k, the Gauss norm on polynomials ‖ · ‖ : k[t] → R+, defined by∑

ait
i 7→ max |ai|, is multiplicative and one can extend it to k(t). If η denotes the generic point of

the affine line, the couple (η, ‖ · ‖) is a point of |A1,an
k |.
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Proof. — See [Gro71, Exp. XII, Corollaire 2.3] for the complex case and [Ber90,
Proposition 3.4.4] for the non-archidemedean one. The real case is deduced from the
complex case thanks to the homeomorphism Xan ' X(C)/Gal(C/R).

2.1.3. Structural sheaf. — Let us introduce the concept of analytic function on Xan.
Begin with the case X = An

k for a non-negative integer n.

Definition 2.7. — Let U ⊂ |Xan| be an open subset. An analytic function over U
is a map f : U →

⊔
x∈U κ̂(x) such that for every x ∈ U :

(1) f(x) ∈ κ̂(x);
(2) for every ε > 0 there exists an open neighbourhood Uε of x in U and a rational

function gε ∈ k(t1, . . . , tn) without poles in Uε such that, for every y ∈ Uε, one
has |f(y)− gε(y)| < ε (here t1, . . . , tn are the coordinate functions on An

k ).

The k-algebra of analytic functions on U is denoted by Oan
X (U).

The correspondence U  Oan
X (U) gives rise to a sheaf of k-algebras on the topo-

logical space Xan. For every point x ∈ Xan the stalk at x is a local ring.

Definition 2.8. — The n-dimensional analytic affine space is the locally k-ringed
space

An,an
k := (|An,an

k |,Oan
An).

Remark 2.9. — In the complex case, the locally C-ringed space An,an
C is the topo-

logical space Cn equipped with the sheaf of holomorphic functions. In real case,
the locally R-ringed space An,an

R is the topological space Cn/Gal(C/R) equipped
with the sheaf of holomorphic functions f on Cn verifying f(z̄) = f(z). In the
non-archimedean case it is the analytical n-dimensional affine space in the sense of
Berkovich. See for instance [Ber90, §1.5] and [Poi13a].

Even though holomorphic functions will be used only on A1,an
k , let us sketch how

to define the structural sheaf on the analytification of a k-scheme X of finite type.

(1) If X is affine, fix a closed immersion j : X → An
k for a suitable n. Let I ⊂ OAn

be the ideal sheaf defining X and let Ian ⊂ Oan
An be the ideal sheaf generated

by I. Consider the sheaf of k-algebras on Xan,

Oan
X := jan−1(Oan

An/Ian).

One can show that the sheaf Oan
X does not depend on the choice of the closed

embedding j.
(2) For an arbitrary k-scheme X choose a covering X =

⋃N
i=1Xi by affine open

subsets. The sheaves Oan
Xi

on |Xan
i | then glue to a sheaf OXan on |Xan|. One

can show that Oan
X does not depend on the chosen covering.

Definition 2.10. — The locally k-ringed space Xan := (|Xan|,Oan
X ) is called the

analytification of X.
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To simplify the notation we do not distinguish Xan and its underlying topological
space |Xan|.

A morphism f : Y → X between k-schemes of finite type induces a morphism of
k-analytic spaces fan : Y an → Xan. If no confusion seems to arise write f instead of
fan.

2.1.4. Extension of scalars. —

Definition 2.11. — An analytic extension K of k is a field complete with respect
to an absolute value | · |K equipped with an isometric embedding k → K.

Let K be an analytic extension of k. Let X be a k-scheme of finite type and let
XK := X ×k K the K-scheme obtained extending scalars to K. Let Xan

K be the
K-analytic space obtained by analytification of the K-scheme XK .

Definition 2.12. — The morphism of base change XK → X gives rise to a mor-
phism of locally k-ringed space

prX,K/k : Xan
K −→ Xan,

called the extension of scalars map. If no confusion arises, we will omit to write the
dependence on the scheme X.

Proposition 2.13. — The map prX,K/k is surjective and topologically proper. Since
the topological spaces Xan and |Xan

K | are locally compact, the map prX,K/k is closed.

Proof. — In the archimedean case, when k = R and K = C, the map prX,C/R is just
the quotient map by the Galois action. In the non-archimedean case the reference is
[Ber93, §1.4].

The extension of scalars to K is functorial: for a morphism of k-schemes of finite
type f : Y → X denote by fanK : Y an

K → Xan
K the morphism of K-analytic spaces

induced by f .

Definition 2.14. — A K-point of X is a couple (x, εx) made of a point x ∈ Xan

and of an isometric embedding εx : κ̂(x)→ K.

Let x ∈ Xan be a point of Xan and let κ̂(x)→ K be an isometric embedding. The
point x may be viewed as a κ̂(x)-point of X. Let xK be the K-point of XK which
factors the composite map SpecK → Spec κ̂(x)→ X through the K-scheme XK .

Definition 2.15. — The couple (xK , | · |K) (where | · |K is the absolute value on K)
is a point of Xan

K called the point associated to x and the embedding κ̂(x)→ K.

2.1.5. Fibres. — Let f : Y → X be a morphism between k-schemes of finite type.
Let x ∈ Xan be a point, K = κ̂(x) be its complete residue field and xK the point of
Xan
K associated to x.

Proposition 2.16. — Keep the notations just introduced. Then:
(1) The map of scalars extension prY,K/k : Y an

K → Y an induces a homeomorphism

prY,K/k : (YK ×XK {xK})an −→ (fan)−1(x);
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(2) For every analytic extension K ′ of k and every point x′ ∈ Xan
K′ such that

prX,K′/k(x′) = x, the map induced by prK′,K/k,

prY,K′/k : (fanK′)
−1(x′) −→ (fan)−1(x)

is surjective.

Proof. —
(1) In the complex case this is clear and the real case is deduced from the complex

one by Galois action. In the non-archimedean case, see [Ber93, §1.4].
(2) Let Ω = κ̂(x′) be the completed residue field of x′ and let x′Ω be the point of

Xan
Ω associated to x′. The point x′Ω coincides with the point xΩ associated to

the point x and the embedding κ̂(x) → Ω = κ̂(x′) (the latter is given by the
fact that x′ projects on x). Therefore the composite map

(fanΩ )−1(x′Ω)
prY,Ω/K′−→ (fanK′)

−1(x′)
prY,K′/k−→ (fan)−1(x),

coincides with the map

(fanΩ )−1(xΩ)
prY,Ω/K−→ (fanK )−1(xK)

prY,K/k−→ (fan)−1(x),

where K = κ̂(x) is the completed residue field at x and xK is the point of Xan
K

associated to x. The latter composite map is surjective: indeed, the second
one is a homeomorphism according to (1); the first one is the map of scalar
extension

(YΩ ×XΩ {xΩ})an −→ (YK ×XK {xK})an.
This implies that prY,K′/k : (fanK′)

−1(x′)→ (fan)−1(x) is surjective.

Proposition 2.17. — With the notations introduced above, let y1, y2 ∈ Y an be points
such that f(y1) = f(y2).

Then, there exists an analytic extension Ω of k and Ω-points x1Ω, x2Ω ∈ Xan
Ω such

that:
(1) prΩ/k(yiΩ) = yi for i = 1, 2;
(2) fanΩ (y1Ω) = fanΩ (y2Ω).

Proof. — The proof is made in two steps.
First step. Suppose that X = Spec k is just made of a k-rational point. The

result in this case is clear: it suffices to take Ω to be an analytic extension endowed
with isometric embedding κ̂(yi) → Ω for i = 1, 2 and y1Ω, y2Ω be the points of Xan

Ω

associated to y1 and y2.
Second step. Let x ∈ Xan be the point f(y1) = f(y2) and let K = κ̂(x) be its

residue field. Let xK ∈ Xan
K be point associated to x. According to Proposition 2.16

the map
prY,K/k : (YK ×XK {xK})an −→ (fan)−1(x),

is a bijection. Therefore there exists y1K , y2K ∈ Y an
K such that

(1) prK/k(yiK) = yi for i = 1, 2;
(2) fanK (y1K) = fanK (y2K).
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Conclude applying the first step to the K-schemes Y ′ = YK ×XK {xK}, X ′ = {xK}
and the morphism induced by fK : YK → XK .

2.2. Maximal compact subgroups. — Let k be complete field.

2.2.1. Subgroups. — Let G be a k-algebraic group (i.e. a smooth k-group scheme of
finite type). Let m : G×k G→ G be the multiplication map and inv : G→ G be the
inverse.

Definition 2.18. — A subset H ⊂ Gan is said to be a subgroup if the following
conditions are satisfied:

(1) the image through man of the subset pr−1
1 (H) ∩ pr−1

2 (H) ⊂ Gan ×k Gan is
contained in H;

(2) the image of H through invan is contained in H;
(3) the neutral element e ∈ G(k) belongs to H.

A subgroup H is said to be compact if it is compact as a subset of Gan.

Let K be an analytic extension of k and let H ⊂ Gan be a subgroup. Then the
subset HK := pr−1

G,K/k(H) ⊂ Gan
K is a subgroup of Gan

K .
Let G act on a k-scheme of finite type and let σ : G ×k X → X be the morphism

defining the action.

Definition 2.19. — Let H ⊂ Gan be a subgroup and let x ∈ Xan be a point. The
H-orbit of x, denoted H · x, is the image through σan of the subset

pr−1
1 (H) ∩ pr−1

2 (x) ⊂ Gan ×k Xan.

2.2.2. Archimedean definition. — Let k = R,C and let G be a (connected) reductive
k-group.

Definition 2.20. — If k = C a maximal compact subgroup of G is a compact sub-
group U of G(C) which is maximal among the compact subgroups of G(C).

If k = R a maximal compact subgroup of G is a compact subgroup U ⊂ Gan such
that pr−1

C/R(U) is a maximal compact subgroup of G(C).

Over the complex numbers a connected affine algebraic group H is reductive if and
only if H(C) contains a compact subgroup which is Zariski-dense. If this is the case:

– a compact subgroup of H(C) is Zariski-dense if and only if it is maximal;
– all the maximal compact subgroups of H(C) are conjugated.

IfU is a maximal compact subgroup ofG, then there exist a real algebraic group U and
an isomorphism of complex algebraic groups α : G ' U×RC such that α(U) = U(R).
A torus T ⊂ G is defined over R (that is, it comes from a torus of U) if and only if
T ∩U is the maximal compact subgroup of T (C).
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2.2.3. Non-archimedean definition. — Let k be non-archimedean and G a reductive
k-group. Consider only compact subgroups of Gan associated to reductive models
of G. A thorough study of maximal bounded subgroups of G(k) can be found in
[BT72, BT84], while compact subgroups of Gan are considered in [Ber90, Chapter
5] and [RTW10, RTW11].

Let H be an affine k◦-group scheme of finite type and let H = H ×k◦ k be its
generic fibre. Consider the compact subset

UH = {h ∈ Han : |f(g)| ≤ 1 for every f ∈ k◦[H]}

where k◦[H] is the k◦-algebra of regular functions on H.

Definition 2.21. — A subset H ⊂ Gan is said to be a maximal compact subgroup if
it is of the form H = UG for a reductive k◦-group G and an isomorphism of k-group
schemes ϕ : G ×k◦ k → G.

The subset UG earns the name of maximal compact subgroup because it is a
subgroup (in the sense of Definition 2.18), it is compact and it can be shown that it
is maximal among the compact subgroups of Gan. The latter property will be of no
use for us.

Proposition 2.22. — With the notations introduced above:

(1) the set of k-rationals points UG(k) := UG ∩ G(k) coincides with the set of
k◦-points G(k◦);

(2) for every analytic extension K of k,

pr−1
K/kUG = UG⊗k◦K◦

as subsets of Gan
K .

(3) if k is algebraically closed and non-trivially valued, the set UG(k) is dense in
UG.

Proof. —

(1) Let ϕg : A→ k be the homomorphism of k-algebras induced by g ∈ G(k). The
point g belongs to UG if and only if |ϕg(f)| ≤ 1 for every f ∈ k◦[G], which
means that ϕg restricts to a homomorphism ϕg : k◦[G]→ k◦.

(2) Let f1, . . . , fN be generators of the k◦-algebra k◦[G]. For every point g ∈ Gan,

|f(x)| ≤ 1 for every f ∈ k◦[G]⇐⇒ |fi(x)| ≤ 1 for every i = 1, . . . , N.

The statement follows from this and noticing that f1, . . . , fN are also generators
of the K◦-algebra K◦[G].

(3) This is true because the compact subset UG is strictly affinoid in the sense of
Berkovich. Thus this can be found in [Ber90, Proposition 2.1.15].

The main result of [Dem65] and [GP11] is that, up to a finite separable extension,
all reductive groups comes by base change from Z. More precisely:
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Theorem 2.23. — Let G be a reductive k-group. Then, there exist a finite separable
extension k′ of k, a Z-reductive group scheme G and an isomorphism of k′-group
schemes

G×k k′ ' G ×Z k
′.

This is the combination of Corollary 3.1.5 and Theorems 3.6.5-3.6.6 in [Dem65].

2.3. Plurisubharmonic functions. — In this section we discuss plurisubharmonic
functions.

In the complex case we consider the usual plurisubharmonic functions and, in the
real case, complex plurisubharmonic functions invariant under complex conjugation.

In the non-archimedean case, subharmonic function on curves P1 are by now
well understood thanks to work of Rumely [Rum89, Rum93], Rumely and Baker
[BR10], Kani [Kan89], Favre et Jonsson [FJ04] and Thuillier [Thu05] (who studied
systematically the theory of subharmonic functions also on curves of higher genus).
The comparison between these notions can be found in [Thu05, Chapitre 5]. Moving
to higher dimension, we say that a function is plurisubharmonic if the restriction to
the image of any every open subset of P1 is subharmonic. This does not give a sensi-
ble theory of plurisubharmonic functions: for instance, in order to get the Maximum
Principle one needs to test subharmonicity on curves of higher genus. However, this
definition will be enough for our purposes. Other approaches to plurisubharmonic
functions have been studied by Chambert-Loir et Ducros [CLD12] and Boucksom,
Favre et Jonnson [BFJ12].

2.3.1. Harmonic functions. — Let k be a complete field and let Ω ⊂ A1,an
k be an

open subset.

Definition 2.24. — A real-valued function h : Ω→ R is said to be harmonic if for
every x ∈ Ω there exist an open neighbourhood U of x in Ω, a positive integer N
and for every i = 1, . . . , N an invertible analytic function fi ∈ Γ(U,Oan

U )× and a real
number αi ∈ R such that

h|U =

N∑
i=1

αi log |fi|.

Note that the in the complex case one can always take N = 1 thanks to the expo-
nential map, which gives the usual notion of harmonic function. In the real case one
finds the notion of harmonic function on the associated open set of C invariant under
conjugation. In the non-archimedean case one recovers the notion of harmonic func-
tion of Thuillier (see [Thu05, Définition 2.31] taking in account [loc.cit., Théorème
2.3.21]).

Proposition 2.25. — Let Ω be an open subset of the analytic affine line A1,an
k . The

following properties are satisfied:
(1) Harmonic functions give rise to a sheaf of R-vector spaces on A1,an

k .
(2) If f is an invertible analytic function on Ω then log |f | is an harmonic function.
(3) Let f : Ω′ → Ω be an analytic map between open subsets of A1,an

k ; for every
harmonic map h on Ω the composite map h ◦ f is harmonic on Ω′.
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(4) Let K be an analytic extension of k and ΩK := pr−1
K/k(Ω). For every harmonic

function h : Ω→ R composite function h ◦ prK/k : ΩK → R is harmonic.
(5) (Maximum Principle) If the open set Ω is connected, then an harmonic function

h on Ω attains a global maximum if and only if it is constant.
(6) If Ω is connected, every non-constant harmonic function h : Ω→ R is an open

map.

Proof. — Statements (1) - (4) are straightforward consequence of the definition.
(5) The Maximum Principle it is well-known in the complex case (which imply the

real one) [Dem, Chapter I, 4.14]; in the non-archimedean case it can be found
in the proof of Proposition 2.3.13 in [Thu05].

(6) It is sufficient to show that the image of Ω is open. The image of Ω is an
interval I ⊂ R (possibly unbounded) and one has to show that it does not
contain its endpoints.

Treat the case of the right endpoint as follows: if I is unbounded on the
right, then we are done; if b ∈ R is the right endpoint of I, then h cannot take
the value b because of the Maximum Principle. The case of the left endpoint
goes similarly.

2.3.2. Subharmonic functions. — Let k be non-trivially valued and Ω an open subset
of A1,an

k .

Definition 2.26. — A function u : Ω → [−∞,+∞[ is said to be subharmonic if it
is upper semi-continuous and for every connected open subset Ω′ ⊂ Ω and every
harmonic function h on Ω′ the function u|Ω′−h satisfies the maximum principle, that
is, it attains a global maximum if and only if it is constant.

In the complex case this is equivalent to the usual notion of subharmonic func-
tion. Thus in the real case giving a subharmonic function on Ω is equivalent to give
a subharmonic function on ΩC invariant under complex conjugation. In the non-
archimedean case one finds the notion of subharmonic function in the sense of Thuil-
lier (see [Thu05, Définition 3.1.5], taking in account the characterisation [loc.cit.,
Corollaire 3.1.12] and compatibility to analytic extensions [loc.cit., Corollaire 3.4.5]).

Proposition 2.27. — Let Ω be an open subset of the analytic affine line A1,an. The
following properties are satisfied:

(1) Harmonic functions are subharmonic.
(2) If u, v are subharmonic functions on Ω and α, β are non-negative real numbers,

then αu+ βv and max{u, v} are subharmonic functions.
(3) If f is an analytic function on Ω then log |f | is subharmonic.
(4) Let K be an analytic extension of k and ΩK := pr−1

K/k(Ω). For every subhar-
monic function u : Ω → R composite function u ◦ prK/k : ΩK → R is subhar-
monic.

(5) Let f : Ω′ → Ω be an analytic map between open subsets of A1,an
k ; for every

subharmonic map u on Ω the composite map u ◦ f is subharmonic on Ω′.
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(6) (Maximum Principle) If the open set Ω is connected, then a subharmonic func-
tion h on Ω attains a global maximum if and only if it is constant.

(7) If {ui}i∈I is a locally bounded family of subharmonic functions on Ω, the its
regularised upper envelope (7) is subharmonic.

(8) Let u1, . . . , un be subharmonic functions on Ω and ϕ : Rn → R be a convex
function that is non-decreasing in each variable. Extend ϕ by continuity into
a function

ϕ̃ : [−∞,+∞[
n −→ [−∞,+∞[.

Then the function ϕ̃ ◦ (u1, . . . , un) : Ω→ [−∞,+∞[ is subharmonic.

Proof. —
(1) Follows from the definitions.
(2) See [Thu05, Proposition 3.1.8].
(3) Follows from the definitions.
(4) In the real case it follows from the definition with the mean value inequality

[Dem, Chapter I, Theorem 4.12]. In the non archimedean case the compati-
bility to extension of scalars is proven in [Thu05, Corollaire 3.4.5].

(5) In the archimedean case this is well-known [Dem, Chapter I, Theorem 5.11].
In the non archimedean case this is [Thu05, Proposition 3.1.14].

(6) Follows from the definitions.
(7) See [Thu05, Proposition 3.1.8].
(8) See [Dem, Chapter I, Theorem 4.16].

Proposition 2.28. — Let v : R→ [−∞,+∞[ be a function. The composite map

v ◦ log |t| : Gan
m → [−∞,+∞[ ,

is subharmonic if and only if one of the following conditions are satisfied:
– v is identically equal to −∞;
– v is real-valued and convex.

Proof. —
(⇐) If v = −∞ there is nothing to prove. If v is real valued and convex, then the

subharmonicity of v ◦ log |t| is similar to (8) in the previous Proposition: one
writes

v(ξ) = sup
i∈I

hi(ξ)

where hi(ξ) = aiξ+bi is the family of lines supporting the graph of v. For every
i ∈ I the function hi(log |t|) = ai log |t| + b is (sub)harmonic. Thus according
to (7) in the previous Proposition, the function

v(log |t|) = sup
i∈I

hi(log |t|)

is the (regularised) upper envelope of subharmonic functions, thus it is sub-
harmonic.

7. Namely the smallest upper semi-continuous function bigger than ui for every i ∈ I.
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(⇒) Suppose that v is not identically −∞. Since log |t| is a closed map and v◦ log |t|
is upper semi-continuous, then v is upper semi-continuous. Let a < b real
numbers let ϕ(ξ) = λξ + µ be an affine function such that{

v(a) ≤ ϕ(a)

v(b) ≤ ϕ(b)

One has to show v(ξ) ≤ ϕ(ξ) for every ξ ∈ ]a, b[. Since the interval [a, b] is
compact and the function v−ϕ is upper semi-continuous, it attains a maximum
on a point ξ0 ∈ [a, b].

By contradiction suppose v(ξ0) > ϕ(ξ0), thus ξ0 ∈ ]a, b[. The function
ϕ(log |t|) = λ log |t|+ µ is harmonic on Gan

m and the open set

Ω = {t ∈ Gan
m : a < log |t| < b},

is connected (8).
According to the subharmonicity of v ◦ log |t|, the function (v − ϕ) ◦ log |t|

satisfies the Maximum Principle on Ω. Since it attains a global maximum, it
is constant. Moreover, by upper semi-continuity of v,

v(ξ0)− ϕ(ξ0) ≤ max{v(a)− ϕ(a), v(b)− ϕ(b)} ≤ 0,

which contradicts the hypothesis v(ξ0) > ϕ(ξ0).

2.3.3. Plurisubharmonic functions. — Let X be a k-analytic space.

Definition 2.29. — A map u : X → [−∞,+∞[ is said to be plurisubharmonic if it
is upper semi-continuous and for every analytic extension K of k, every open set Ω of
A1,an
K and every analytic map ε : Ω→ XK , the composite map u ◦ ε : Ω→ [−∞,+∞[

is subharmonic on Ω.

In the complex case this is usual notion of plurisubharmonic function; in the real
case a plurisubharmonic function is a plurisubharmonic function on the associated
complex space invariant under conjugation .

Proposition 2.30. — Let X be a k-analytic space.
(1) If X is an open subset of the affine line A1,an

k the u is plurisubharmonic on X
if and only if it is subharmonic.

(2) If u, v are plurisubharmonic functions on X and α, β are non-negative real
numbers, then αu+ βv and max{u, v} are plurisubharmonic functions.

8. In the archimedean case this is trivial. In the non-archimedean case the open subset Ω can be
written as the following increasing union Ω =

⋃
0<ε<eb/a Cε where

Cε = {x ∈ A1,an
k : a+ ε/2 ≤ log |t(x)| ≤ b− ε/2}.

For all non-negative real numbers 0 ≤ α ≤ β, the compact subset

C(α, β) = {x ∈ A1,an
k : α ≤ |t(x)| ≤ β}

is path connected. Therefore Ω is path-connected, thus connected. The fact that C(α, β) is path-
connected can be shown by hands, and it is a basic, instructive exercise. Otherwise this follows from
the fact the C(α, β) is a normal k-analytic space, thus connected [Ber90, Proposition 3.1.8], hence
path-connected [Ber90, Theorem 3.2.1].
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(3) If f is an analytic function on X then log |f | is plurisubharmonic.
(4) Let K be an analytic extension of k. For every plurisubharmonic function

u : X → [−∞,+∞[, the composite function u ◦ prK/k : |XK | → [−∞,+∞[ is
plurisubharmonic.

(5) Let f : X ′ → X be an analytic map between k-analytic spaces; for every
plurisubharmonic map u on X the composite map u◦f is plurisubharmonic on
X ′.

(6) If {ui}i∈I is a locally bounded family of plurisubharmonic functions on X, the
its regularised upper envelope is plurisubharmonic.

(7) Let u1, . . . , un be plurisubharmonic functions on X and ϕ : Rn → R be a convex
function which is non-decreasing in each variable. Extend ϕ by continuity into
a function

ϕ̃ : [−∞,+∞[
n −→ [−∞,+∞[ .

Then the function ϕ̃ ◦ (u1, . . . , un) : X → [−∞,+∞[ is plurisubharmonic.

Proof. — Follows from Proposition 2.27.

2.3.4. Construction of invariant functions. — Let n ≥ 1 be a positive integer.

Definition 2.31. — An extended norm on An,an
k is a function α : An,an

k → R+ such
that for every analytic extension K of k, the map induced on the K-valued points of
An
k ,

uK : An
k (K) = Kn

prK/k−→ An,an
k

u−→ R+,

is a norm on the K-vector space Kn.
If k = R,C one says that u is hermitian if the induced norm on Cn is hermitian.

If k is non-archimedean one says that u is non-archimedean if, for every analytic
extension K of k, the induced norm on Kn is non-archimedean.

Remark 2.32. —
(1) If k = C an hermitian extended norm is a norm on Cn in the usual sense.
(2) If k = R an hermitian extended norm corresponds to a scalar product on Rn.
(3) If k is non-archimedean an example of non-archimedean extended norm is the

function
u(x) = max{r1|t1(x)|, . . . , rn|tn(x)|},

where r1, . . . , rn are positive real numbers and t1, . . . , tn the coordinate func-
tions on An.

If α, β are norms on kn, set

d(α, β) = sup
x∈kn−{0}

∣∣∣∣log
α(x)

β(x)

∣∣∣∣ .
This is well-defined real number since norms on kn are all equivalent. The function
d defines a distance on the set of norms on kn: the induced topology is the one of
uniform convergence on bounded subsets of kn.

Proposition 2.33. — Let k be non-archimedean.
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(1) A non-archimedean norm α on kn extends to a continuous non-archimedean
norm uα on An,an

k in a way such that, if α, β are norms on kn, then

sup
x∈An,an

k −{0}

∣∣∣∣log
uα(x)

uβ(x)

∣∣∣∣ = d(α, β).

(2) A continuous non-archimedean extended norm is a plurisubharmonic function.

Proof. —
(1) The extension is defined in two steps. Suppose first that the norm α is diago-

nalizable, that is, there exists a basis v1, . . . , vn of kn and positive real numbers
r1, . . . , rn such that

α(x1v1 + · · ·+ xnvn) = max{r1|x1|, . . . , rn|xn|}.
Let ϕ1, . . . , ϕn : kn → k be the dual basis. For x ∈ An,an

k set

uα(x) := max{r1|ϕ1(x)|, . . . , rn|ϕn(x)|}.
Then uα is a continuous non-archimedean extended norm which extends α.
The formula for the distance of uα and uβ follows from [GI63, Proposition
2.1] applied to every analytic extension of k. The general case follows by the
previous one by approximation (see [BGR84, 2.6.2, Proposition 3]).

(2) Let u be a non-archimedean extended norm. In order to prove that it is
plurisubharmonic, up to extending k, one may assume that k is algebraically
closed and maximally complete. The norm α induced on kn by u is then
diagonalizable: there exists a basis v1, . . . , vn of kn and positive real numbers
r1, . . . , rn such that

α(x1v1 + · · ·+ xnvn) = max{r1|x1|, . . . , rn|xn|},
(see [BGR84, 2.4.1 Definition 1 and 2.4.4 Proposition 2]). Let ϕ1, . . . , ϕn
be the dual basis. Since kn is dense in An,an

k the preceding equality holds
everywhere: for x ∈ An,an

k ,

u(x) = max{r1|ϕ1(x)|, . . . , rn|ϕn(x)|}.
It follows that u is plurisubharmonic.

Proposition 2.34. — Suppose k algebraically closed. Let G be a reductive k-group
and X an affine k-scheme of finite type acted upon by G. Let U be a maximal compact
subgroup of G.

Then, there exists a continuous, U-invariant, plurisubharmonic and topologically
proper function u : Xan → [−∞,+∞[.

Proof. — Up to embedding X in an affine in a G-equivariant way, one may assume
X = An and that the action of G on X is linear. If k = C it suffices to consider an
hermitian norm invariant under the action of U. If k is non-archimedean, let G be
the reductive k◦-group associated to the maximal compact subgroup U. Let α be a
non-archimedean norm on kn and define

β(x) := sup
g∈G(k◦)

α(g · x).
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Since G(k◦) is bounded (that is, it is relatively compact in Gan) then β(x) is a well-
defined real number. The function β is a G(k◦)-invariant non-archimedean norm
on kn and by Proposition 2.33 it extends to a unique continuous non-archimedean
extended norm uβ on An,an

k . The extended norm uβ is continuous, plurisubharmonic
and invariant under action of G(k◦). Since G(k◦) is dense in U, uβ is U-invariant by
continuity.

2.4. Minima on fibres and orbits. — In this section we collect some basic facts
about the variation of minima and maxima of a function along the fibres of a map of
analytic spaces and on the orbits under the action of an analytic group.

2.4.1. Minima on fibres. —

Definition 2.35. — Let f : X → Y be a map of sets and u : X → [−∞,+∞] a
function. The map of u-minima on f -fibres f↓u : Y → [−∞,+∞] is defined for every
y ∈ Y by

f↓u(y) := inf
f(x)=y

u(x).

Let k be a complete field and let f : X → Y be a morphism of k-schemes of finite
type. Let fan : Xan → Y an be the morphism of k-analytic spaces induced by f . Let K
be an analytic extension of k and let fanK : Xan → Y an be the morphism of K-analytic
spaces deduced extending scalars to K.

Proposition 2.36. — Let u : Xan → [−∞,+∞] be a function. With the notations
just introduced:

fanK↓(u ◦ prX,K/k) = (fan↓ u) ◦ prY,K/k .

Proof. — This follows from the fact that, for every point yK ∈ Y an
K , the map induced

by the scalar extension

prY,K/k : (fanK )−1(yK)→ (fan)−1(y),

where y = prY,K/k(yK) is surjective (see Proposition 2.16 (2)).

2.4.2. Minima on orbits. — Let X be a k-scheme of finite type endowed with an
action of a k-algebraic group G.

Definition 2.37. — Let H ⊂ Gan be a subgroup and u : Xan → [−∞,+∞] a func-
tion. The map of u-minima on H-orbits uH : Xan → [−∞,+∞] is defined, for every
x ∈ Xan, as

uH(x) := inf
x′∈H·x

u(x′).

In the case H = Gan write uG instead of uGan .

Remark 2.38. — Let σ : G ×k X → X be the morphism of k-schemes defining the
action of G on X. Let σan : Gan ×k Xan → Xan be the induced map of k-analytic
spaces. Denote by

σH : pr−1
1 (H) ⊂ Gan ×k Xan −→ Xan,
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the map induced by σan. With this notation, by definition,

uH = σH↓(u ◦ pr2).

Proposition 2.39. — Let u : Xan → [−∞,+∞] be a function. Let K be an analytic
extension of k and consider the subgroup HK := pr−1

G,K/k(H) of Gan
K . Then,

(u ◦ prX,K/k)HK = uH ◦ prX,K/k .

Proof. — This follows from Proposition 2.36 combined with Remark 2.38.

Proposition 2.40. — Let u : Xan → [−∞+∞[ be an upper semi-continuous func-
tion. Then,

(1) the function uG : Xan → [−∞,+∞[ is upper semi-continuous;
(2) if u is continuous, the subset

Xmin
G (u) := {x ∈ Xan : uG(x)− u(x) ≥ 0},

is closed.

Proof. —
(1) In the complex case the statement is trivial since uG is the infimum of the

upper semi-continuous functions x 7→ u(g · x) with g ∈ G(C).
In the general case, according to Proposition 2.39, the statement is compat-

ible to extension of scalars. Suppose that the absolute value on k is non-trivial
and k is algebraically closed. In this case the k-rational points G(k) are dense
in Gan. According to the upper semi-continuity of u for every point x ∈ Xan,

uG(x) := inf
x′∈G·x

u(x) = inf
g∈G(k)

u(g · x).

Conclude by remarking that the right-hand side is an upper semi-continuous
function on Xan because it is the infimum of the upper semi-continuous func-
tions ug : x 7→ u(g · x) with g ∈ G(k).

(2) Follows from upper semi-continuity of uG − u.

3. Kempf-Ness theory

Let k be a complete field. From now on simplify notations in the two ways:
– If f : X → Y is a morphism of k-schemes, denote by f the morphism of k-

analytic spaces fan : Xan → Y an induced by f ;
– Let X be a k-scheme of finite type endowed with the action of k-algebraic

group G. If x ∈ Xan is a point denote its orbit by G · x instead of Gan · x.

3.1. Set-theoretic properties of the analytification of the quotient. — The
aim of this section is to prove assertions (i) and (ii) in Theorem 1.6. Let us go back
to the notation introduced in paragraphs 1.4-1.5.

Proposition 3.1. — With the notation introduced above:
(1) the morphism π : Xan → Y an is surjective and G-invariant;
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(2) for every x, x′ ∈ Xan,

π(x1) = π(x2) if and only if G · x1 ∩G · x2 6= ∅.

(3) for every point x ∈ Xan there exists a unique closed orbit contained in G · x.

In particular, the image of x, x′ ∈ Xan coincide if and only if the unique closed
orbit contained in G · x and the unique closed orbit contained in G · x′ coincide.

Before passing to the proof of Proposition 3.1 remark the following:

Corollary 3.2. — With the notations introduced above, let X ′ be a G-stable closed
subscheme of X and Y ′ its categorical quotient by G. Then the induced morphism of
k-analytic spaces Y ′an → Y an is injective.

Proof of Proposition 3.1. —
(1) Clear from Proposition 1.4.
(2) Consider two points x1, x2 ∈ Xan: one has to show

π(x1) = π(x2) ⇐⇒ G · x1 ∩G · x2 6= ∅.

(⇒) Suppose that the closure of the orbits G · x1 and G · x2 meet in a point
y. By continuity and G-invariance of π,

π(x1) = π(y) = π(x2).

(⇐) Suppose π(x1) = π(x2). First of all one reduces to the case where x1,
x2 are k-rational points. According to Proposition 2.17 there exist an
analytic extension K of k and K-rational points x1K , x2K ∈ Xan

K such
that:
• prK/k(xiK) = xi for i = 1, 2;
• πK(x1K) = πK(x2K) (where πK : Xan

K → Y an
K is the morphism of

K-analytic spaces associated to π).
Since the construction of the invariants is compatible to the extension
of the base field, one has AGKK = AG⊗kK where GK is the K-reductive
group deduced from G by extension of scalars. Thus the affineK-scheme
YK is the categorical quotient of the affine K-scheme XK by the K-
reductive group GK . Thus, up to extending scalars to K, one may
assume that the points x1, x2 ∈ Xan are k-rational.
Let x1, x2 ∈ Xan be k-rational points and let α : Xan → X be the
morphism of locally k-ringed spaces deduced by analytification of X. To
avoid confusion momentarily denote:
• πan : Xan → Y an the morphism of k-analytic spaces deduced from

the morphism of k-schemes π : X → Y ;
• Gan · xi the orbit of the k-point xi ∈ Xan under the action of the

analytic group Gan · xi (i = 1, 2) .
For i = 1, 2:

α−1(G · α(xi)) = Gan · xi.
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The hypothesis πan(x1) = πan(x2) implies π(α(x1)) = π(α(x2)). Ac-
cording to Theorem 1.4 the closure of their algebraic orbits meet:

G · α(x1) ∩G · α(x2) 6= ∅.

For i = 1, 2 the orbit G · α(xi) a constructible subset of X thus its
closure of Z with respect to analytic topology coincide with its closure
with respect to the Zariski topology (Proposition 2.6):

α−1(G · α(xi)) = α−1(G · α(xi)) = Gan · xi.

Since the closure of the algebraic orbits G · α(x1), G · α(x2) meet then
the closure of the analytic orbits Gan · x1, Gan · x2 meet as well.

(3) Follows from (2): consider a point x ∈ Xan and two points y1, y2 ∈ G · x. Since
π is continuous and G-invariant one has π(y1) = π(y2). If one supposes that
the orbits of y1 and y2 are closed, statement (2) affirms that G · y1 and G · y2

meet, thus they coincide.

3.2. Comparison of minima. —

3.2.1. Statements. — Let us go back to the notation introduced in paragraphs 1.4-1.5
and recall the statement of Theorem 1.9:

Theorem 3.3. — With the notation introduced above, let u : Xan → [−∞,+∞[ be a
plurisubharmonic function which is invariant under the action of a maximal compact
subgroup of G. For every point x ∈ Xan,

inf
π(x′)=π(x)

u(x′) = inf
x′∈G·x

u(x′).

Corollary 3.4. — Let u : Xan → [−∞,+∞[ be a plurisubharmonic function which
is invariant under the action of a maximal compact subgroup of G. Then,

(1) a point x is u-minimal on π-fibres if and only if it is u-minimal on G-orbits;
(2) Xmin

π (u) = Xmin
G (u);

(3) if u is moreover continuous, the set of u-minimal points on π-fibres Xmin
π (u)

is closed.

Proof of the Corollary. — Clear from the definitions of u-minimal point on π-fibre
and u-minimal point on G-orbit. (3) follows from Proposition 2.40 (2).

In order to prove Theorem 3.3 we show:

Theorem 3.5. — With the notation previously introduced, for every point x ∈ Xan

there exists a point x0 that belongs to the unique closed orbit contained in G · x and
such that u(x0) ≤ u(x).

Let us show how it entails Theorem 3.3.

Proof of Theorem 3.3. — For every point x ∈ Xan,

inf
π(y)=π(x)

u(y) ≤ inf
y∈G·x

u(y).
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It remains to prove the converse inequality. Let x, x′ ∈ Xan be such that π(x′) = π(x).
Applying Theorem 3.5 to the point x′, there exists a point x′0 that belongs to the
unique closed orbit contained in G · x′ and such that u(x′0) ≤ u(x′). By continuity,

π(x′0) = π(x′) = π(x),

hence G · x′0 is the unique closed orbit contained in G · x. Thus,
u(x′) ≥ u(x′0) ≥ inf

y∈G·x′0
u(y) ≥ inf

y∈G·x
u(y) = inf

y∈G·x
u(y),

where the last equality comes from the upper semi-continuity of the function u. Since
x′ is arbitrary,

inf
π(y)=π(x)

u(y) ≥ inf
y∈G·x

u(y),

which concludes the proof of Theorem 3.3.

The rest of this section is hence devoted to the proof of Theorem 3.5.

3.2.2. Parabolic subgroups containing destabilizing one-parameter subgroups. —
Drop for the moment the general notation.

Let k be an algebraically closed field and consider the action of a reductive k-group
G on an affine k-scheme X of finite type. Let S ⊂ X be a closed G-stable subset of X.
The following result has been established by Kempf during his proof of the existence
of a rational destabilizing one-parameter subgroup (see [Kem78, Theorem 3.4]):

Theorem 3.6. — Let x ∈ X(k) be k-point of X such that

G · x ∩ S 6= ∅.
Then, there exists a parabolic subgroup P = P (S, x) of G satisfying the following
property: for every maximal torus T ⊂ P there exists a one-parameter subgroup
λT : Gm → T such that the limit

lim
t→0

λ(t) · x

exists (9) and belongs to S.

3.2.3. Destabilizing one-parameter subgroups: archimedean case. — Let G be a com-
plex (connected) reductive group and let U ⊂ G(C) a maximal compact subgroup.
Then, there exists an R-group scheme U such that U ×R C = G and U(R) = U.
Moreover, a torus T ⊂ G is defined over R if and only if T (C) ∩U is the maximal
compact subgroup of T (C).

Let X = SpecA be a complex affine scheme of finite type endowed with an action
of G. Let S ⊂ X be a G-stable Zariski closed subset.

Lemma 3.7. — Let x ∈ X(C) be a point such that G · x meets S. Then, there exists
a one-parameter subgroup λ : Gm → G satisfying the following properties:

9. Namely the morphism of k-schemes λx : Gm → X, t 7→ λ(t) · x extends to a morphism of
k-schemes λx : A1 → X and by definition,

lim
t→0

λ(t) · x := λx(0).
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– the limit point lim
t→0

λ(t) · x exists and belongs to S;

– the image of U(1) is contained in U.

This statement is implicitly proven in [KN79] when X = An
C is a linear represen-

tation of G and S = {0}. It can be deduced from this case by means of G-equivariant
morphism f : X → An such that f−1(0) = S.

Proof. — We reproduce here the argument of Kempf-Ness. According to Theorem
3.6 there exists a parabolic subgroup P ⊂ G with the following property: for every
maximal torus T ⊂ P there exists a one-parameter subgroup λT : Gm → T such that
the limit point

lim
t→0

λT (t) · x

exists and belongs to S.
Let P be the conjugated parabolic subgroup under the real structure of G given

by U . Let T be a maximal torus of the subgroup P ∩ P which is defined over R. As
a maximal torus in the intersection of two parabolic subgroups T is a maximal torus
of the whole group G.

Thus by Theorem 3.6 there exists a one-parameter subgroup λ : Gm → T which
satisfies the required properties.

3.2.4. Destabilizing one-parameter subgroups: non-archimedean case. — Let k be a
field complete with respect to a non-archimedean absolute value and k◦ its ring of
integers. Suppose k algebraically closed.

Let G be a reductive k◦-group and G its generic fibre. A one-parameter subgroup
λ : Gm,k◦ → G induces a map λan : Gan

m → Gan which sends U(1) into the maximal
compact subgroup U associated to G.

Let X = SpecA be an affine k-scheme of finite type endowed with an action of G
and let S ⊂ X be a G-stable closed subset.

Lemma 3.8. — Let x ∈ X(k) be a point such that G · x meets S. Then, there exists
a one-parameter subgroup λ : Gm,k◦ → G such that the limit point on the generic fibre

lim
t→0

λ(t) · x

exists and belongs to S.

Proof. — By Theorem 3.6 there exists a parabolic subgroup P ⊂ G with the following
property: for every maximal torus T contained in G there exists a one-parameter
subgroup λT : Gm → T such that the limit point

lim
t→0

λT (t) · x

exists and belongs to S.
Denote by Par(G) the scheme parametrizing the parabolic subgroups of G: it is

proper over k◦ [GP11, Exposé XXVI, Théorème 3.3-Corollaire 3.5]. By the valuative
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criterion of properness there exists a unique parabolic subgroup P of G with generic
fibre P . Let T be a maximal torus of P and let T be its generic fibre. (10)

Let λ : Gm → T be the one-parameter subgroup given by Theorem 3.6. Since k is
algebraically closed, the torus T is split and the one-parameter subgroup λ lifts in a
unique way to a one-parameter subgroup λ : Gm,k◦ → T which satisfies the required
properties.

3.2.5. End of proof of Theorem 3.5. — Let x ∈ Xan and U a maximal compact
subgroup of G which fixes the function u. Up to extending of k one may assume:

– archimedean case: k = C;
– non-archimedean case: k is algebraically closed and the point x is k-rational.

Let S be the unique closed orbit contained in G · x. According to Lemmata 3.7-3.8
there exists a one-parameter subgroup λ : Gm → G with the following properties:

– the limit point x0 := lim
t→0

λ(t) · x exists and belongs to S;
– the image of U(1) is contained in U.

Let us show u(x0) ≤ u(x). The map t 7→ λ(t) · x extends to a morphism of k-schemes
λx : A1

k → X such that λx(0) = x0. The function

ux : A1,an
k −→ [∞,+∞[

t 7−→

{
u(x0) if t = 0,

u(λ(t) · x) otherwise,

is subharmonic (it can be written as u ◦ λx) and U(1)-invariant. By the Maximum
Principle,

lim sup
t→0

ux(t) = ux(0) = u(x0).

According to Proposition 2.28 the function vx : R → [−∞,+∞[ defined by the
condition vx(log |t|) = ux(t) is either identically equal to −∞ or it is real-valued and
convex. In both cases,

lim sup
ξ→∞

vx(ξ) = lim sup
t→0

ux(t) = u(x0) < +∞,

hence vx has to be non-decreasing. In particular,

u(x0) = lim sup
ξ→∞

vx(ξ) ≤ vx(0) = u(x)

10. By [GP11, Exposé XII, Théorème 1.7] the existence (locally for the étale topology) of a
maximal torus is equivalent to the locally constance of the reductive rank, that is the function
redrk : S → N defined for every point s ∈ S by

redrk(s) := dimension of a maximal torus of G×S Specκ(s)

where κ(s) denotes an algebraic closure of the residue field κ(s) at s. In general a maximal torus of a
parabolic subgroup Q of a reductive group H is a maximal torus of H [Bor91a, Corollary 11.3]: in
particular, the reductive rank of Q is equal to the reductive rank H. On the other side, the reductive
rank of a reductive group is locally constant [GP11, Exp. XIX, Corollaire 2.6]. Therefore the
reductive rank of the parabolic subgroup P is (locally) constant on Spec k◦: since k is algebraically
closed P has a maximal torus.
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which concludes the proof of Theorem 3.5.

3.3. Analytic topology of the quotient. —

3.3.1. Statement. — In this section we prove assertion (3) in Theorem 1.6:

Proposition 3.9. — Let F ⊂ Xan be a closed G-stable subset of Xan. Then its
projection π(F ) is closed in Y an.

Combining it with Corollary 3.2:

Corollary 3.10. — Let X ′ be a G-stable closed subscheme of X and let Y ′ be its
categorical quotient by G. The induced morphism of k-analytic spaces Y ′an → Y an is
a homeomorphism onto a closed subset of Y an.

The rest of this section is devoted to the proof of Proposition 3.9.

3.3.2. Minimal points on affine cones. — The proof of Proposition 3.9 is based on a
elementary fact concerning minimal points on fibres of a homogeneous map between
affine cones. Drop momentarily the general notation. Let

A =
⊕
d≥0

Ad, B =
⊕
d≥0

Bd,

be (positively) graded k-algebras of finite type such that the k-algebras A0, B0 are
finite (i.e. finite dimensional as k-vector spaces). Let X = SpecA and Y = SpecB
be their spectra. Let ϕ : A→ B be homogeneous homomorphism of degree D ≥ 1 of
graded k-algebras, that is a homomorphism of k-algebras such that for every d ≥ 0,

π(Bd) ⊂ AdD.
The homomorphism ϕ induces a morphism of k-schemes f : X → Y .

Let fan : Xan → Y an be the morphism of k-analytic spaces induced by f .

Definition 3.11. — Let u : Xan → R+ be a map.
(1) A point x ∈ Xan is said to be u-minimal on f -fibre if for every point x′ such

that fan(x′) = fan(x) one has u(x′) ≤ u(x). The subset of u-minimal points
on f -fibres is denoted by Xmin

f (u).
(2) Let h : A1,an ×k Xan → Xan denote the morphism of multiplication by scalars

induced by the grading of A.
The function u : Xan → R+ is said to be 1-homogeneous if for every point

z ∈ A1,an ×k Xan,

u(h(z)) = |pr1(z)| · u(pr2(z)),

where pr1, pr2 are the projections on A1,an ×k Xan.

Proposition 3.12. — With the notation introduced above, let u : Xan → R+ be a
continuous, 1-homogeneous and topologically proper function. If Xmin

f (u) is closed in
Xan, then the restriction of f to Xmin

f (u),

fan : Xmin
f (u) −→ Y an,

is topologically proper.
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Proof of Proposition 3.12. — The statement is compatible with extension of scalars,
thus the absolute value | · | : k → R+ can be supposed to be surjective. (11)

Choosing homogeneous generators b1, . . . , bn of B with deg bα = δα, one may re-
place Y by the weighted affine space

An
(δ) = Spec k[t1, . . . , tn](δ),

where the k[t1, . . . , tn](δ) is the k-algebra of polynomials k[t1, . . . , tn] where the grading
is given by deg tα = δα. To ease notation denote fan by f and Xmin

f (u) by Xmin.
Arguing by contradiction, suppose that the restriction of f to Xmin is not topo-

logically proper. Then there exists a sequence of points {xi}i∈N in Xmin such that
the images {f(xi)}i∈N are contained in a compact subset of An,an

(δ) while u(xi)→∞
as i → ∞. One may suppose u(xi) 6= 0 for every i ∈ N. Since the absolute value of
k is surjective, for every i ∈ N there exists λi ∈ k× such that |λi| = u(xi). Define a
new sequence in Xan setting

x̃i :=
xi
λi
.

By homogeneity of u the points x̃i are minimal on the fibres of f . Moreover
the points xi’s are contained in the compact subset {x : u(x) = 1}. By sequential
compactness (12), one may assume that the sequence {x̃i} converges to a point x̃∞.
By construction:

– x̃∞ is u-minimal on f -fibre;
– u(x̃∞) = 1.

These two properties are contradictory. Indeed the map f : X → An
(δ) is given by

some polynomials f1, . . . , fn of degree deg fα = Dδα (recall that the homomorphism
ϕ is of degree D). Thus, for every i ∈ N and α = 1, . . . , n,

|fα(x̃i)| =
|fα(xi)|
|λi|

=
|fα(xi)|
u(xi)

.

The points fα(xi) are contained in a compact set, so the real numbers |fα(xi)| are
bounded independently of i and α. By hypothesis u(xi)→∞ as i→∞, thus

lim
i→∞

max
α=1,...,n

|fα(x̃i)| = lim
i→∞

max
α=1,...,n

|fα(xi)|
u(xi)

= 0,

which gives f(x̃∞) = 0. Since x̃∞ is a u-minimal point on f -fibre, the latter fact
implies that it must belong to the vertex SpecA0 of X.

The homogeneity of u implies u(x̃∞) = 0 which contradicts u(x̃∞) = 1.

11. An analytic extension K of k such that the absolute value | · |K : K → R+ is surjective can
be constructed by means of transfinite induction. This is not really necessary for the proof: this
assumption just makes the exposition clearer. One can adapt the proof in the case when the absolute
value | · | : k → R+ is dense. Another way to circumvent it is to add only the real numbers u(xi) to
the value group of k.
12. In the archimedean case analytic spaces are locally metrizable topological spaces; in the non-

archimedean case this is not the case and sequential compactness has been proven in [Poi13b].
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3.3.3. Reducing to the case of the affine spaces. — Go back to the proof of Proposi-
tion 3.9 and to the general notation introduced in paragraphs 1.4-1.5.

One reduces first to the case where X is an affine space An
k . Let X1 = SpecA1

and X2 = SpecA2 be k-affine schemes (of finite type) endowed with an action of the
reductive k-group G and let i : X1 → X2 be a closed G-equivariant embedding. For
α = 1, 2 let Yα be the categorical quotient of Xα by G and let πα : Xα → Yα be the
quotient map. The following diagram of k-schemes

X1 X2

Y1 Y2

π1

i

π2

j

is commutative, where j is the morphism induced between categorical quotients.
Corollary 3.2 affirms that j : Y an

1 → Y an
2 is set-theoretically injective. In particu-

lar, for a subset F of Xan
1 ,

π1(F ) = j−1(π2 ◦ i(F )).

Suppose that the conclusion of Proposition 3.9 is true for the k-analytic space Xan
2 . If

F is a closed G-stable subset of Xan
1 , then i(F ) is a closed G-stable subset of Xan

2 and
its projection π1(i(F )) is closed in Y an

2 . Thus π1(F ) = j−1(π2 ◦ i(F )) is closed in Y an
1 .

One reduces to the case of an affine space taking a closed G-equivariant embedding
i : X → An

k .
Let X be a linear representation An

k = Spec k[t1, . . . , tn] of G. Since the action of
G on X is linear, the action of G on the k-algebra of polynomials A := k[t1, . . . , tn]
respects its grading. In particular, the subalgebra of G-invariants AG is graded and
the inclusion AG ⊂ A is a homogeneous homomorphism of degree 1 of k-graded
algebras.

3.3.4. Using Kempf-Ness theory. — The statement of Proposition 3.9 is compatible
to extending scalars to an analytic extension of k: in the archimedean case one can
take k = C and in the non-archimedean one can suppose that the reductive k-group
G is the generic fibre of a reductive k◦-group G.

Let U be a maximal compact subgroup and take a function u : Xan → R+ which is
continuous, topologically proper, 1-homogeneous, plurisubharmonic and U-invariant
(it exists by Proposition 2.34).

To apply Proposition 3.12 to the function u one has to show that the subset of u-
minimal points on π-fibres Xmin

π (u) is closed. Since u is continuous, plurisubharmonic
and invariant under a maximal compact subgroup, this is true because, according to
Corollary 3.4, the subset of u-minimal points on π-fibres coincide with the set of u-
minimal point on G-orbits, which is a closed subset. Now Proposition 3.12 tells that
the restriction

π : Xmin
π (u) −→ Y an

is topologically proper. As u is topologically proper, it is also surjective. The topolog-
ical spaces Xmin

π (u) and Y an are locally compact, thus the restriction of π to Xmin
π (u)

is a closed map.
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One can now conclude the proof: for a closed G-stable subset F ⊂ Xan,

(3.3.1) π(F ∩Xmin
π (u)) = π(F ).

Together with the fact that π : Xmin
π (u)→ Y an is closed, this conclude the proof.

Let us show (3.3.1). (⊂) Clear. (⊃) One has to show that for every point x ∈ F
there exists a u-minimal point on π-fibre x′ ∈ F such that π(x) = π(x′). Since F is
a closed and G-stable subset, it contains the closure of the orbit G · x of the point
x. Let x′ ∈ G · x a u-minimal point on G-orbit: it exists because the function u is
topologically proper. Since u-minimal points on G-orbits and on π-fibres coincide,
the point x′ is u-minimal on π-fibre; since it belongs to the closure of the orbit of x
one has π(x′) = π(x), which concludes the proof of (3.3.1).

3.4. Continuity of minima on the quotient. — Let X be an affine k-scheme
endowed with an action of reductive k-group G. Let Y be the categorical quotient
of X by G and let π : X → Y be quotient map. Let u : Xan → [−∞,+∞[ be a
plurisubharmonic function which is invariant under the action of a maximal compact
subgroup of G.

Consider the function of u-minima on π-fibres π↓u : Y an → [−∞,+∞[ defined for
every y ∈ Y an as

π↓u(y) := inf
π(x)=y

u(x).

Proposition 3.13. — The map π↓u : Y an → [−∞,+∞[ is upper semi-continuous.
If the function u is continuous and topologically proper, then:

(1) the restriction of π to Xmin
π (u) = Xmin

G (u) is topologically proper and surjective
onto Y an;

(2) the function π↓u is continuous on Y an.

Proof. — To prove the upper semi-continuity of π↓u, one has to show that for every
real number α the subset Vα := {y ∈ Y an : π↓u(y) < α} is open. Theorem 3.3 implies,
for every point x ∈ Xan,

π↓u(π(x)) := inf
π(x′)=π(x)

u(x′) = uG(x) := inf
x′∈G·x

u(x′).

In particular for every real number α:

π−1(Vα) := π−1 ({y ∈ Y an : π↓u(y) < α})
= {x ∈ Xan : π↓u(π(x)) < α}
= {x ∈ Xan : uG(x) < α} .

The function uG : Xan → [−∞,+∞[, x 7→ infx′∈G·x u(x′) is upper semi-continuous
(see Proposition 2.40). The preceding equality implies that Uα := π−1(Vα) is a G-
saturated open subset of Xan. By Corollary 1.7 (4), Vα = π(Uα) is an open subset of
Y an.

Suppose that u is moreover continuous and topologically proper.
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(1) The surjectivity of π : Xmin
π (u)→ Y an follows from the topological properness

of the function u. It remains to show that π : Xmin
π (u)→ Y an is topologically

proper. Let K be a compact subset of Y an. The function π↓u is upper semi-
continuous, thus it is bounded on K: set

α := sup
y∈K

π↓u(y) < +∞.

The inverse image π−1(K) is a closed subset of {x ∈ Xan : π↓u(π(x)) ≤ α},
hence it suffices to show that the subset

{x ∈ Xan : π↓u(π(x)) ≤ α} ∩Xmin
π (u)

is compact. By definition of minimal point on π-fibre the functions π↓u and u
coincide on Xmin

π (u), hence

{x ∈ Xmin
π (u) : π↓u(π(x)) ≤ α} = {x ∈ Xmin

π (u) : u(x) ≤ α}.

The right hand side is a compact subset because the subset Xmin
π (u) is closed

and u is topologically proper.
(2) The topological space Xmin

π (u) is locally compact because it is a closed subset
of Xan, thus the map π : Xmin

π (u)→ Y an is closed (it is topologically proper).
The equality

u|Xmin
π (u) = (π∗π↓u)|Xmin

π (u)

implies that π↓u is continuous.

3.5. Comparison with the result of Kempf-Ness. —

3.5.1. Special plurisubharmonic functions. — In this section we work over the com-
plex numbers. We show how the techniques employed to prove Theorem 1.9 permit
actually to find the result of Kempf-Ness for broader class of functions, called here
special plurisubharmonic. Let X be a complex analytic space.

Definition 3.14. — A function u : X → [−∞,+∞[ is said special plurisubharmonic
if it is plurisubharmonic and for every non-constant holomorphic map ε : D → X,
where D = {z ∈ C : |z| < 1} is the unit disk, the function u ◦ ε is non-constant.

Proposition 3.15. — Special plurisubhamornic functions enjoy the following prop-
erties:

(1) if α > 0 is a positive real number and u is a special plurisubharmonic function
u, αu is special plurisubharmonic; if u, v are special plurisubharmonic, then
u+ v is special plurisubharmonic;

(2) if X is a connected analytic curve and f is a non-constant holomorphic function
then log |f | is a special (pluri)subharmonic function;

(3) if f : X ′ → X is a holomorphic map with discrete fibres and u is a special
plurisubharmonic function on X, then f∗u is special plurisubharmonic on X ′;

(4) strongly plurisubharmonic functions are special plurisubharmonic.

Example 3.16. —
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(1) The converse to (4) is false: for every p > 1 the logarithm of the `p-norm,

log ‖x‖`p = log p
√
|x1|p + · · ·+ |xn|p

is special plurisubharmonic on Cn but it is not strongly plurisubharmonic on
the radial direction. If p 6= 2 (and n ≥ 2) the Kähler form of the metric induced
on OPn−1(1) is not positive definite.

(2) The logarithm of the `∞-norm log ‖x‖`∞ = log max {|x1|, . . . , |xn|} is not spe-
cial plurisubharmonic.

Let G be a complex reductive group acting on a complex affine scheme X of finite
type.

Theorem 3.17. — Let u : X(C) → [−∞,+∞[ be a special plurisubharmonic func-
tion invariant under the action of a maximal compact subgroup U of G. Let x ∈ X(C)
be a point which is u-minimal on its G-orbit. Then,

(1) the orbit G · x is closed;
(2) let Gx be the stabilizer of x; the inclusion

{kg : k ∈ U, g ∈ Gx(C)} ⊂ {g ∈ G(C) : g · x ∈ Xmin
G (u)}

is an equality.

In other words, minimal points contained in a closed G-orbit form a single U-orbit.

Corollary 3.18. — Let u : X(C)→ [−∞,+∞[ be a continuous topologically proper,
special plurisubharmonic function, invariant under the action of a maximal compact
subgroup U of G. Then, the continuous map induced by π,

Xmin
π (u)/U −→ Y an

is a homeomorphism.

Proof. —
(1) By contradiction suppose that the orbit of x is not closed and let S be the

unique closed orbit contained in G · x. According to Lemma 3.7 there exists a
one-parameter subgroup λ : Gm → G with the following properties:

– the limit point x0 := lim
t→0

λ(t) · x exists and belongs to S;
– the image of U(1) is contained in U.

Let us show u(x0) < u(x). The morphism t 7→ λ(t) · x extends to a morphism
λx : A1

k → X which is finite because the point x is not fixed under λ. Consider
the function on ux : C→ [−∞,+∞[,

ux(t) :=

{
u(x0) if t = 0

u(λ(t) · x) otherwise.

The function ux is special (pluri)subharmonic and U(1)-invariant. According
to the Maximum Principle,

lim sup
t→0

= ux(0) = u(x0).
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Proposition 2.28 implies that the function vx : R→ [−∞,+∞[ defined by the
condition vx(log |t|) = ux(|t|) is either identically equal to −∞ or convex. As
ux is special plurisubharmonic, given an open interval I, vx is not constant on
I. Since

lim sup
ξ→−∞

vx(ξ) = lim sup
t→0

ux(t) = u(x0) < +∞

the function vx has to be increasing. Therefore

u(x0) = vx(−∞) < vx(0) = u(x),

which contradicts the minimality of x.
(2) Suppose that the reductive group G is a torus T . According to (1) the orbit

T · x of x is closed. Replacing X with T · x and T with T/Tx (where Tx is
the stabilizer of x) one may assume that the stabilizer of x is finite, hence the
morphism

σx : T −→ X

t 7−→ t · x,

is finite. The function ux(t) := u(t · x) is special plurisubharmonic on T (C)
and it is invariant under the action of U. Identify T (C)/U with Rn (where n
is the dimension of T ) through logarithmic coordinates:

T (C)/U = (C×/U(1))n
∼−→ Rn

(z1, . . . , zn) 7−→ (log |z1|, . . . , log |zn|),

Since ux is invariant under action of U, it descends (through the above iden-
tification) on a continuous function v : Rn → R which is convex according to
the plurisubhamornicity of ux. Moreover, since ux is special plurisubharmonic,
v is non-constant on every segment contained in Rn.

The hypothesis of x being u-minimal reads into the fact that v has a global
minimum in the origin 0 ∈ Rn. To conclude the proof one has to show that the
minimum is not obtained elsewhere: this is true because, if the global minimum
was obtained on ξ ∈ Rn − {0}, by convexity the function v would be constant
on the segment [0, ξ] = {tξ : t ∈ [0, 1]}.

Let us go back to the case of an arbitrary complex reductive group G. Let
g ∈ G(C) be such that g · x is a u-minimal point on the G-orbit. By Cartan’s
decomposition there exist elements k ∈ U and t ∈ T (C) such that g = kt
and T is a maximal torus of G such that T (C) ∩U is the maximal compact
subgroup of T . Since the function u is U-invariant,

u(g · x) = u(kt · x) = u(t · x),

hence t · x is again a u-minimal point on the G-orbit. By the case of a torus
there exists k′ ∈ U ∩ T (C) and t′ ∈ Tx(C) such that t = k′t′. Thus

g = kt = (kk′)t′ ∈ {kg : k ∈ U, g ∈ Gx(C)}

which concludes the proof.
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4. Metric on GIT quotients

4.1. Extended metrics. —

4.1.1. Definition. — Let X be a k-scheme of finite type and L be an invertible sheaf
on it. Consider the total space of L over X,

V(L) = SpecX(SymOX L
∨).

For a k-scheme S the S-valued points ofV(L) are in functorial bijection with the set of
couples (x, s) made of an S-valued point x ∈ X(S) and a global section s ∈ Γ(S, x∗L).

Consider the k-analytic spaces Xan and V(L)an associated respectively to X and
V(L).

Definition 4.1. — A map ‖ · ‖L : V(L)an → R+ is an extended metric on L if for
every analytic extension K of k, the composite map

‖ · ‖L,K : V(L,K) −→ V(L)an
‖·‖L−→ R+,

is a norm on the fibres of L: for every K-point x ∈ X(K) the map

s ∈ x∗L 7→ ‖s‖L(x) := ‖(x, s)‖L,K
is a norm on the K-vector space x∗L. An extended metric is said to be continuous if
it is continuous as a map on V(L)an.

Remark 4.2. — Let ‖ · ‖L be an extended metric on L. For every analytic open
subset U ⊂ Xan one can consider the function ‖s‖L : U → R+, x 7→ ‖s‖L(x).

On the other hand, consider the data, for every analytic open subset U ⊂ Xan and
every section s ∈ Γ(U,Lan), of a function ‖s‖L,U : U → R+ satisfying the following
properties for all x ∈ U :

– ‖s‖L,U (x) = 0 if and only if s(x) = 0;
– ‖λs‖L,U (x) = |λ|‖s‖L(x) for all λ ∈ k;
– for an open subset V ⊂ U ,

‖s‖L,U |V = ‖s‖L,V .

Then the collection of maps {‖s‖L,U} defines an extended metric on L.

In the complex case, the notion of extended metric is the same of the notion of
metric on a line bundle. In the real case, an extended metric is a metric on the
associated complex line bundle invariant under complex conjugation.

4.1.2. Constructions. — Usual constructions on metrics (dual, tensor powers...) are
available also for extended metrics. For instance the dual metric and the tensor powers
of a metric are defined as follows. Let ‖·‖L be an extended metric on L, K an analytic
extension of k, x ∈ X(K) a K-valued point of X and s ∈ x∗L. For a section ϕ of
x∗L∨ and a section s ∈ x∗L, set

‖ϕ‖L∨,K(x) := sup
t∈x∗L−{0}

|ϕ(t)|
‖t‖L,K(x)

,

‖s⊗n‖L⊗n,K(x) := ‖s‖L,K(x)n.
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The real number ‖ϕ‖L∨,K(x) depends only on the image of (x, ϕ) in V(L∨)an: the
so-obtained extended metric on L∨ is called the dual metric. Analogously one gets
an extended metric on L⊗n called the n-th tensor power of ‖ · ‖L.

Let K be an analytic extension of k. If ‖ · ‖L is an extended metric on L then the
function

‖ · ‖L ◦ prV(L),K/k : V(L)anK −→ R+

is an extended metric on the pull-back LK of L to XK := X ×k K.

4.1.3. Extended metric associated to integral models. — Suppose k non-archimedean
and X proper. Let X be a proper k◦-model of X, that is, a proper k◦-scheme together
with an isomorphism of k-schemes α : X ' X ×k◦ k. Let L be an invertible sheaf on
X together with an isomorphism β : α∗(L|α(X)) ' L. The construction that follows
depends on the isomorphisms α and β this dependence will not be indicated in order
not to burden notation.

Define an extended metric ‖ · ‖L in the following way. Let K be an analytic
extension of k and let x ∈ X(K) be a K-valued point of X. The ring of integers K◦
of K is a valuation ring and the valuative criterion properness implies that x lifts to a
K◦-valued point εx : SpecK◦ → X . The K◦-module ε∗xL is a K◦-module free of rank
1: fix a generator s0 of ε∗xL. Every section s ∈ x∗L ' ε∗xL ⊗K◦ K writes as s = λs0

for a unique λ ∈ K. Set:
‖s‖L,K(x) := |λ|K .

The real number ‖s‖L,K(x) only depends on the image of (x, s) in V(L)an and the
induced map

‖ · ‖L : V(L)an −→ R+,

is a continuous extended metric called the extended metric associated to L.
The construction of the extended metric is compatible with the operations on

invertible sheaves: for instance the dual of the extended metric ‖ ·‖L∨ is the extended
metric associated to the dual invertible sheaf L∨. If K is analytic extension then the
extended metric ‖ · ‖L ◦ prK/k is the extended metric associated to the pull-back LK◦
of L to XK◦ = X ×k◦ K◦.

Suppose k trivially or discretely valued (thus its ring of integers k◦ is noetherian)
and that L is very ample. The map

θ : V(L∨) = SpecX(SymOX L) −→ X̂ = Spec
⊕
d≥0

Γ(X,L⊗d)

is surjective, proper and it induces an isomorphism of the complementary of the zero
section in V(L∨) with X̂ − Spec Γ(X,OX). For a point x ∈ X̂an set

uL(x) := sup
f∈Γ(X ,L)

|f(x)|.

For a basis f1, . . . , fn of the k◦-module Γ(X ,L),

uL(x) = max
i=1,...,n

|fi(x)|.
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Proposition 4.3. — Suppose L generated by its global sections and L very ample.
With the notations introduced above,

‖ · ‖L∨ = uL ◦ θ.

In particular the function log ‖ · ‖L∨ : V(L∨)an → [−∞,+∞[ is a continuous, topo-
logically proper plurisubharmonic function on V(L∨)an.

Proof. — Let K be an analytic extension and K◦ its ring of integers. Let x be a
K-valued point of X and εx the unique K◦-valued point of X which lifts x. Since L is
generated by its global sections, there exists a global section f0 ∈ Γ(X ,L) such that
ε∗xf0 is a basis of the K◦-module ε∗xL. Consider the generator s0 of ε∗xL∨ defined by
the condition s0(ε∗xf0) = 1.

For λ ∈ K let s = λs0: by definition ‖s‖L,K(x) = |λ|K . Then,

|f0(x, s)|K = |λ|K |f0(x, s0)|K = |λ|K = ‖s‖L∨,K(x).

For a global section f ∈ Γ(X ,L),

|f(x, s)|K = |λ|K |f(x, s0)|K ≤ |λ|K = ‖s‖L∨,K(x),

since f(x, s0) belongs to k◦. This concludes the proof.

Corollary 4.4. — If L is ample, then the continuous map

log ‖ · ‖L∨ : V(L∨)an −→ [−∞,+∞[

is plurisubharmonic.

4.2. Extended metric on the quotient. —

4.2.1. Definition of the extended metric. — Let X be a projective k-scheme endowed
with an action of a reductive k-group G and a G-linearized ample invertible sheaf L.
The graded k-algebra of G-invariants

AG :=
⊕
d≥0

Γ(X,L⊗d)G ⊂ A :=
⊕
d≥0

Γ(X,L⊗d),

is of finite type. Denote by Xss the open subset of semi-stable points. The inclusion
of AG in A induces a G-invariant morphism of k-schemes

π : Xss −→ Y := ProjAG,

which makes Y the categorical quotient of Xss by G. Since AG is of finite type, the
k-scheme Y is projective: for every positive integer D ≥ 1 divisible enough there exist
an ample invertible sheaf MD on Y and an isomorphism of invertible sheaves

ϕD : π∗MD
∼−→ L⊗D|Xss

compatible with the equivariant action ofG. The isomorphism ϕD induces a surjective
morphism of k-schemes

πD : V(L⊗D|Xss) −→ V(MD).

Let ‖ · ‖L be a continuous extended metric on L and for a point t ∈ V(MD)an set

‖t‖MD
:= sup

πD(s)=t

‖s‖L⊗D ∈ [0,+∞],
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where the supremum ranges on the points s ∈ V(L⊗D|Xss)
an.

Proposition 4.5. — With the notation introduced here above, the function ‖ · ‖MD

is an extended metric on MD.

Proof. — Let K be an analytic extension of k which is algebraically closed and non-
trivially valued. Let y ∈ Y (K) be a K-point of Y and t ∈ y∗MD a section over y.
Since Y (K) is dense in Y an

K and the extended metric ‖ · ‖L is continuous,

‖t‖MD,K(y) = sup
x∈Xss(K)
π(x)=y

‖π∗t‖L⊗D,K(x) ∈ [0,+∞].

If one shows that the function ‖ · ‖MD
does not take the value +∞, it is clear from

the previous formula that ‖ · ‖MD
is an extended metric. Up to taking a power of

MD, the line bundle MD can be assumed to be generated by its global sections. It
suffices to prove that for every global section s ∈ Γ(Y,MD) every point y ∈ Y an,

‖t‖MD
(y) < +∞.

The crucial point is that every global section t ∈ Γ(Y,MD) ofMD corresponds through
the isomorphism ϕD to a G-invariant global section t̃ ∈ Γ(X,L⊗D)G of L⊗D which
vanishes identically on the set of unstable points X −Xss. For every point y ∈ Y an,

‖t‖MD
(y) ≤ sup

x∈Xan
‖t̃‖L⊗D (x)

and the right-hand is a real number according to the compactness of Xan and the
continuity of ‖ · ‖L.

Theorem 4.6. — Suppose that:
(1) the extended metric ‖ · ‖L is invariant under a maximal compact subgroup of

G;
(2) the dual extended metric ‖ · ‖L∨ : V(L∨)an → R+ is a plurisubharmonic func-

tion.
Then the extended metric ‖ · ‖MD

is continuous.

4.2.2. Passing to the affine cones. — In order to prove the theorem it is convenient
to introduce some further notation. The statement is compatible with taking powers
of L and MD. Suppose D such that L⊗D and MD are very ample. Consider the
following graded k-algebras of finite type:

AD :=
⊕
d≥0

Γ(X,L⊗dD),

AGD :=
⊕
d≥0

Γ(X,M⊗dD ) =
⊕
d≥0

Γ(X,L⊗dD)G.

The k-schemes X and Y are still identified with the homogeneous spectrum respec-
tively of AD and AGD. The inclusion of AGD in AD induces a morphism of k-schemes,

π̂ : X̂ := SpecAD −→ Ŷ := SpecAGD,
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which makes Ŷ the categorical quotient of X̂ under the action of G (see [Ses77,
Theorem 3]). The morphsim π̂ also fits into the following commutative diagram:

V(L∨⊗D|Xss ) V(L∨⊗D) X̂

V(M∨D) Ŷ

πD

θL⊗D

π̂

θMD

where θL⊗D and θMD
are the morphisms. The morphisms θL⊗D and θMD

are
surjective and proper, and they induce an open immersion outside the zero section
of V(L∨⊗D) and V(M∨D). Therefore the extended metrics ‖ · ‖L∨⊗D and ‖ · ‖M∨D
descend on functions uL⊗D and uMD

respectively on X̂an and Ŷ an. By definition of
the extended metric ‖ · ‖MD

, for every y ∈ Ŷ an,

(4.2.1) uMD
(y) = inf

π̂(x)=y
uL∨⊗D (x) =: π̂↓uL⊗D (y).

(passing to the dual metrics switches the supremum with the infimum).

Proof of Theorem 4.6. — The function uL⊗D inherits all the properties of the func-
tion ‖ · ‖L∨⊗D : it is continuous, topologically proper, plurisubharmonic and invariant
under a maximal compact subgroup of G. According to Proposition 3.13 the function
uMD

is continuous, hence the extended metric ‖ · ‖MD
is continuous too.

4.3. Compatibility with entire models. —

4.3.1. Notation and statements. — Suppose that k is a non-archimedean complete
field which is discretely or trivially valued (thus its ring of integers k◦ is noetherian).
Let G be a reductive k◦-group acting on a flat and projective k◦-scheme X equipped
with an ample G-linearized invertible sheaf L.

Here the technical hypothesis to make Seshadri’s theorem work is to assume that
the ring of integers k◦ is universally japanese.

Definition 4.7. — An integral domain A is said to be japanese if for every finite
extension K ′ of its fractions field K = Frac(A) the integral closure of A in K ′ is an
A-module of finite type (i.e. a finite A-algebra). A ring A us said to be universally
japanese if every integral A-algebra of finite type is japanese.

For instance, the ring of integers of k is universally japanese when k is a finite
extension of Qp or when k = F((t)) for some field F [Gro64, Corollaire 7.7.4].

Then the fundamental result of Seshadri [Ses77, Theorem 2] holds: the graded
k◦-algebra of G-invariants

AG :=
⊕
d≥0

Γ(X ,L⊗d)G ⊂ A :=
⊕
d≥0

Γ(X ,L⊗d)

is of finite type. Denote by X ss the open subset of semi-stable points, by Y its
categorical quotient and π : X ss → Y the canonical projection. For every D divisible
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enough letMD be the ample line bundle on Y deduced from L⊗D and

ϕD : π∗MD −→ L⊗D|X ss ,

the G-equivariant isomorphism of invertible sheaves.
Denote with straight capital letters the k-schemes obtained as generic fibre of the

k◦-schemes introduced previously (for instance X ×k◦ k will be denoted by X). Let
‖ · ‖L be the continuous extended metric on L associated to L.

Definition 4.8. — With the notations introduced above, let Ω be an analytic ex-
tension of k which is algebraically closed and non-trivially valued. A semi-stable point
x ∈ X (Ω) is:

(1) minimal if for a non-zero section s ∈ x∗L∨ and for every g ∈ G(Ω), then

‖s‖L∨,Ω(x) ≤ ‖g · s‖L∨,Ω(g · x).

This does not depend on the chosen section s.
(2) residually semi-stable if the reduction (13) x̃ ∈ X (Ω̃) of x is a semi-stable point

of the Ω̃-scheme X ×k◦ Ω̃ under the action of the Ω̃-reductive group G ×k◦ Ω̃.

Let x ∈ Xan be a semi-stable point and Ω be the completion of an algebraic closure
of κ̂(x). The point x is minimal (resp. residually semi-stable) if the associated Ω-point
xΩ ∈ X (Ω) is minimal (resp. residually semi-stable.)

Theorem 4.9. — Suppose that k◦ is universally japanese. With the notations intro-
duced above, for every semi-stable point x ∈ Xan the following are equivalent:

(1) x is minimal;
(2) x is residually semi-stable.

Corollary 4.10. — Under the hypotheses of Theorem 4.9, let Ω be an analytic ex-
tension of k which is algebraically closed and non-trivially valued. Let x ∈ X(Ω) be a
semi-stable point.

Then, there exists a semi-stable minimal point x0 ∈ X(Ω) lying in the closure of
the orbit of x and whose orbit is closed (in Xss).

In the case of a projective space and k is a finite extension of Qp, this result was
proven by Burnol [Bur92, Proposition 1]. We just adapt the argument of Burnol to
the framework of Berkovich spaces.

This Theorem and its Corollary will be proved in the next section. As a conse-
quence, consider the following metric on MD:

(1) the extended metric ‖ · ‖MD
associated to the integral modelMD;

(2) the extended metric ‖ · ‖MD
defined in the previous section (see paragraph

4.2.1).

13. Since X is projective, by the valuative criterion of properness the point x lifts to a Ω◦-valued
point of εx : Spec Ω◦ → X . The reduction of x, denoted x̃, is the reduction of εx modulo the maximal
ideal of Ω◦.
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Theorem 4.11. — Suppose that k◦ is universally japanese. With the notation in-
troduced above, the metrics ‖ · ‖MD

and ‖ · ‖MD
coincide.

In particular, for every analytic extension Ω of k which is algebraically closed and
non trivially valued,

‖t‖MD,Ω(y) = sup
π(x)=y

‖π∗t‖L⊗D,Ω(x)

where the supremum is ranging on the semi-stable Ω-points of X.

4.3.2. Some more notations. — Suppose that the integer D be such that the invert-
ible sheaves L⊗D and MD are very ample. Borrow the notations from paragraph
4.2.2. According to (4.2.1), for every y ∈ Ŷ an,

uMD
(y) = π̂↓uL⊗D (y) := inf

π̂(x)=y
uL⊗D (x).

Consider the real-valued functions uL⊗D , uMD
defined respectively for x ∈ X̂an and

y ∈ Ŷ an by

uL⊗D (x) = sup
f∈Γ(X ,L⊗D)

|f(x)|,

uMD
(y) = sup

g∈Γ(Y,MD)

|g(y)|.

Since L⊗D andMD are supposed very ample, according to Proposition 4.3, one has
‖ · ‖L⊗D = uL⊗D ◦ θL⊗D and ‖ · ‖MD

= uMD
◦ θMD

. The identification

Γ(Y,MD) ' Γ(X ,L)G ,

yields an inclusion Γ(Y,MD) ⊂ Γ(X ,L⊗D). Thus, for x ∈ X̂an,

(4.3.1) uMD
(π̂(x)) ≤ uL⊗D (x).

Lemma 4.12. — With the notations introduced above, let x ∈ X̂an be a point that
does not belong to the analytification of vertex OX of the affine cone X̂,

OX = Spec Γ(X,OX) ⊂ X̂ = Spec
⊕
d≥0

Γ(X,L⊗dD).

Let [x] be the associated point of Xan. The following are equivalent:
(1) the point [x] is residually semi-stable;
(2) uL⊗D (x) = uMD

(π̂(x)).

Proof. — Up to rescaling x one may assume uL⊗D (x) = 1. Let Ω be the completion
of an algebraic closure of κ̂(x) and let εx : Spec Ω◦ → X be the morphism associated
to the point [x] by the valuative criterion of properness.

(1)⇒ (2) SinceMD is supposed very ample there exists a G-invariant global section
f ∈ Γ(X ,L⊗D) such that ε∗xf is a basis of the invertible Ω◦-module ε∗xL⊗D. In other
words, the element f(x) ∈ Ω◦ is a unit. This gives

uMD
(π̂(x)) = 1 = uL⊗D (x).
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(2) ⇒ (1) The equality uMD
(π̂(x)) = 1 implies there exists a G-invariant global

section f ∈ Γ(X ,L⊗D) such that f(x) ∈ Ω◦ is a unit, thus its reduction in Ω̃ is
non-zero. In particular the reduction x̃ of x is semi-stable.

Proof of Theorem 4.11. — Since the construction of the extended metric ‖·‖L, ‖·‖MD

and ‖·‖MD
are compatible with taking powers of L andMD, one may the line bundles

L⊗D andMD very ample.
The equality of metrics ‖ · ‖MD

= ‖ · ‖MD
is equivalent to the equality of functions

uMD
= uMD

. For all y ∈ Ŷ an, the inequality (4.3.1) entails

uMD
(y) ≤ uMD

(y) := inf
π̂(x)=y

uL⊗D (x).

It remains to prove the converse inequality. Let y ∈ Ŷ an be a point. Since the
function uL⊗D on X̂an is topologically proper, it attains a mininum on a point x in
the fibre π̂−1(y). According to Theorem 4.9 the projection [x] of the point x in Xan

is residually semi-stable. Lemma 4.12 (2) implies

uL⊗D (x) = uMD
(π̂(x)) = uMD

(y).

In particular,
uMD

(y) ≥ inf
π̂(x′)=y

uL⊗D (x′).

Proof of Theorem 4.9. — The implication (1) ⇒ (2) follows from inequality (4.3.1)
and Lemma 4.12 (2).

(2) ⇒ (1) Denote by X̂ the affine cone over the projective k◦-scheme X with the
respect to the very ample invertible sheaf L⊗D, that is, the spectrum of the graded
k◦-algebra

AD :=
⊕
d≥0

Γ(X ,L⊗dD).

Up to rescaling the point x suppose uL⊗D (x) = 1. This is equivalent to say that x
comes from a k◦-valued point of X̂ whose reduction x̃ ∈ X̂ (k̃) does not belong to the
vertex OX = Spec Γ(X ,OX ) of X̂ .

Arguing by contradiction suppose that the point [x] is not residually semi-stable.
This means that its reduction [x̃] is not a semi-stable point of the K̃-scheme X ×k◦ K̃.
Applying the Hilbert-Mumford criterion of semi-stability to the point [x̃], there exist
a finite extension Ω of K and a one-parameter subgroup

λ̃ : Gm,Ω̃ −→ G ×k◦ Ω̃,

that destabilizes the point [x̃]: in other words, if OX = Spec Γ(X ,OX ) denotes the
vertex of the affine cone X̂ ,

lim
t→0

λ̃(t) · x̃ ∈ OX ×k◦ Ω̃.

According to [GP11, Exp. XI, Théorème 4.1] the k◦-scheme that parametrizes the
subgroups of multiplicative type of the k◦-group scheme G is smooth over k◦. Since
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the valuation ring Ω◦ is henselian, by “Hensel’s Lemma” [GP11, Exp. XI, Corollaire
1.11] the one-parameter subgroup λ̃ lifts to a one-parameter subgroup

λ : T −→ G ×k◦ Ω◦,

where T is a subgroup of multiplicative type (necessarily a torus). Thus, up to
replacing Ω by a finite extension, one may assume that the torus T is the multiplicative
group Gm,Ω◦ . The associated morphism of Ω-analytic spaces λ : Gan

m,Ω → Gan
Ω sends

the subgroup U(1) into the maximal compact subgroup of Gan
Ω associated to the

Ω◦-reductive group G ×k◦ Ω◦. Consider the map ϕx : Gan
m,Ω → R+ defined by

ϕx(t) := uL⊗D (λ(t) · x).

The function ϕx is continuous and invariant under the action of the subgroup U(1).
Define the function ψx : R→ R by the condition: for every point t ∈ Gan

m,Ω,

ψx(log |t|) = logϕx(t).

The function ψx is continuous and, since the point x is supposed uL⊗D -minimal on
the G-orbit, it has a global minimum on 0:

ψx(0) = log uL⊗D (x).

Since uL⊗D (x) = 1 one has ψx(0) = 0. To conclude the proof it suffices to prove that
the function ψx takes negative values, contradicting the minimality of the point x.

The group Gm,Ω◦ acts linearly on the Ω◦-module E := Γ(X ,L⊗D)⊗Ω◦ through the
one-parameter subgroup λ. Thus E may be decomposed in its isotypical components,

E =
⊕
m∈Z

Em,

where, for every integer m ∈ Z, Em = {f ∈ E : λ(t) · f = tmf}. For m ∈ Z set

um(x) = sup
f∈Em

|f(x)|.

The preceding decomposition gives, for every point t ∈ Gan
m,Ω,

ϕx(t) = uL⊗D (λ(t) · x) = sup
m∈Z
{|t|mum(x)} .

Taking the logarithm of the last expression and writing ξ = log |t|,

ψx(ξ) = sup
m∈Z

um(x) 6=0

{mξ + log um(x)} .

By assumption uL⊗D (x) = 1 for every integer m, thus log um(x) ≤ 0. Furthermore,
for every negative integer m ≤ 0, one has log um(x) < 0 because the special fibre λ̃ of
λ destabilises the point x̃. Summing up these considerations for every negative real
number ξ < 0:

– if m > 0 then mξ + log um(x) ≤ mξ < 0;
– if m = 0 then mξ + log um(x) = log um(x) < 0;
– if m < 0 then mξ + log um(x) < 0 if and only if ξ > − log um(x)/m because
− log um(x)/m is negative.
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Therefore ψx(ξ) is negative for every real number ξ belonging to the interval]
max
m<0

{
− log um(x)

m

}
, 0

[
.

This conclude the proof of Theorem 4.9 thus of Theorem 1.17.

Proof of Corollary 4.10. — Up to extending the scalars, suppose k = Ω and k alge-
braically closed and non-trivially valued. Moreover, the orbit of x may be supposed
closed in Xss. Consider the Zariski scheme-theoretic closure Z of G ·x in X , which is
a flat scheme over k◦ and the structural morphism Z → Spec k◦ is surjective.

The closed subscheme Z is stable under the action of G. Indeed, it coincides with
the scheme-theoretic closure of the image of the morphism

G (id,εx)−→ G ×k◦ X
σ−→ X ,

where σ : G ×k◦ X → X is the morphism defining the action of G on X and
εx : Spec Ω◦ → X is the morphism induced by x given by the valuative criterion of
properness. The intersection X ss ∩Z is an open subset of Z hence a flat scheme over
k◦.

Claim. — The structural morphism α : X ss ∩ Z → Spec k◦ is surjective.

Proof of the Claim. — Take a representative x̂ ∈ X̂(k) of x (that does not belong
to the vertex OX of X̂). Since the function uL⊗D is topologically proper and the
orbit of x̂ is closed, the function uL⊗D attains its minimum on a point ŷ ∈ Gan · x̂
(whose completed residue field can a priori be a huge analytic extension of k). The
image y ∈ Xan of ŷ is therefore a minimal point in the sense of Definition 4.8, thus,
according to Theorem 4.9, residually semi-stable. In other words, the morphism
εy : Spec κ̂(y)◦ → X given by the valuative criterion of properness factors through
X ss ∩ Z,

X ss ∩ Z X

Spec κ̂(y)◦ Spec k◦

εy

In particular the morphism α : X ss ∩ Z → Spec k◦ is surjective.

Since the morphism α is flat and surjective, it admits a section (recall that k
is algebraically closed). This section gives the residually semi-stable (thus minimal
according to Theorem 4.9) point that one was looking for.

The fact that α admits a section can be found in [Gro67, 17.6.2 and 18.5.11 (c’)]
or, in a more elementary way, proved as follows:

Lemma 4.13. — Let k be a complete non-archimedean field, which is non-trivially
valued and algebraically closed. Let S be a flat scheme of finite type over k◦.

If the structural morphism $ : S → Spec k◦ is surjective, then there exists a section
s : Spec k◦ → S of $.
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Proof. — It suffices to show when S is affine, that is S = SpecA where A is a flat
k◦-algebra of finite type. Consider the k-algebra of finite type A := A ⊗k◦ k. Since
A is torsion free, identify it with its image through the canonical homomorphism
A → A. For every f ∈ A set:

‖f‖A := inf{|λ| : f/λ ∈ A, λ ∈ k×}.
The surjectivity of the structural morphism $ : S → Spec k◦ translates into the fact
that ‖ · ‖A is not identically zero on A. Thus ‖ · ‖A is a sub-multiplicative semi-norm
on A. Let Â be the completion of A with the respect to ‖ · ‖A.

Let S be the generic fibre of S and let San be its analytification. Then the spectrum
of the Banach k-algebra Â (see [Ber90, §1.2]) is given by

M(Â) := {s ∈ San : |f(s)| ≤ ‖f‖A for all f ∈ A}.

Since Â is not reduced to 0, according to [Ber90, Theorem 1.2.1], the topological
spaceM(Â) is non-empty and compact. Moreover, the Banach k-algebra Â is strictly
affinoid in the sense of Berkovich (see [RTW10, 1.2.4]): since k is algebraically closed,
the k-pointsM(Â)∩S(k) are dense inM(Â). In particular, there is at least one such
a point.



CHAPTER 4

HEIGHTS ON GIT QUOTIENTS: FURTHER RESULTS

In this chapter we prove some finer results concerning the height on GIT quotients,
namely the Fundamental Formula (that here is an identity, not an inequality as in
Chaapter 1), a compatibility with twists by principal bundles and a lower bound
refining the one presented in Chapter 1. This chapter is organised as follows.

Section 1 is an introduction to this chapter: we state here its main results, we collect
some facts from Chapter 3 and we take the opportunity to deduce the Fundamental
Formula (Theorem 1.5) from these.

In Section 2 we present some examples of height on the quotient. Firstly we
explicitly compute it in the case of endomorphisms of a vector space: although being
elementary, the proof of the lower bound in Section 4 is based on it. Secondly, in
view of the of Fundamental Formula, it is interesting to compare the lowest height in
the orbit of a semi-stable point and the height of the projection on the GIT quotient.
We show through three examples that the situation is more complicate than what we
would hope for.

In Section 3 we illustrate the compatibility of the construction of the GIT quotient
with respect to the twist of the initial data by a hermitian principal bundle. From
this compatibility we draw a canonical isomorphism between quotients which is the
geometric reason underlying the lower bounds proved by Bost, Gasbarri and Zhang.
Hopefully, this should make more explicit the geometrical content of this lower bound
and its relationship with the former work of Bogomolov.

In Section 4 we end up the global part proving an explicit version of this lower
bound which generalises and improves a result of Chen and the lower bound given in
Chapter 1 (see Theorem 2.1). The proof here is just a reduction to the case of the
endomorphisms of a vector space (which is explicitly computed in the examples). In
contrast with its simplicity, the lower bound is sometimes optimal (notably for the
case of products of SL2).

1. Statement of the main results
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1.1. Notation. — Let K be a number field and oK be its ring of integers. Let
X be a flat and projective oK-scheme endowed with the action of a oK-reductive
group (1) G. Suppose that X is equipped with a G-linearized ample invertible sheaf
L. According to a fundamental result of Seshadri [Ses77, Theorem 2] the graded
oK-algebra of G-invariants,

AG :=
⊕
d≥0

Γ(X ,L⊗d)G ⊂ A :=
⊕
d≥0

Γ(X ,L⊗d),

is of finite type.
Denote by X ss the open subset of semi-stable points, i.e. the set of points x ∈ X

such that there exist an integer d ≥ 1 and a G-invariant global section s of L⊗d that
does not vanish at x. The inclusion of AG in A induces a G-invariant morphism of
oK-schemes,

π : X ss −→ Y := ProjAG ,
which makes Y the categorical quotient of X ss by G [Ses77, Theorem 4].

Since AG is of finite type, the oK-scheme Y is projective: for every positive integer
D ≥ 1 divisible enough there exist an ample invertible sheaf MD on Y and an
isomorphism of invertible sheaves,

ϕD : π∗MD −→ L⊗D|X ss ,

compatible with the equivariant action of G.
To complete the “arakelovian” data, for every complex embedding σ : K → C

endow the invertible sheaf L|Xσ(C) with a continuous metric ‖ · ‖L,σ. Suppose that
the following conditions are satisfied:

– (Semi-positivity): the Kähler form of the metric ‖ ·‖L,σ is semi-positive (in the
sense of distributions); equivalently for every analytic open subset U ⊂ Xσ(C)
and every section s ∈ Γ(U,L) the function − log ‖s‖L,σ is plurisubharmonic;

– (Invariance): the metric ‖ · ‖L,σ is invariant under the action of a maximal
compact subgroup of Gσ(C).

Suppose that the family of metrics {‖ · ‖L,σ : σ : K → C} is invariant under complex
conjugation. Denote by L the corresponding hermitian invertible sheaf.

Let σ : K → C be a complex embedding. Define a metric on MD as follows: for
every point y ∈ Yσ(C) and every section t ∈ y∗MD set

‖t‖MD,σ(y) := sup
π(x)=y

‖π∗t‖L⊗D,σ(x).

Theorem 1.1 (cf. Theorem 1.13 in Chapter 3). — Under the assumptions
made on the metric ‖ · ‖L,σ (semi-positivity and invariance under the action of a
maximal compact subgroup) the metric ‖ · ‖MD,σ is continuous.

1. Let S be a scheme. A S-group scheme G is said to reductive (or simply a S-reductive group)
if the following conditions are satisfied:

(1) G is affine, of finite type and smooth over S;
(2) for every geometric point s : Spec Ω→ S (where Ω is an algebraically closed field) the fibre

Gs = G×S s is a connected reductive group over Ω.
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The family of metric {‖ · ‖MD,σ : σ : K → C} just defined is invariant under
complex conjugation.

Definition 1.2. — With the notations introduced above, denote byMD the corre-
sponding hermitian invertible sheaf. Consider the function hM : Y(Q̄) → R defined,
for every Q ∈ Y(Q̄), by

hM(Q) :=
1

D
hMD

(Q),

which does not depend on D. The height hM is called the height on the quotient
(with respect to X , L and G).

1.2. Instability measure. — Let v ∈ VK a place of K. If the place v is non
archimedean denote ‖ · ‖L,v the continuous and bounded metric induced by the entire
model L.

Definition 1.3. — Let x be a Cv point of X . The (v-adic) instability measure is

ιv(x) := − log sup
g∈G(Cv)

‖g · s‖L,v(g · x)

‖s‖L,v(x)
∈ [−∞, 0]

where s ∈ x∗L is a non-zero section. This is independent on the chosen section s.
The point x is said to be minimal at the place v (with the respect to the metric

‖ · ‖L,v and the action of G) it its instability measure vanishes, ιv(x) = 0.

Proposition 1.4. — Let x be a Cv-point of X . Then,
(1) the instability measure ιv(x) takes the value −∞ if and only if the point x is

not semi-stable;
(2) if v is a non-archimedean place over a prime number p, the instability measure

ιv(x) takes the value 0 if and only if the point x is residually semi-stable, that
is, the reduction (2) x̃ of x is a semi-stable Fp-point of X ×oK Fp under the
action of G ×oK Fp.

These assertions are respectively consequences of Theorem 1.9 and Theorem 4.9 in
Chapter 3.

1.3. Statement and proof of the Fundamental Formula. —

Theorem 1.5 (Fundamental Formula). — Let P ∈ X ss(K) be a semi-stable K-
point. Then the instability measures ιv(P ) are almost all zero and

hL(P ) +
1

[K : Q]

∑
v∈VK

ιv(P ) = hM(π(P )).

2. Since X is projective, by the valuative criterion of properness the point x lifts to a ov-point of
X , where ov is the ring of integers of Cv . Taking the reduction mod p one gets a Fp point x̃ of X
which called the reduction of x.
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Proof. — Let P ∈ X ss(K) be a semi-stable K-point of X and let t ∈ π(P )∗MD be a
non zero section. Then,

[K : Q]hMD
(π(P )) =

∑
v∈VK

− log ‖t‖MD,v(π(P ))

=
∑
v∈VK

− log sup
π(P ′)=π(P )

‖π∗t‖L⊗D,v(P ′)(1.3.1)

where in the second equality one uses the very definition of the metric ‖ · ‖MD,σ for
the archimedean places and Theorem 1.17 in Chapter 3 for the non-archimedean ones.
According to Theorem 1.16 in Chapter 3:

[K : Q]hMD
(π(P )) =

∑
v∈VK

− log sup
g∈G(Cv)

‖π∗t‖L⊗D,v(g · P )

=
∑
v∈VK

− log sup
g∈G(Cv)

‖π∗t‖L⊗D,v(g · P )

‖π∗t‖L⊗D,v(P )
,

+
∑
v∈VK

− log ‖π∗t‖L⊗D,v(P )

= D

( ∑
v∈VK

ιv(P ) + [K : Q]hL(P )

)
,

where one uses the definition the v-adic instability measure of P (the section π∗t is
G-invariant, thus g · π∗t = π∗t for every g ∈ G(Cv)). This concludes the proof of the
Fundamental Formula.

1.4. The case of a projective space. — Let F be an hermitian vector bundle
over oK . Suppose that an oK-reductive group G acts linearly on F and that, for every
embedding σ : K → C, the hermitian norm ‖ · ‖F,σ is invariant under the action of a
maximal compact subgroup Uσ of Gσ(C).

The oK-reductive group G acts on the projective space X = P(F) and in an
equivariant way on the invertible sheaf L = O(1). For every embedding σ : K → C
endow the invertible sheaf O(1)|Xσ(C) with the Fubini-Study metric ‖·‖O(1),σ induced
by the hermitian norm ‖ · ‖F,σ. By hypothesis, the metric ‖ · ‖O(1),σ under a maximal
compact subgroup of Gσ(C) and its curvature form is positive.

Let L be the so-obtained hermitian line bundle and borrow the general notation
introduced in paragraph 1.1.

Let v be a place ofK. Let x be a non-zero vector of F⊗oKCv and [x] the associated
Cv-point of X . By definition,

ιv([x]) = log inf
g∈G(Cv)

‖g · x‖F,v
‖x‖F,v

,

where the norm ‖ · ‖F,v has been extended to F ⊗oK Cv (and denote again by ‖ · ‖F,v
its extension). In this framework the Fundamental Formula reads as follows:
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Corollary 1.6. — Let v be a non-zero vector in F ⊗oK K and let P = [v] be the
associated K-point of X . If the point P is semi-stable, then:

hM(π(P )) = hOF (1)([v]) +
∑
v∈VK

log inf
g∈G(Cv)

‖g · x‖F,v
‖x‖F,v

=
∑
v∈VK

log inf
g∈G(Cv)

‖g · x‖F,v.

In this case the result was obtained by Burnol [Bur92, Proposition 5].
Minimality at archimedean places can be expressed in terms of vanishing of the

moment map. Let σ : K → C be a complex embedding of K. A moment map
µσ : P(F)σ(C)→ (LieUσ)∨ for the action of Gσ(C) onP(F)σ(C) is defined as follows.
For a non-zero vector x ∈ F ⊗σ C, consider the linear map µσ(x) defined by, for
a ∈ LieUσ,

µσ(x).a :=
1

2πi
· 〈ad(a, x), x〉σ

‖x‖2σ
,

where 〈−,−〉σ is the hermitian form associated to the hermitian norm ‖ · ‖F,σ, i is a
(fixed) square root of −1 and ad : LieUσ × F ⊗σ C → F ⊗σ C denotes the adjoint
action.

Proposition 1.7. — With the notations introduced above, the point [x] ∈ P(F)σ(C)
is minimal if and only if the linear map µσ(x) is identically zero.

For a proof the reader can refer to the Proposition 1.2 in Chapter 3 and the
references cited therein.

1.5. Lowest height on the quotient. — Since the metric ‖ · ‖MD,σ is continuous
and the invertible sheaf MD is ample the height on Y is uniformly bounded below.
Set

hmin((X ,L)//G) := inf
Q∈Y(Q̄)

hM(Q).

By definition of hmin((X ,L)//G) one has the following immediate Corollary of the
Fundamental Formula which is relevant for the applications.

Corollary 1.8. — Let P ∈ X ss(K) be a semi-stable K-point. Then the instability
measures ιv(P ) are almost all zero and

hL(P ) +
1

[K : Q]

∑
v∈VK

ιv(P ) ≥ hmin((X ,L)//G).

For applications is sometimes important to have an explicit lower bound of the
height on the quotient.
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1.6. The lower bound of Bost, Gasbarri and Zhang. — Let N ≥ 1 be a
positive integer and let e1, . . . , eN be positive integers. Consider the oK-reductive
groups

G = GLe1,oK ×oK · · · ×oK GLeN ,oK ,

S = SLe1,oK ×oK · · · ×oK SLeN ,oK ,

and for every embedding σ : K → C consider their maximal compact subgroups

Uσ = U(e1)× · · · ×U(eN ) ⊂ Gσ(C)

SUσ = SU(e1)× · · · × SU(eN ) ⊂ Sσ(C).

Let F be a hermitian vector bundle over oK and let ρ : G → GL(F) be a rep-
resentation, that is a morphism of oK-group schemes, which respects the hermitian
structure: this means that for every embedding σ : K → C the norm ‖ · ‖F,σ is fixed
under the action of the maximal compact subgroup Uσ. Borrow the notation from
paragraph 1.4.

Let E = (E1, . . . , EN ) be a N -uple of hermitian vector bundles over oK such that
rk Ei = ei for all i = 1, . . . , N . To this data one can associate a hermitian vector
bundle FE obtained from F by “twisting” it by E (see Section 3.1 for the precise
definition). The hermitian vector bundle FE comes endowed with a representation,

ρE : GE = GL(E1)×oK · · · ×oK GL(EN ) −→ GL(FE),
that respects the hermitian structures. Consider:

SE = SL(E1)×oK · · · ×oK SL(EN ),

XE = P(FE),
LE = OFE (1) endowed with the Fubini-Study metric induced by FE ,
YE = categorical quotient of X ss

E with respect to SE and LE .

The representation ρ is said to be homogeneous of weight a = (a1, . . . , aN ) ∈ ZN

if, for every oK-scheme T and for every t1, . . . , tN ∈ Gm(T ),

ρ(t1 · idE1 , . . . , tN · idEN ) = ta1
1 · · · t

aN
N · idF .

Theorem 1.9 (cf. Theorem 3.8). — With the notations introduced above, if the
representation ρ is homogeneous of weight a = (a1, . . . , aN ) ∈ ZN and the subset of
semi-stable points X ss is not empty, then:

(1) there exists an isomorphism αE : YE → Y;
(2) for every D ≥ 0 divisible enough there exists a canonical isomorphism of her-

mitian line bundles, that is an isometric isomorphism of line bundles,

βE : MD,E −→ α∗EMD ⊗
N⊗
i=1

f∗E (det E i)∨⊗aiD/ei ,

where fE : YE → Spec oK is the structural morphism;

(3) hmin((XE ,LE)//SE) = hmin((X ,L)//S)−
N∑
i=1

ai µ̂(Ei).
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Corollary 1.10. — With the notation of Theorem 3.8, for every K-point P of XE
which is semi-stable under the action of SE :

hLE
(P ) ≥ −

N∑
i=1

ai µ̂(Ei) + hmin((X ,L)//S).

For N = 1 this is the original statement of Gasbarri [Gas00, Theorem 1] which
in turn was generalisation of results of Bost [Bos94, Proposition 2.1] and Zhang
[Zha96a, Proposition 4.2].

1.7. An explicit lower bound. — In practice, it is useful to have an explicit
lower bound of the height on the quotient. Let N ≥ 1 be a positive integer and let
E = (E1, . . . , EN ) be a N -uple of hermitian vector bundles over oK of positive rank.
Consider the following oK-reductive groups

G = GL(E1)×oK · · · ×oK GL(EN ),

S = SL(E1)×oK · · · ×oK SL(EN ),

and for every complex embedding σ : K → C consider the maximal compact sub-
groups,

Uσ = U(‖ · ‖E1,σ)× · · · ×U(‖ · ‖EN ,σ) ⊂ Gσ(C),

SUσ = SU(‖ · ‖E1,σ)× · · · × SU(‖ · ‖EN ,σ) ⊂ Sσ(C).

Let F be a hermitian vector bundle over oK and let ρ : G → GL(F) be a representa-
tion which respects the hermitian structures, that is, for every embedding σ : K → C
the norm ‖ · ‖F,σ is fixed under the action of the maximal compact subgroup Uσ.
Consider the induced action of S on F . Borrow the notation introduced in paragraph
1.4. For an integer n ≥ 1 write

`(n) :=
log n!

n
=

n∑
i=1

log i

n
.

Then `(n) ≤ log n and, by Stirling’s approximation, `(n) ∼ log n as n→∞.

Theorem 1.11 (cf. Theorem 4.1). — With the notations introduced above, let

ϕ :

N⊗
i=1

[
End(E i)⊗ai ⊗oK E

⊗bi
i

]
−→ F

be a G-equivariant and generically surjective homomorphism of hermitian vector bun-
dles. Then,

hmin((P(F),OF (1))//S) ≥ −
N∑
i=1

bi µ̂(E i)−
∑

i:rk Ei≥3

|bi|
2
`(rk Ei)

with equality if b1, . . . , bN = 0.

Actually, one would hope for a better lower bound:
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Conjecture 1.12. — Under the same hypotheses of Theorem 1.11,

hmin((P(F),OF (1))//S) ≥ −
N∑
i=1

bi µ̂(E i).

The error terms appearing in Theorem 1.11 are linked to the error terms involved
in the upper bound of the maximal slope of the tensor product of hermitian vector
bundles over oK . The interested reader can refer to [Che09] and [BC13].

2. Examples of height on the quotient

2.1. Endomorphisms of a vector space. —

2.1.1. Semi-stable endomorphisms. — Let k be an algebraically closed field and E
be a k-vector space of (finite) dimension n. Consider the action by conjugation of the
reductive k-group GL(E) on the affine k-scheme

X := End(E) = Spec(A),

where A = Symk(End(E)∨). For every endomorphism ϕ : E → E denote by Pϕ(T )
its characteristic polynomial,

Pϕ(T ) := det(T · idE −ϕ) = Tn − σ1(ϕ)Tn−1 + · · ·+ (−1)nσn(ϕ).

The coefficients σ1(ϕ), . . . , σn(ϕ) are polynomials in the coefficients of ϕ, i.e. elements
of A, which are invariant under the action of SL(E).

Proposition 2.1 ([MS72, Proposition 2]). — The affine space An
k together with

the map

π : End(E) −→ An
k

ϕ 7−→ (σ1(ϕ), . . . , σn(ϕ)),

is the categorical quotient of X by SL(E).
In particular, the invariants σ1, . . . , σn generate the k-algebra of invariants ASL(E).

Proposition 2.2 ([MS72, Proposition 4]). — Let ϕ : E → E be a linear map.
Then:

(1) the orbit of ϕ is closed if and only if ϕ is semi-simple (i.e. it can be diagonal-
ized);

(2) the closure G · ϕ of the orbit of ϕ contains the orbit of the semi-simple part ϕss
of ϕ.

Corollary 2.3. — For every non-zero endomorphism ϕ : E → E the associated k-
point [ϕ] ∈ P(End(E)) is semi-stable if and only if ϕ is not nilpotent.
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2.1.2. Arithmetic situation. — LetK be a number field and oK be its ring of integers.
Let E be a hermitian vector bundle on oK .

Consider the action by conjugation of S = SL(E) on End(E). Endow the oK-
module End(E) with the norms on endomorphism (see paragraph 0.3 on page 11).
The norm ‖ · ‖End(E),σ is invariant under the action of the special unitary subgroup
SU(‖ · ‖E,σ) of Gσ(C). Borrow notation from paragraph 1.4 (with F = End(E) and
G = S).

Theorem 2.4. — With the notations introduced above, let ϕ be an endomorphism of
the K-vector space E ⊗oK K.

Suppose that the corresponding K-point [ϕ] of P(End(E)) is semi-stable (that is,
the endomorphism ϕ is not nilpotent). Then, [Ω : Q]hM(π([ϕ])) is equal to∑

v∈VΩ
non-arch.

log max{|λ1|v, . . . , |λn|v}+
∑

σ : Ω→C

log
√
|λ1|2σ + · · ·+ |λn|2σ,

where λ1, . . . , λn are the eigenvalues of ϕ (counted with multiplicities) and Ω is a
number field containing them.

The categorical quotient Y of the semi-stable locus of P(End(E)) by SL(E) can be
identified with quotient by Pn−1

oK by the action of Sn permuting coordinates (that is,
the weighted projective space P(1, 2, . . . , n) over oK).

Consider the “standard” Arakelov height h on Pn−1
oK , i.e. the one defined, for every

finite extension Ω of K and every Ω-point λ = (λ1 : · · · : λn), by
1

[Ω : Q]

∑
v∈VΩ

non-arch.

log max{|λ1|v, . . . , |λn|v}+
1

[Ω : Q]

∑
σ : Ω→C

log
√
|λ1|2σ + · · ·+ |λn|2σ.

Then, the preceding theorem says that the height hM is obtained descending h on Y
through the quotient Pn−1

oK → Y by Sn.
The remainder of this section is devoted to the proof of Theorem 2.4.

2.1.3. Reduction to local statements. — Let v be a place of K and let E be a Cv-
vector space of dimension n. Let e1, . . . , en be a basis of E and equip E with the
norm ‖ · ‖E defined by

‖x1e1 + · · ·+ xnen‖E :=

max{|x1|v, . . . , |xn|v} if v is non-archimedean√
|x1|2v + · · ·+ |xn|2v if v is archimedean.

Equip the Cv-vector space End(E) with the norm ‖ · ‖End(E) defined by:

‖ϕ‖End(E) :=


sup
x 6=0

‖ϕ(x)‖E
‖x‖E

if v is non-archimedean

√
‖ϕ(e1)‖2E + · · ·+ ‖ϕ(en)‖2E if v is archimedean.

In the non-archimedean case the norm ‖ · ‖E is the one associated to o-submodule
E = o ·e1⊕· · ·⊕o ·en of E (where o is the ring of integers of Cv). The norm ‖·‖End(E)

is then associated to the o-submodule End(E) of End(E).
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In the archimedean case ‖ϕ‖2E = Tr(ϕ∗ ◦ϕ) where ϕ∗ is the adjoint endomorphism
to ϕ with respect to the hermitian norm ‖ · ‖E .

Proposition 2.5. — With the notation introduced above, for every endomorphism
ϕ of E,

inf
g∈SL(E,Cv)

‖gϕg−1‖End(E) =

max{|λ1|v, . . . , |λn|v} if v is non-archimedean√
|λ1|2v + · · ·+ |λn|2v if v is archimedean.

where λ1, . . . , λn are the eigenvalues of ϕ (counted with multiplicities).

Proof of Theorem 2.4. — It suffices to apply the Fundamental Formula in the form
given by Corollary 1.6 and use the expression of the local terms given by Proposition
2.5.

In order to prove Proposition 2.5, it suffices to show that the endomorphism given
by the matrix (with respect to the basis e1, . . . , en),

diag(λ1, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

is minimal.

2.1.4. Computing minimal endomorphisms. — In this framework an endomorphism
is minimal if and only if

‖ϕ‖End(E) = inf
g∈SL(E,Cv)

‖gϕg−1‖End(E).

Proposition 2.6. — Let λ1, . . . , λn ∈ Cv. With the notations introduced above, the
endomorphism ϕ = diag(λ1, . . . , λn) is minimal.

Proof of Proposition 2.6: the non-archimedean case. — Let v be a non archimedean
place. Proposition 1.4 (2) affirms that a non-zero endomorphism ϕ is minimal if and
only if its reduction ϕ̃ is a semi-stable Fv-point of P(End(E⊗o Fp)).

Let λ1, . . . , λn be elements of Cv and suppose that they are not all zero. Up to
rescaling the endomorphism ϕ = diag(λ1, . . . , λn) assume

max{|λ1|v, . . . , |λn|v} = 1.

The reduction of the point [ϕ] is the Fp-point of P(End(E)) associated to the endo-
morphism ϕ̃ = diag(λ̃1, . . . , λ̃n) of the Fp-vector space

E⊗o Fp = Fp · e1 ⊕ · · · ⊕ Fp · en,

where, for every i = 1, . . . , n, λ̃i ∈ Fp denotes the reduction of λi. The endomorphism
ϕ̃ is non-zero and semi-simple, hence semi-stable. Thus, according to Proposition 1.4
(3), the endomorphism ϕ is minimal, which conclude the proof in the non-archimedean
case.
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Proof of Proposition 2.6: the archimedean case. — Let su(E) be the Lie algebra of
the Lie group SU(‖ · ‖E). A moment map µ : X(C) → su(E)∨ for this action is
defined as follows: for every non-zero endomorphism ϕ it is the linear map which
associates to every skew-hermitian matrix A ∈ su(E) the real number

µ[ϕ](A) =
1

2πi

〈[A,ϕ], ϕ〉End(E)

‖ϕ‖2End(E)

,

where [A,ϕ] = Aϕ−ϕA denotes the Lie bracket operation, 〈−,−〉End(E) the hermitian
form associated to the norm ‖ · ‖End(E) and i is a square root of −1.

According to Proposition 1.7, the point ϕ is minimal if and only if µ([ϕ]).A vanishes
for all A ∈ su(E). This is equivalent to the following condition:

〈Aϕ,ϕ〉End(E) = 〈ϕA,ϕ〉End(E) for all A ∈ End(E).

Lemma 2.7. — With the notation introduced above, for every endomorphism ϕ of
E the following conditions are equivalent:

(1) 〈Aϕ,ϕ〉End(E) = 〈ϕA,ϕ〉End(E) for all A ∈ End(E);
(2) ϕ∗ϕ = ϕϕ∗, where ϕ∗ denotes the adjont endomorphism to ϕ with respect to

the norm ‖ · ‖End(E);
(3) The endomorphism ϕ is diagonalisable on a orthonormal basis.

Proof of Lemma 2.7. — The equivalence of (2) and (3) is a well-known fact in linear
algebra. The proof of the equivalence of (1) and (2) is the computation that follows.

For all i, j = 1, . . . , n let Aij be endomorphism of E defined by Aij(ek) = δikej for
all k = 1, . . . , n (here δik is Kronecker’s delta). Write ϕ =

∑n
i,j=1 ϕijAij . With these

conventions, for every i, j = 1, . . . , n,

Aijϕ =

n∑
k=1

ϕjkAik, ϕAij =

n∑
k=1

ϕkiAkj .

The matrices Aij form an orthonormal basis of End(E) thus, for i, j = 1, . . . , n,

〈Aijϕ,ϕ〉 =

n∑
k=1

ϕjkϕik, 〈ϕAij , ϕ〉 =

n∑
k=1

ϕkiϕkj .

On the other hand, by definition, ϕ =
∑n
i,j=1 ϕjiAij . Therefore

ϕϕ∗ =

n∑
i,j=1

〈Aijϕ,ϕ〉Aij , ϕ∗ϕ =

n∑
i,j=1

〈ϕAij , ϕ〉Aij .

It follows from these expressions that the two conditions in the statement are equiv-
alent.

The preceding Lemma concludes the proof: indeed for complex numbers λ1, . . . , λn
the associated diagonal matrix ϕ = diag(λ1, . . . , λn) is minimal.
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2.1.5. A variant. — Let us stick to the complex case. Instead of considering the
norm ‖ · ‖End(E) endow End(E) with the operator norm:

‖ϕ‖sup := sup
x 6=0

‖ϕ(x)‖E
‖x‖E

.

It is invariant under the action of SU(‖ · ‖E).

Proposition 2.8. — With the notation introduced above,

inf
g∈SL(E,C)

‖gϕg−1‖sup = max{|λ1|, . . . , |λn|}

where λ1, . . . , λn ∈ C are the eigenvalues of ϕ (counted with multiplicities).

Proof. — For every i = 1, . . . , n let vi be an eigenvector with respect to the eigenvalue
λi: for all g ∈ SL(E,C) and all i = 1, . . . , n,

‖gϕg−1(g · vi)‖E = |λi|‖g · vi‖E .
In particular, for all g ∈ SL(E,C),

‖gϕg−1‖sup ≥ max{|λ1|, . . . , |λn},
thus

inf
g∈SL(E,C)

‖gϕg−1‖sup ≥ max{|λ1|, . . . , |λn|}.

Since the endomorphism diag(λ1, . . . , λn) belongs to the closure of the SL(E)-orbit
of ϕ,

inf
g∈SL(E,C)

‖gϕg−1‖sup ≤ ‖diag(λ1, . . . , λn)‖sup = max{|λ1|, . . . , |λn|},

which concludes the proof.

The same argument holds also in the non-archimedean case, leading to a different
proof of Proposition 2.5.

2.2. The lowest height on the orbit is not the height on the quotient. —

2.2.1. The question. — Let us go back to the notation introduced in Section 1.1 and
let P be a semi-stable K-point of X . Since the map π is G-invariant:
(2.2.1) inf

g∈G(Q̄)
hL(g · P ) ≥ inf

π(P ′)=π(P )
hL(P ′),

where the infimum on the right-hand side is ranging over all semi-stable Q̄-points of
X lying on the fibre π−1(P ). Since the instability measure ιv(P ) is a non-positive real
number for all v ∈ VK , the Fundamental Formula yields hL(P ) ≥ hM(π(P )), thus:

(2.2.2) inf
π(P ′)=π(P )

hL(P ′) ≥ hM(π(P )).

Combining the previous inequalities:

(2.2.3) inf
g∈G(Q̄)

hL(g · P ) ≥ hM(π(P )).

Question. — When are the inequalities (2.2.1), (2.2.2) and (2.2.3) identities?



2. EXAMPLES OF HEIGHT ON THE QUOTIENT 131

Three examples of linear actions of G = GLn,Z on a hermitian vector bundle F
are presented:

(1) In the first example (with n = 1) we show that inequalities (2.2.2) and (2.2.3)
are not identities if the hermitian vector bundle F is not semi-stable (3).

(2) In the second one (with n = 1 again) we show that even taking F to be the
trivial hermitian vector bundle (that is, F = Zr endowed with the standard
euclidian norm on Rr) is not sufficient.

The problem seems to arise from the fact that in this example Gm acts
through different weights, that is, the representation Gm → GL(F) is not
homogeneous.

(3) In the third one, we consider GLn,Z acting on F = End(Zn) by conjugation.
Endow F with hermitian norm on endomorphisms (see paragraph 0.3 on page
11) deduced from the standard scalar product on Rn.

In this case we show that that the inequalities (2.2.2) and (2.2.3) are indeed
equalities for all semi-stable Q̄-points ofP(F) whose orbit is closed (inP(F)ss).
Nonetheless, inequality (2.2.1) is not an equality in general when the orbit of
the point is not closed.

2.2.2. Linear action on a non-trivial hermitian vector bundle. — Consider the action
of Gm on A2

Z defined by
t · (x0, x1) = (t−1x0, tx1),

for every scheme S, every t ∈ Gm(S) and every (x0, x1) ∈ A2(S).
Consider the induced action of G = Gm on X = P1

Z and the G-linearisation of
L = O(1). For every field k,

X ss(k) = P1(k)− {0,∞}.
Let Y be the categorical quotient of X ss (which is canonically identified with SpecZ)
and let π : X ss → Y the quotient morphism.

For every couple r = (r0, r1) of positive real numbers consider the norm ‖ · ‖r on
R2 defined by

‖(x0, x1)‖2r := r2
0|x0|2 + r2

1|x1|2.
Endow the invertible sheaf L with the Fubini-Study metric associated to ‖ · ‖r, which
is invariant under the action of U(1). Denote by Lr the hermitian line bundle on X
obtained in this way and by hM,r the height on the quotient Y associated to Lr.

Proposition 2.9. — With the notations introduced above:
(1) The point (1 : 1) ∈ P1(Q) is semi-stable and

hM,r(π(1 : 1)) = log
√

2r0r1;

(2) For every t ∈ Gm(Q̄),

hLr (t
−1 : t) ≥ log

√
r2
0 + r2

1,

with equality for t = 1.

3. A hermitian vector bundle E on a number field K is said to be semi-stable if µmax(E) = µ(E).
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In particular, this shows that inequalities (2.2.2) and (2.2.3) are never identities
unless r0 = r1.

The proof of this result is left to the reader as similar arguments appear in the
next examples (see Propositions 2.10 and 2.13).

2.2.3. A negative example when the hermitian vector bundle is trivial. — Consider
the Z-module E = Z3 endowed with the standard euclidian norm

‖(x0, x1, x2)‖2 = |x0|2 + |x1|2 + |x2|2,

Let Gm act on Z3 by

t · (x0, x1, x2) = (t−2x0, tx1, t
4x2).

Consider the induced action of Gm on X = P2
Z and the linearisation of O(1). Endow

O(1) with the Fubini-Study metric induced by the norm ‖ · ‖.

Proposition 2.10. — Consider the point P = (2 : 2 : 1). With the notations intro-
duced above:

(1) The point P is semi-stable and

hM(π(P )) = log 3− log
3
√

4.

(2) For every t ∈ Gm(Q̄),

hO(1)
(t · P ) ≥ log 3,

with equality for t = 1.

This shows that inequalities (2.2.2) and (2.2.3) are not identities, even though the
hermitian vector bundle E is trivial.

Proof. — (1) The semi-stability of the point P is clear. For every prime number
p 6= 2 the point P is minimal since its reduction

P̃ = (2 : 2 : 1) ∈ P2(Fp)

is a semi-stable point of P2
Fp

. It is also an elementary computation to see that the
point P is minimal at the unique archimedean place of Q.

On the other hand, for p = 2, it is not minimal: indeed, its reduction modulo 2 is
(0 : 0 : 1) which is not a semi-stable point of P2

F2
. For every t ∈ Gm(C2),

log ‖t · (2, 2, 1)‖2 = max{−2 log |t|2 − log 2, log |t|2 − log 2, 4 log |t|2}.

The minimum of this function is obtained for log |t|2 = − log 6
√

2, thus

log inf
t∈Gm(C2)

‖t · (2, 2, 1)‖2 = −2

3
log 2 = − log

3
√

4.

Finally the Fundamental Formula yields

hM(π(P )) =
∑
v∈VQ

log inf
t∈Gm(Cv)

‖t · (2, 2, 1)‖v = log 3− log
3
√

4.
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(2) Let K be a number field and let t ∈ Gm(K). For every finite place v not
dividing 2,

log ‖t · (2, 2, 1)‖v ≥ max{−2 log |t|v, 4 log |t|v},
whereas if v divides 2,

log ‖t · (2, 2, 1)‖v ≥ max{−2 log |t|v − log 2, 4 log |t|v}.

Therefore, summing over all places of K, and thanks to the Product Formula, the
height [K : Q]hO(1)

(t · P ) is bounded below by

2 max

{ ∑
σ : K→C

log |t|σ,
∑

σ : K→C

−2 log |t|σ

}
+

1

2

∑
σ : K→C

log

(
4

|t|4σ
+ 4|t|2σ + |t|8σ

)
.

Lemma 2.11. — Let N ≥ 1 be a positive integer. For every x1, . . . , xN ∈ R,

2 max

{
N∑
i=1

xi,

N∑
i=1

−2xi

}
+

1

2

N∑
i=1

log(4e−4xi + 4e2xi + e8xi) ≥ N log 3.

Proof of the Lemma. — Let consider the function α : RN → R defined by

α(x1, . . . , xN ) := 2 max

{
N∑
i=1

xi,

N∑
i=1

−2xi

}
+

1

2

N∑
i=1

log(4e−4xi + 4e2xi + e8xi).

The function α is convex and is invariant under permutations of coordinates. There-
fore its minimum is attained on the diagonal R ⊂ RN , that is, it coincides with the
minimum of the function β : R→ R given by

β(x) := N(2 max {x,−2x}+ 1
2 log(4e−4x + 4e2x + e8x)).

The minimum of β is seen to attained in 0. Thus for all x ∈ R,

β(x) ≥ β(0) = N log 3,

whence the result.

Let us come back to the proof of Proposition 2.10. Order the complex embeddings
σ1, . . . , σN : K → C, where N = [K : Q], and apply the preceding Lemma with
xi = log |t|σi for all i = 1, . . . , N . Then,

hO(1)(g · P ) ≥ log 3,

which concludes the proof.

2.2.4. Endomorphisms. — Let n ≥ 1 be a positive integer and consider the hermitian
vector bundle E given by the Z-module E = Zn endowed with the standard hermitian
norm. Let e1, . . . , en be the standard basis of E .

As in Section 2.1 consider the action by conjugation of G = SLn,Z on F = End(E)
and borrow the notations introduced in paragraph 2.1.2.
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For every number field K and for every λ1, . . . , λn ∈ K, denote by diag(λ1, . . . , λn)
the endomorphism of E ⊗ K = Kn given by the matrix (with respect the standard
basis),

diag(λ1, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

Proposition 2.12. — Let λ1, . . . , λn ∈ K and suppose that they are not all zero.
With the notation introduced above,

hOF (1)([diag(λ1, . . . , λn)]) = hM(π([diag(λ1, . . . , λn)])).

In particular, for all non-zero semi-simple endomorphism ϕ of Kn,

inf
g∈SLn(Q̄)

hOF (1)(g · [ϕ]) = hM(π([ϕ])).

This is an immediate consequence of Theorem 2.4. This shows that inequalities
(2.2.2) and (2.2.3) are identities for non-zero semi-simple endomorphism, that is, for
those points having a closed orbit.

However, inequality (2.2.1) is not an equaility in general. For instance, take n = 2
and consider the endomorphism ϕ of E given by the matrix (with respect the standard
basis),

ϕ =

(
1 1
0 1

)
.

Proposition 2.13. — With the notations introduced above:
(1) The endomorphism ϕ is semi-stable and

hM(π([ϕ])) = log
√

2;

(2) For every g ∈ SL2(Q̄),

hO(1)
(g · [ϕ]) ≥ log

√
3,

with equality for g = id.

Proof. — (1) This is a direct consequence of Theorem 2.4. (2) Let K be a number
field and let g ∈ SL2(K) be given by the matrix

g =

(
a c
b d

)
,

where a, b, c, d ∈ K are such that ad− bc = 1. With this notation,

gϕg−1 =

(
1− ab a2

−b2 1 + ab

)
.

For every finite place v of K:

‖gϕg−1‖v = max{|1− ab|v, |1 + ab|v, |a|2v, |b|2v} ≥ max{1, |a|2v, |b|2v}.
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On the other hand, for every complex embedding σ : K → C,

‖gϕg−1‖2σ = |1− ab|2σ + |1 + ab|2σ + |a|4σ + |b|2σ = 2 +
(
|a|2σ + |b|2σ

)2
.

Suppose a 6= 0. Since |b|v is non-negative for all places v of VK , the previous expres-
sions entail

[K : Q]hO(1)
(g · [ϕ]) ≥

∑
v∈VK
finite

log max{1, |a|2v}+
1

2

∑
σ : K→C

log(2 + |a|4σ).

Thanks to the Product Formula:

∑
v∈VK
finite

log max{1, |a|2v} ≥ max

0,
∑
v∈VK
finite

log |a|2v

 = max

{
0,−

∑
σ : K→C

log |a|2σ

}
.

Putting together the previous lower bounds, the height [K : Q]hO(1)
(g·[ϕ]) is bounded

below by

(2.2.4) max

{
0,

∑
σ : K→C

− log |a|2σ

}
+

1

2

∑
σ : K→C

log(2 + |a|4σ).

Lemma 2.14. — Let N ≥ 1 be a positive integer. For every x1, . . . , xN ∈ R,

max

{
0,

N∑
i=1

−xi

}
+

1

2

N∑
i=1

log(2 + e2xi) ≥ N log
√

3.

The proof of the preceding Lemma is similar to the one of Lemma 2.11.
Let us conclude the proof in the case a 6= 0. Order the complex embeddings

σ1, . . . , σN : K → C, where N = [K : Q], and apply the preceding Lemma with
xi = log |a|2σi for all i = 1, . . . , N . According to (2.2.4),

hO(1)(g · [ϕ]) ≥ log
√

3.

The case a = 0 and b 6= 0 is proven similarly.

3. The approach of Bost, Gasbarri and Zhang

3.1. Twisting by principal bundles. — In order to make more explicit the geo-
metrical content of the approach of Bost, Gasbarri and Zhang and its link with the
work of Bogomolov, let us recall a basic construction involving principal G-bundles.

3.1.1. The algebraic construction. — Let G be a group scheme over a non-empty
scheme S. Let X be a S-scheme endowed with a (left) action of G and let P be a
principal G-bundle (4) (always assumed to be locally trivial for the Zariski topology).

4. A principal G-bundle P is a S-scheme endowed with a (right) action α : P ×S G → P such
that:

(1) the morphism (pr1, α) : P ×S G→ P ×S P is an isomorphism of S-schemes;
(2) P is locally trivial for the Zariski topology: there exists an open covering S =

⋃
i∈I Si and

for every i ∈ I there exists a section pi : Si → P .



136 CHAPTER 4. HEIGHTS ON GIT QUOTIENTS: FURTHER RESULTS

By definition, the twist of X by P is the categorical quotient of X ×S P by the
(left) action of G defined as

g · (x, p) = (gx, pg−1),

for every S-scheme S′ and every point g ∈ G(S′) on (x, p) ∈ X(S′) × P (S′). Con-
cretely, XP is constructed as follows:

(1) Pick a covering S =
⋃
i∈I Si by open subset on which P is trivial and, for every

i ∈ I, let pi : Si → P be a section.
(2) Glue the schemes X ×S Si along the isomorphisms

X ×S Sij −→ X ×S Sij
x 7−→ gij · x,

where Sij = Si ∩ Sj and gij is the unique Sij-point of G sending pj to pi.
In particular XP is isomorphic to X locally on the base S. This construction will

be used in the following examples:
(1) Let G acting on itself by conjugation. The twist GP is a S-group scheme

and it acts on XP . More generally, if H is normal subgroup of G (namely a
closed subscheme such that, for every S-scheme S′, the set H(S′) is a normal
subgroup of G(S′)) then HP is a normal subgroup of GP .

(2) Let G act linearly on a vector bundle F over S and let V(F )P be the twist
by P of the total space V(F ) of F . Consider the sheaf on S defined for every
open subset U ⊂ S by

Γ(U,FP ) := MorS(U,V(F )P ).

Then FP is a vector bundle over S, the S-group scheme GP acts linearly on it
and its total space V(FP ) is identified with V(F )P . The vector bundle FP is
the twist of F by P .

(3) Let L be a G-linearized line bundle on X and let V(L)P be twist by P of its
total space V(L) over X. Consider the sheaf LP on the twist XP of X by P
defined for every open subset U ⊂ XP by

Γ(U,LP ) := MorS(U,V(L)P )

Then LP is GP -linearized line bundle over XP and its total space V(LP ) over
XP is identified with V(L)P .

Example 3.1. — Let N ≥ 1 be a positive integer and e1, . . . , eN be positive integers.
Consider the following S-group schemes:

G = GLe1,S ×S · · · ×S GLeN ,S ,

S = SLe1,S ×S · · · ×S SLeN ,S .

Let E = (E1, . . . , EN ) be a N -uple of vector bundles on S such that Ei is of rank
ei for all i. To E one associates the principal G-bundle

PE = FS(E1)×S · · · ×S FS(EN ),
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where for all i the S-scheme FS(Ei) is the frame bundle of Ei: for every S-scheme
f : S′ → S,

FS(Ei)(S
′) = IsoOS′ -mod(OeiS′ , f

∗Ei).

The (right) action of G on PE is given by composing on the right.
Let us be given a vector bundle F on S and a representation ρ : G → GL(F ).

Consider the induced action of G on X = P(F ) and the invertible sheaf L = OF (1).
Denote by FE the twist of F by PE . Then:

GE = GL(E1)×S · · · ×S GL(EN ),

SE = SL(E1)×S · · · ×S SL(EN ),

XE = P(FE),

LE = OFE (1),

where one writes GE , SE , XE and LE instead of GPE , SPE , XPE and LPE .

3.1.2. The hermitian construction. — Let us work over the complex numbers. Let
G be a complex algebraic group and CG ⊂ G(C) be a compact subgroup. Denote the
couple (G,CG) by G.

Definition 3.2. — A principal hermitian G-bundle is a couple (P,CP ) made of a
principal G-bundle and of a non-empty compact subset CP ⊂ P (C) such that the
map induced by the action G,

CP × CG −→ CP × CP
(p, u) 7−→ (p, pu),

is a bijection.

Let X = (X,CX) be a couple made of a complex scheme of finite type and a
compact subset CX ⊂ X(C). Suppose that G acts on X and this action induces an
action of CG on CX .

Definition 3.3. — Let P = (P,CP ) be a principal hermitian G-bundle. The twist
of X by P is the couple XP = (XP , CXP ), where XP is the twist of X by P and CXP
is the image of the map

(CX × CP )/CG −→ XP (C) = (X(C)× P (C))/G(C).

Note that this map is injective by definition of principal hermitian G-bundle.

Let p ∈ CP be a point and for every x ∈ X(C) denote by [x, p] the class of (x, p)
in XP (C) = (X(C)× P (C))/G(C). Then the map

X(C) −→ XP (C)

x 7−→ [x, p] ,

is an isomorphism which identifies the subset CX with CXP .
Let P be a principal P -bundle. The examples worked out for principal G-bundles

can be now translated in this new context:
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(1) Let G acting on itself by conjugation. The twist of G = (G,CG) by P is a
couple (GP , CGP ) made of a complex algebraic group GP and of a compact
subgroup CGP of GP (C).

Let H = (H,CH) be a couple made of a normal algebraic subgroup H of
G and a compact subgroup CH of H(C) which is stable under conjugation by
CG. Then HP is a couple (HP , CHP ) made of the twist of HP by P (which is
a normal algebraic subgroup of GP ) and of a compact subgroup of HP (C).

(2) Let F = (F, ‖ · ‖F ) be a (finite dimensional) hermitian vector space. Suppose
that G act linearly on F and that the norm ‖ · ‖F is invariant under the action
of CG. Consider the couple V(F ) = (V(F ),DF ) where

DF = {v ∈ F : ‖v‖F ≤ 1}.

Let V(F )P = (V(FP ),DF,P ) be the twist of V(F ) by P . Then there exists a
unique hermitian norm ‖ · ‖FP on FP such that

DF,P = {v ∈ FP : ‖v‖FP ≤ 1}.

The hermitian vector space FP = (FP , ‖ · ‖FP ) is the twist of F by P .
(3) Let X be a proper complex scheme endowed with an action of G together with

a G-linearized line bundle L. Suppose that L is equipped with a continuous
metric ‖ · ‖L which is invariant under the action of CG. Consider the couple
V(L) = (V(L),DL) where V(L) is the total space of L over X and

DL = {(x, s) : x ∈ X(C), s ∈ x∗L, ‖s‖L(x) ≤ 1}.
Remark since X(C) is compact, then DL is a compact subset of V(L)(C).
Moreover it is stable under the action of CG. Let

V(L)P = (V(LP ),DL,P ),

be the twist of V(L) by P . There exists a unique continuous metric ‖ · ‖LP on
LP such that

DL,P = {(x, s) : x ∈ XP (C), s ∈ x∗LP , ‖s‖LP (x) ≤ 1}

The hermitian line bundle LP = (LP , ‖ · ‖LP ) is the twist of the hermitian line
bundle L = (L, ‖ · ‖L) by P .

Example 3.4. — Let N ≥ 1 be a positive integer and let e1, . . . , eN be positive
integers. Consider the complex reductive groups

G = GLe1,C×C · · · ×C GLeN ,C,

S = SLe1,C×C · · · ×C SLeN ,C,

and their maximal compact subgroups

CG := U = U(e1)× · · · ×U(eN ),

CS := SU = SU(e1)× · · · × SU(eN ).

Let E = (E1, . . . , EN ) be a N -uple of hermitian vector spaces, that is couples
Ei = (Ei, ‖ · ‖Ei) made of a complex vector space Ei and a hermitian norm ‖ · ‖Ei .
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Suppose dimCEi = ei for all i. To such a E one associates the principal hermitian
G-bundle PE = (PE , CE) defined by

PE = FC(E1)×C · · · ×C FC(EN ),

CE = O(E1)× · · · ×O(EN ),

where, for all i, FC(Ei) is the frame bundle of Ei and O(Ei) is the orthonormal frame
bundle of Ei, i.e. the set of linear isometries Cei → Ei (here Cei is endowed with
the standard hermitian norm).

Let F = (F, ‖·‖F ) be a hermitian vector space and ρ : G→ GL(F ) a representation.
Suppose that the norm ‖·‖F is invariant under the action of U. Consider the induced
action of G on X = P(F ) and the invertible sheaf L = OF (1) endowed with the
Fubini-Study metric ‖ · ‖L. Denote by FE = (FE , ‖ · ‖FE ) the twist of F by PE .
Then:

(1) the twist of the couple (G,U) by PE is the couple (GE ,UE) where

GE = GL(E1)×S · · · ×S GL(EN ),

UE = U(‖ · ‖E1)× · · · ×U(‖ · ‖EN ).

(2) the twist of the couple (S,SU) by PE is the couple (SE ,SUE) where

SE = SL(E1)×S · · · ×S SL(EN ),

SUE = SU(‖ · ‖E1)× · · · × SU(‖ · ‖EN ).

(3) the twist of the hermitian line bundle L = (L, ‖ · ‖L) by PE is the hermitian
line bundle LE = (LE , ‖ · ‖LE ) on XE = P(FE) where

LE = OFE (1),

‖ · ‖LE = Fubini-Study metric associated to ‖ · ‖FE .

3.2. Statement and proof of the result. —

3.2.1. Setup. — Let K be a number field. Let N ≥ 1 be a positive integer and let
e1, . . . , eN be positive integers. Consider the oK-reductive groups

G = GLe1,oK ×oK · · · ×oK GLeN ,oK ,

S = SLe1,oK ×oK · · · ×oK SLeN ,oK ,

and for every embedding σ : K → C consider their maximal compact subgroups

Uσ = U(e1)× · · · ×U(eN ) ⊂ Gσ(C),

SUσ = SU(e1)× · · · × SU(eN ) ⊂ Sσ(C).

Let F be a hermitian vector bundle over oK and let ρ : G → GL(F) be a rep-
resentation, that is a morphism of oK-group schemes, which respects the hermitian
structure: this means that for every embedding σ : K → C the norm ‖ · ‖F,σ is fixed
under the action of the maximal compact subgroup Uσ.

The linear action of G on F induces an action of G on X = P(F) and a G-
linearisation of L = O(1). For every embedding σ : K → C endow the invertible



140 CHAPTER 4. HEIGHTS ON GIT QUOTIENTS: FURTHER RESULTS

sheaf O(1)|Xσ(C) with the Fubini-Study metric, which invariant under the action of
Uσ and whose curvature form is positive.

Consider the open subset of semi-stable points X ss with the respect to S and the
categorical quotient Y = X//S of X ss by S, namely Y = ProjAS where

A =
⊕
d≥0

Γ(X ,L⊗d) =
⊕
d≥0

Symd
oK (F∨).

Let π : X ss → Y be quotient morphism. For every integer D ≥ 0 divisible enough let
MD be the ample line bundle on Y induced by L⊗D. Endow it with the continuous
metric defined in Section 1.1.

Since S is normal in G, for every d ≥ 0, the sub-oK-module of S-invariant global
sections of L⊗d,

Γ(X ,L⊗d)S ⊂ Γ(X ,L⊗d),
is stable under the linear action of G on Γ(X ,L⊗d). This implies that the open subset
of semi-stable points X ss is stable under the action of G. Moreover G acts on the
quotient Y and, for every D ≥ 0 divisible enough, the invertible sheaf MD is G-
linearized. For every embedding σ : K → C the metric ‖ · ‖MD,σ is invariant under
the action of Uσ.

3.2.2. Twisting by hermitian vector bundles. — Let E = (E1, . . . , EN ) be a N -uple of
hermitian vector bundles over oK such that rk Ei = ei for every i = 1, . . . , N . Apply
the constructions presented in Section 3.1.1 to the representation ρ and the N -uple
E = (E1, . . . , EN ) of oK-modules underlying the hermitian vector bundles of E .

Going back to the notations of the Example 3.1, let FE ,GE , SE , XE , LE denote the
twist of F , G, S, X , L by E . Then:

GE = GL(E1)×oK · · · ×oK GL(EN ),

SE = SL(E1)×oK · · · ×oK SL(EN ),

XE = P(FE),
LE = OFE (1).

The oK-reductive group GE acts linearly on FE and the invertible sheaf LE is GE -
linearized. Consider the open subset X ss

E of semi-stable points of XE with respect GE
and LE . Denote by XE//SE the categorical quotient of X ss

E by SE and, for every integer
D ≥ 0 divisible enough, byMD,E the ample invertible sheaf associated to L⊗DE .

Proposition 3.5 (Compatibility of GIT quotients to twists)
With the notations introduced above:
(1) The set of semi-stable points X ss

E is the twist of X ss by E;
(2) The quotient XE//SE is the twist of the quotient Y = X//S by E;
(3) The invertible sheafMD,E is the twist ofMD by E.

Sketch of the proof. — All these assertions follow from the following remark.

Remark 3.6. — Let V be a vector bundle over oK endowed with a linear action of
G. Denote by VE its twist by E . Then the subspace VSEE of invariant elements of VE
by SE coincide with the twist (VS)E of VS by E .
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This is clear: indeed, by construction one has the inclusion (VS)E ⊂ VSEE and the
equality may be checked locally on Spec oK .

To conclude the proof of the Proposition it suffices to apply the preceding remark
with V = Γ(X ,L⊗d) for all d ≥ 0.

Let σ : K → C be a complex embedding. By hypothesis, the representation induced
by ρ,

ρσ : Gσ(C) −→ GL(F)(C),

respects the hermitian structure, that is, the norm ‖ · ‖F,σ is invariant under the
action of Uσ. Therefore one can apply the constructions described in Section 3.1.2.
Going back to the notations of the Example 3.4, the complex vector space FE ⊗σC is
endowed with an hermitian norm ‖ · ‖FE ,σ which is invariant under the action of the
maximal compact subgroup

UE,σ = U(‖ · ‖E1,σ)× · · · ×U(‖ · ‖EN ,σ).

The invertible sheaf LE is endowed with the Fubini-Study metric ‖·‖LE ,σ associated
to the norm ‖ · ‖FE ,σ. The metric ‖ · ‖LE ,σ is invariant under the maximal compact
subgroup

SUE,σ = SU(‖ · ‖E1,σ)× · · · × SU(‖ · ‖EN ,σ) ⊂ Sσ(C).

Let ‖·‖MD,E,σ be the continuous metric on the invertible sheafMD defined in Section
1.1.

The metric ‖ · ‖MD,σ onMD is invariant under the action of Uσ: let ‖ · ‖′MD,E,σ
be the metric onMD,E obtained by twisting the hermitian line bundleMD by E .

Proposition 3.7. — With the notations introduced above, the metrics ‖ · ‖MD,E,σ
and ‖ · ‖′MD,E,σ coincide.

Proof. — This is seen picking isometries εi : Cei → Ei⊗σC for all i = 1, . . . , N . This
verification is left to the reader.

3.2.3. Statement. — Keep the notations introduced before. By definition the repre-
sentation ρ is homogeneous of weight a = (a1, . . . , aN ) ∈ ZN if for every oK-scheme
T and for every t1, . . . , tN ∈ Gm(T ),

ρ(t1 · idE1 , . . . , tN · idEN ) = ta1
1 · · · t

aN
N · idF .

Theorem 3.8. — With the notations introduced above, let E = (E1, . . . , EN ) be a
N -uple of hermitian vector bundles over oK such that rk Ei = ei for every i.

If the representation ρ is homogeneous of weight a = (a1, . . . , aN ) ∈ ZN and the
subset of semi-stable points X ss is not empty, then:

(1) there exists an isomorphism αE : YE → Y;
(2) for every D ≥ 0 divisible enough there exists an isomorphism of hermitian line

bundles, that is an isometric isomorphism of line bundles,

βE : MD,E
∼−→ α∗EMD ⊗

N⊗
i=1

f∗E (det E i)∨⊗aiDi/ei ,
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where fE : YE → Spec oK is the structural morphism;

(3) hmin((XE ,LE)//SE) = hmin((X ,L)//S)−
N∑
i=1

ai µ̂(Ei).

Corollary 3.9. — With the notation of Theorem 3.8, for every K-point P of XE
which is semi-stable under the action of SE ,

hLE
(P ) ≥ −

N∑
i=1

ai µ̂(Ei) + hmin((X ,L)//S).

3.2.4. Proof of Theorem 3.8. — Let us begin with the following basic fact concerning
homogeneous representations.

Proposition 3.10. — Let V be non-zero oK-module which is flat and of finite type.
Let r : G → GL(V) be a homogeneous representation of weight b = (b1, . . . , bN ). If the
submodule VS of S-invariant elements of V is non-zero, then:

(1) ei divides bi for every i = 1, . . . , N ;
(2) the induced representation r : G → GL(VS) is given by

r(g1, . . . , gN ) =

N∏
i=1

(det gi)
bi/ei

for every oK-scheme T and for every (g1, . . . , gN ) ∈ G(T ).

Proof. — Consider the induced representation r : G → GL(VS). Since the action of
S on FS is trivial by definition, the map r factors through a morphism of oK-group
schemes

r̃ : (G/S) = GN
m −→ GL(VS).

The representation r is homogeneous of weight b = (b1, . . . , bN ), thus, for every oK-
scheme T and every t1, . . . , tN ∈ Gm(T ),

r(t1 · idE1 , . . . , tN · idE1) = tb11 · · · t
bN
N · id .

On the other hand,

r(t1 · idE1 , . . . , tN · idE1) = r̃(te11 , . . . , t
eN
N ),

thus
r̃(te11 , . . . , t

eN
N ) = tb11 · · · t

bN
N · id .

Statements (1) and (2) are then clear.

Corollary 3.11. — Under the hypotheses of Theorem 3.8:
(1) The action of G on Y is trivial;
(2) For every integer D ≥ 0 divisible enough the oK-group scheme G acts on the

fibres ofMD through the character

(g1, . . . , gN ) 7→
N∏
i=1

(det gi)
−aiD/ei .
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More precisely, for every oK-scheme T , every (g1, . . . , gN ) ∈ G(T ), every point
y ∈ Y(T ) and every section s ∈ Γ(T, y∗MD),

(g1, . . . , gN ) · (y, s) =

(
y,

N∏
i=1

(det gi)
−aiD/ei · s

)
.

Proof. — PickD such thatMD is very ample. Then, the associated closed embedding
jD : Y → P(Γ(Y,MD)∨) and the isomorphism j∗DO(1) 'MD are G-equivariant. The
global sections Γ(Y,MD) are identified with

Γ(X ,L⊗D)S = (SymD
oK (F∨))S .

Since the representation ρ is homogeneous of weight a = (a1, . . . , aN ), the induced
representation on SymD

oK (F∨) is homogeneous of weight

−Da = (−Da1, . . . ,−DaN ).

It follows from Proposition 3.10 (2) applied to V = SymD
oK (F∨) that the action of G

on Γ(Y,MD) is given by the representation

(g1, . . . , gN ) 7→
N∏
i=1

(det gi)
−aiD/ei · id .

Assertions (1) and (2) are now straightforward.

Theorem 3.8 follows from the previous Corollary:

Proof of Theorem 3.8. — According to Proposition 3.5 (2), the quotient YE is the
twist of the quotient Y by E : since G is acting trivially, one gets an isomorphism

αE : YE
∼−→ Y.

Similarly, according to Proposition 3.5 (3) and Proposition 3.7, the hermitian line
bundle MD,E is obtained twisting the hermitian line bundle MD by E . Since the
action of G on the fibres ofMD is given by the character

(g1, . . . , gN ) 7→
N∏
i=1

(det gi)
−aiD/ei ,

we get a canonical isomorphism of hermitian line bundles

βE : MD,E
∼−→ α∗EMD ⊗

N⊗
i=1

f∗(det E i)∨⊗aiDi/ei ,

which concludes the proof.
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4. Lower bound of the height on the quotient

4.1. Statement. — In this section we prove Theorem 1.11. Let us recall here the
notations introduced in paragraph 1.5.

Let N ≥ 1 be a positive integer and let E = (E1, . . . , EN ) be a N -uple of hermitian
vector bundles over oK of positive rank. Consider the following oK-reductive groups

G = GL(E1)×oK · · · ×oK GL(EN ),

S = SL(E1)×oK · · · ×oK SL(EN ),

and for every complex embedding σ : K → C consider the maximal compact sub-
groups,

Uσ = U(‖ · ‖E1,σ)× · · · ×U(‖ · ‖EN ,σ) ⊂ Gσ(C),

SUσ = SU(‖ · ‖E1,σ)× · · · × SU(‖ · ‖EN ,σ) ⊂ Sσ(C).

Let F be a hermitian vector bundle over oK and let ρ : G → GL(F) be a representa-
tion which respects the hermitian structures, that is, for every embedding σ : K → C
the norm ‖ · ‖F,σ is fixed under the action of the maximal compact subgroup Uσ.

Consider the induced action of S on F and borrow notation from paragraph 1.4.

Theorem 4.1. — Let a = (a1, . . . , aN ) and b = (b1, . . . , bN ) be N -uples of integers.
With the notations introduced above, let

ϕ :

N⊗
i=1

[
End(E i)⊗ai ⊗ E

⊗bi
i

]
−→ F

be a G-equivariant and generically surjective homomorphism of hermitian vector bun-
dles. Then,

hmin((P(F),OF (1))//S) ≥ −
N∑
i=1

bi µ̂(E i)−
∑

i:rk Ei≥3

|bi|
2
`(rk Ei),

with equality if b1, . . . , bN = 0.

The homomorphism ϕ is G-equivariant and it decreases the v-adic norms at all
places v ofK (the archimedean ones by hypothesis, the non-archimedean ones because
ϕ is defined at the level of oK-modules). For this reason, it suffices to prove Theorem
4.1 in the case ϕ = id, that is:

Theorem 4.2. — Let a = (a1, . . . , aN ) and b = (b1, . . . , bN ) be N -uples of integers
and set

F :=

N⊗
i=1

[
End(E i)⊗ai ⊗ E

⊗bi
i

]
.

With the notations introduced above,

hmin((P(F),OF (1))//S) ≥ −
N∑
i=1

bi µ̂(E i)−
∑

i:rk Ei≥3

|bi|
2
`(rk Ei),

with equality if b1, . . . , bN = 0.
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The remainder of Section 4 is devoted to the proof of Theorem 4.2.

4.2. Tensor products of endomorphisms algebras. —

4.2.1. Notation. — In this section we are going to prove Theorem 4.2 in the case
bi = 0 for all i = 1, . . . , N , that is, in the case

F =

N⊗
i=1

End(E⊗aii ),

for a N -uple of integers a = (a1, . . . , aN ).

Theorem 4.3. — With the notation introduced above,

hmin((P(F),O(1))//S) = 0.

Begin with the easy inequality:

Proposition 4.4. — With the notation introduced above,

hmin((P(F),O(1))//S) ≤ 0.

Proof. — Thanks to the canonical isomorphism End(E⊗aii ) ' End(E∨⊗aii ) the inte-
gers ai may be supposed non-negative.

According to Theorem 3.8 it suffices to show this when K = Q and the hermitian
vector bundles E i are trivial, that is, for all i = 1, . . . , N , the hermitian vector bundle
E i is the Z-module Ei = Zei endowed with the standard hermitian norm. Consider
the hermitian vector bundle E ′ := E⊗a1

1 ⊗ · · · ⊗ E⊗aNN . Identify it with the trivial
vector bundle given by E ′ = Za1e1+···+aNeN endowed with the standard hermitian
norm. With this notation one has a canonical S-equivariant isomorphism of hermitian
vector bundles F ' End(E ′).

Consider the endomorphism ϕ of E ′ given by the matrix (with respect the canonical
basis of E ′) whose (1, 1)-entry is 1 and the other entries are 0:

ϕ =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


The point [ϕ] of P(F) is semi-stable under the action by conjugation of SL(E ′) (hence
with respect to the action of S) because it is not nilpotent. If hM denotes the height
on the quotient Y of P(F)ss by S and π : P(F)ss → Y is the quotient map, the
Fundamental Formula for projective spaces (Corollary 1.6) gives

hM(π([ϕ])) ≤ hOF (1)([ϕ]) = 0,

which concludes the proof.

It remains to prove the converse inequality. It suffices to show:
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Theorem 4.5. — Let ϕ ∈ F ⊗oK K be a non-zero vector such that the associated
K-point [ϕ] of P(F) is semi-stable. Then,∑

v∈VK

log inf
g∈S(Cv)

‖g · ϕ‖F,v
‖ϕ‖F,v

≥ 0.

Indeed, Theorem 4.3 is deduced applying Theorem 4.5 and the Fundamental For-
mula (in the form given by Corollary 1.6) to every finite extension K ′ of K and to
every semi-stable point of P(F) defined over K ′.

The remainder of this section is devoted to the proof of Theorem 4.5.

4.2.2. The case of a non-nilpotent endomorphism. — Consider ϕ as an endomor-
phism of the K-vector space

⊗N
i=1 E

⊗ai
i ⊗oK K thanks to the canonical isomorphism

α :

N⊗
i=1

End(E⊗aii ) ' End

(
N⊗
i=1

E⊗aii

)
.

With this identification assume that ϕ is not nilpotent. Then the point [ϕ] is semi-
stable under the action S. Actually, something more is true: consider the oK-reductive
group

H := SL(E⊗a1
1 ⊗ · · · ⊗ E⊗aNN )

and its action by conjugation on F (through the isomorphism α). According to
Corollary 2.3, the point [ϕ] is semi-stable under the action of H. Thus [ϕ] is semi-
stable with respect to S and, for every place v of K,

(4.2.1) inf
g∈S(Cv)

‖g · ϕ‖F,v ≥ inf
h∈H(Cv)

‖hϕh−1‖F,v.

The isomorphism α is an isometry as soon as endow F with the hermitian norms
deduced from the identification

End

(
N⊗
i=1

E⊗aii

)
=

(
N⊗
i=1

E⊗aii

)∨
⊗oK

(
N⊗
i=1

E⊗aii

)
.

Therefore one can apply Theorem 2.4 to [ϕ] and obtain that

[Ω : K]

( ∑
v∈VK

log inf
h∈H(Cv)

‖hϕh−1‖F,v

)
is equal to∑

v∈VΩ
non-arch.

log max{|λ1|v, . . . , |λn|v}+
∑

σ : Ω→C

log
√
|λ1|2σ + · · ·+ |λn|2σ,

where λ1, . . . , λn are the eigenvalues of ϕ (counted with multiplicities) and Ω is a
number field containing them. Since the latter quantity is non-negative, taking the
sum of (4.2.1) over all places,∑

v∈VK

log inf
g∈S(Cv)

‖g · ϕ‖F,v ≥
∑
v∈VK

log inf
h∈H(Cv)

‖hϕh−1‖F,v ≥ 0,

this gives Theorem 4.5 in this case.
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4.2.3. The case of a non-vanishing invariant linear form. — Suppose that there
exists a S-invariant linear form f ∈ Γ(P(F),O(1)) = F∨ that does not vanish at [ϕ].
To treat this case one needs some information describing the form of this invariants
given by the First Main Theorem of Invariant Theorem. Thus let us recall it here
again.

For every i = 1, . . . , N let S|ai| be the permutation group on |ai| elements. For a
permutation σ let εi,σ be the automorphism of E⊗aii permuting factors by σ. Seen as
an element of End(E⊗aii ), the endomorphism εi,σ is invariant under conjugation by
SL(E⊗ai). Therefore, for every N -uple of permutations,

σ = (σ1, . . . , σN ) ∈ S|a1| × · · · ×S|aN |

the endomorphism εσ = ε1,σ1 ⊗ · · · ⊗ εN,σN ∈ F is invariant under the action of S.
We can now state the First Main Theorem of Invariant Theory (cf. [Wey39,

Chapter III], [Che09, Theorem 3.1, Corollary] and [ABP73, Appendix 1]):

Theorem 4.6 (First Main Theorem of Invariant Theory)
The subspace of elements of F ⊗oK K which are invariant under the action of

S ×oK K is generated, as a K-linear space, by the elements εσ, while σ ranges in
S|a1| × · · · ×S|aN |.

For every N -uple of permutations σ = (σ1, . . . , σN ) ∈ S|a1| × · · · × S|aN | denote
by ε∨σ its image by the canonical isomorphism

F =

N⊗
i=1

End(E⊗aii ) ' F∨ =

N⊗
i=1

End(E∨⊗aii ).

Let us resume the proof of Theorem 4.5. Since there is a S-invariant linear form
non-vanishing on [ϕ], according to Theorem 4.6, there exists a suitable N -uple of
permutations σ = (σ1, . . . , σN ) ∈ S|a1| × · · · × S|aN | such that ε∨σ (ϕ) 6= 0. By
definition,

ε∨σ (ϕ) = Tr(ϕ ◦ εσ−1),

Since the trace of the endomorphism ϕ◦εσ−1 is non-zero it is not nilpotent. Therefore,
the preceding case implies:

(4.2.2)
∑
v∈VK

log inf
g∈S(Cv)

‖g · (ϕ ◦ εσ−1)‖F,v ≥ 0.

Remark the following facts:
(1) For every place v of K and every non-zero vector ψ ∈ F ⊗oK Cv,

‖ψ ◦ εσ−1‖F,v = ‖ψ‖F,v.

(2) The endomorphism εσ−1 commutes with the action of S (it is the definition of
S-invariance).

As a consequence of these considerations, for every g ∈ S(Cv),

‖g · ϕ‖F,v = ‖g · (ϕ ◦ εσ−1)‖F,v.
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Summing over all places, the preceding equality together with (4.2.2) entails∑
v∈VK′

log inf
g∈S(Cv)

‖g · ϕ‖F,v ≥ 0,

which proves Theorem 4.5 in this case.

4.2.4. The general case. — Let us finally treat the general case. By definition of
semi-stability there exist a positive integer D ≥ 1 and a S-invariant global section

f ∈ Γ(P(F),O(D)) = SymD(F∨)

that does not vanish at the point [ϕ]. Consider the D-fold Veronese embedding

P(F) −→ P(F⊗D)

[ϕ] 7−→ [ϕ⊗D].

The point [ϕ⊗D] is a semi-stable point of P(F⊗D). Since the homomorphism
F∨⊗D → SymD(F∨) is surjective and S-equivariant, and since the point P is defined
on a field of characteristic 0, f can be supposed being the image of a S-invariant
element f ′ of F∨⊗D ⊗oK K. (5)

Up to rescaling f ′ one may assume that there exists a S-invariant linear form
f ′ ∈ Γ(P(F⊗D),O(1)) which does not vanish at [ϕ⊗D]. Therefore one may apply the
preceding case to ϕ⊗D and obtain∑

v∈VK

log inf
g∈S(Cv)

‖g · ϕ⊗D‖F⊗D,v ≥ 0.

For every place v of K and for every g ∈ S(Cv),

‖g · ϕ⊗D‖F⊗D,v = (‖g · ϕ‖F,v)D ,

which concludes the proof of Theorem 4.5.

4.3. The general case. —

4.3.1. Notation. — In this section we will prove the general case of Theorem 4.2. As
for Theorem 4.3 this is deduced from the following:

Theorem 4.7. — Let ϕ ∈ F ⊗oK K be a non-zero vector such that the associated
K-point P = [x] of P(F) is semi-stable. Then,∑

v∈VK

log inf
g∈S(Cv)

‖g · x‖F,v
‖x‖F,v

≥ 0.

The rest of this section is devoted to the proof of Theorem 4.7.

5. Let k be a field and let V,W be representation of a reductive k-group G. A G-equivariant
homomorphism ϕ : V → W induces a linear homomorphismϕ : V G → WG. If ϕ is surjective and k
is of characteristic 0 then the homomorphism V G →WG is surjective [MS72, pages 181-182].
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4.3.2. The case of a non-vanishing invariant linear form. — Suppose that there is
a S-invariant linear form which does not vanish at the point P . In particular, the
submodule of S-invariant elements of

F∨ =

N⊗
i=1

[
End(Ei)∨⊗ai ⊗ E∨⊗bii

]
is non-zero. Therefore Proposition 3.10 (1) implies that ei = rk Ei divides bi for every
i = 1, . . . , N . The idea is to embed conveniently P(F) and deduce Theorem 4.7 in
this case from Theorem 4.3.

Definition 4.8. — Fix an integer i ∈ {1, . . . , N}.
(1) For ei = 2, let εi the isomorphism of oK-modules

εi : E⊗2
i −→ End(Ei)⊗ det Ei

whose inverse is given, for every ϕ ∈ End Ei and every v1, v2 ∈ Ei, by the map

ϕ⊗ (v1 ∧ v2) 7→ ϕ(v1)⊗ v2 − ϕ(v2)⊗ v1.

(2) For ei 6= 2, let εi be the homomorphism of oK-modules

εi : E⊗eii −→ End(E⊗eii )⊗ det Ei,

whose dual map,

ε∨i : End(E∨⊗eii )⊗ det E∨i −→ E
∨⊗ei
i ,

is defined as follows: for every ϕ ∈ End(E∨⊗eii ) and every v1, . . . , vei ∈ E∨i , the
image of the element ϕ⊗ (v1 ∧ · · · ∧ vei) is∑

γ∈Sei

sign(γ)ϕ(vγ(1) ⊗ · · · ⊗ vγ(ei))⊗ (v1 ∧ · · · ∧ vei).

Endow the oK-modules End(Ei) ⊗ det Ei and End(E⊗eii ) ⊗ det Ei with the hermi-
tian norms deduced (by taking tensor products, dual and the determinant) from the
hermitian norm ‖ · ‖Ei .

Proposition 4.9. — Fix an integer i ∈ {1, . . . , N}. With the notations introduced
above:

(1) for ei = 2, εi is a GL(Ei)-equivariant isomorphism of hermitian vector bundles;
(2) for ei 6= 2, εi is GL(Ei)-equivariant and, for an embedding σ : K → C,

sup
x 6=0

‖εi(x)‖σ
‖x‖σ

≤
√
ei!,

where the supremum is ranging on the elements of E⊗eii ⊗σC, the norm in the
numerator is the one of End(E⊗eii )⊗ det Ei and the norm in the denominator
is the one of E⊗eii .
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Proof. — The fact that the map εi is GL(Ei)-equivariant is clear in both cases. Let
σ : K → C be a complex embedding and write

W := Ei ⊗σ C, w := dimCW = ei, ‖ · ‖W := ‖ · ‖Ei,σ, f := εi.

Let x1, . . . , xw be an orthonormal basis of W .
(1) If w = 2 for every endomorphism ϕ of W :

‖f−1(ϕ⊗ (x1 ∧ x2))‖W⊗2 = ‖ϕ(x1)⊗ x2 − ϕ(x2)⊗ x1‖W⊗2

=
√
‖ϕ(x1)‖2W + ‖ϕ(x2)‖2W

= ‖ϕ‖End(W )

= ‖ϕ⊗ (x1 ∧ x2)‖End(W )⊗detW ,

which shows that f−1 (thus f) is an isometry.
(2) Suppose w 6= 2. For every w-uple R = (r1, . . . , rw) made of integers such that

rα ∈ {1, . . . , w} (α = 1, . . . , w) set xR := xr1⊗· · ·⊗xrw . While R ranges in the
set {1, . . . , w}w the vectors xR form an orthonormal basis of the vector space
W⊗w. For every element t ∈W⊗w write

t =
∑

R∈{1,...,w}w
tRxR.

Let x∨1 , . . . , x∨w be the basis ofW∨ dual to x1, . . . , xw and for every permutation
γ ∈ Sw write x∨γ = xγ(1)⊗· · ·⊗xγ(w). With this notation, for every t ∈W⊗w,
the map f is expressed as follows:

f(t) =
∑

R∈{1,...,w}w

∑
γ∈Sw

sign(γ)tRxR ⊗ x∨γ ⊗ (x1 ∧ · · · ∧ xw).

Taking the norm:

‖f(t)‖2End(W )⊗w⊗detW =
∑

R∈{1,...,w}w
|tR|2 ≤ w! · ‖t‖2W⊗w ,

which gives the result.

For every i = 1, . . . , N the homomorphism ε
⊗bi/ei
i induces, through the identifica-

tion Ebi ' (E⊗ei)⊗bi/ei , the following homomorphisms:

(ei = 2) ε
⊗bi/2
i : E⊗bii −→ End(Ei)⊗bi/2 ⊗ (det Ei)⊗bi/2,

(ei 6= 2) ε
⊗bi/ei
i : E⊗bii −→ End(Ei)⊗bi ⊗ (det Ei)⊗bi/ei .

For every i = 1, . . . , N consider the oK-module

F ′i :=

End(Ei)⊗ai+bi/2 if ei = 2,

End(Ei)⊗ai+bi otherwise

and the homomorphism of oK-modules

ηi = id⊗ε⊗bi/eii : End(Ei)⊗ai ⊗ E⊗bii −→ F ′i ⊗ det E⊗bi/eii .



4. LOWER BOUND OF THE HEIGHT ON THE QUOTIENT 151

Set F ′ := F ′1 ⊗ · · · ⊗ F ′N . The homomorphism η = η1 ⊗ · · · ⊗ ηN gives rise to an
injective G-equivariant homomorphism of oK-modules η : F → F ′ ⊗D, where

D :=

N⊗
i=1

det E⊗bi/eii .

Endow F ′ and D of the hermitian norms deduced from the hermitian norms on Ei.
Passing to the projective spaces, it is induces a G-equivariant closed embedding

η : P(F)→ P(F ′ ⊗D).

Therefore, since the point P is defined on a field of characteristic 0 (see footnote 5),
the image η(P ) is a semi-stable K-point of P(F ′ ⊗ D) with respect to the action of
S. If x ∈ F ⊗oK K is a non-zero representative of P , the Fundamental Formula for
projective spaces (Corollary 1.6) and Proposition 4.9 entail:

hM(π(P )) =
∑
v∈VK

log inf
g∈S(Cv)

‖g · x‖F,v
‖x‖F,v

≥
∑
v∈VK

log inf
g∈S(Cv)

‖g · η(x)‖F ′⊗D,v
‖η(x)‖F⊗D,v

−
∑
i:ei≥3

|bi|
2
`(ei).

Since the action of S is trivial on the line bundle D, the canonical isomorphism
α : P(F ′ ⊗ D) → P(F ′) is S-equivariant. Moreover, it induces an isomorphism of
hermitian line bundles

α∗OF ′(1) ' OF ′⊗D(1)⊗ f∗D∨,
where f : P(F ′)→ Spec oK is the structural morphism.

Let Y ′ be categorical quotient of P(F)ss by S and let π′ : P(F ′)ss → Y ′ be the
quotient map. Denote by hM′ is the height on the quotient Y ′ (with respect to S and
OF ′(1)). Applying again the Fundamental Formula, one finds∑

v∈VK

log inf
g∈S(Cv)

‖g · η(x)‖F ′⊗D,v
‖η(x)‖F⊗D,v

= hM′(π
′(α ◦ η(P )))−

N∑
i=1

bi µ̂(E i),

so that, putting all together, one obtains

hM(π(P )) ≥ hM′(π
′(α ◦ η(P )))−

N∑
i=1

bi µ̂(E i)−
∑
i:ei≥3

|bi|
2
`(ei).

Thanks to Theorem 4.3 the height hM′ is non-negative, which concludes the proof of
Theorem 4.7 in this case.

4.3.3. The general case. — Suppose that there exists a S-invariant global section
s ∈ Γ(P(F),O(D)) that does not vanish at P . One argues as in paragraph 4.2.4 —
namely, taking the D-uple embedding P(F) → P(F⊗D) and applying the preceding
case. These details are left to the reader. This concludes of the proof of Theorem 4.7,
hence of Theorem 4.2.





BIBLIOGRAPHY

[ABP73] M. Atiyah, R. Bott & V. K. Patodi – “On the heat equation and the index
theorem”, Invent. Math. 19 (1973), p. 279–330.

[AC07] A. Abdesselam & J. Chipalkatti – “On the Wronskian combinants of binary
forms”, J. Pure Appl. Algebra 210 (2007), no. 1, p. 43–61.

[AL93] H. Azad & J. J. Loeb – “Plurisubharmonic functions and the Kempf-Ness the-
orem”, Bull. London Math. Soc. 25 (1993), p. 162–168.

[BC13] J.-B. Bost & H. Chen – “Concerning the semistability of tensor products in
Arakelov geometry”, J. Math. Pures Appl. (9) 99 (2013), no. 4, p. 436–488.

[Ber90] V. G. Berkovich – Spectral theory and analytic geometry over non-Archimedean
fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical
Society, Providence, RI, 1990.

[Ber93] , “Étale cohomology for non-Archimedean analytic spaces”, Inst. Hautes
Études Sci. Publ. Math. (1993), no. 78, p. 5–161 (1994).

[BFJ12] S. Boucksom, C. Favre & M. Jonsson – “Singular semipositive metrics in
non-Archimedean geometry”, arXiv:1201.0187, 2012.

[BG06] E. Bombieri & W. Gubler – Heights in Diophantine geometry, New Mathe-
matical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006.

[BGR84] S. Bosch, U. Güntzer & R. Remmert – Non-Archimedean analysis,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984, A systematic ap-
proach to rigid analytic geometry.

[Bom82] E. Bombieri – “On the Thue-Siegel-Dyson theorem”, Acta Math. 148 (1982),
p. 255–296.

[Bor91a] A. Borel – Linear algebraic groups, second ed., Graduate Texts in Mathematics,
vol. 126, Springer-Verlag, New York, 1991.

[Bor91b] A. Borel – Linear algebraic groups, second ed., Graduate Texts in Mathematics,
vol. 126, Springer-Verlag, New York, 1991.



154 BIBLIOGRAPHY

[Bos94] J.-B. Bost – “Semi-stability and heights of cycles”, Invent. Math. 118 (1994),
no. 2, p. 223–253.

[Bos96a] , “Intrinsic heights of stable varieties and abelian varieties”, Duke Math. J.
82 (1996), no. 1, p. 21–70.

[Bos96b] J.-B. Bost – “Périodes et isogenies des variétés abéliennes sur les corps de nombres
(d’après D. Masser et G. Wüstholz)”, Astérisque (1996), no. 237, p. Exp. No. 795,
4, 115–161, Séminaire Bourbaki, Vol. 1994/95.

[Bos04] J.-B. Bost – “Germs of analytic varieties in algebraic varieties: canonical metrics
and arithmetic algebraization theorems”, in Geometric aspects of Dwork theory.
Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, p. 371–418.

[BR10] M. Baker & R. Rumely – Potential theory and dynamics on the Berkovich pro-
jective line, Mathematical Surveys and Monographs, vol. 159, American Mathe-
matical Society, Providence, RI, 2010.

[BT72] F. Bruhat & J. Tits – “Groupes réductifs sur un corps local”, Inst. Hautes
Études Sci. Publ. Math. (1972), no. 41, p. 5–251.

[BT84] , “Groupes réductifs sur un corps local. II. Schémas en groupes. Existence
d’une donnée radicielle valuée”, Inst. Hautes Études Sci. Publ. Math. (1984),
no. 60, p. 197–376.

[Bur92] J.-F. Burnol – “Remarques sur la stabilité en arithmétique”, Internat. Math.
Res. Notices (1992), no. 6, p. 117–127.

[Che09] H. Chen – “Maximal slope of tensor product of Hermitian vector bundles”, J.
Algebraic Geom. 18 (2009), no. 3, p. 575–603.

[CLD12] A. Chambert-Loir & A. Ducros – “Formes différentielles réelles et courants
sur les espaces de Berkovich”, arXiv:1204.6277, 2012.

[Con] B. Conrad – “Reductive group schemes”, Notes for “SGA3 summer school” held
in Luminy (CIRM) in 2011. Available at : http://math.stanford.edu/~conrad/.

[Con08] B. Conrad – “Several approaches to non-Archimedean geometry”, in p-adic geom-
etry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, p. 9–63.

[Dem] J.-P. Demailly – “Complex Analytic and Differential Geometry”.

[Dem65] M. Demazure – “Schémas en groupes réductifs”, Bull. Soc. Math. France 93
(1965), p. 369–413.

[Dys47] F. J. Dyson – “The approximation to algebraic numbers by rationals”, Acta Math.
79 (1947), p. 225–240.

[EV84] H. Esnault & E. Viehweg – “Dyson’s lemma for polynomials in several variables
(and the theorem of Roth)”, Invent. Math. 78 (1984), no. 3, p. 445–490.

[Fal95] G. Faltings – “Mumford-Stabilität in der algebraischen Geometrie”, in Proceed-
ings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)
(Basel), Birkhäuser, 1995, p. 648–655.



BIBLIOGRAPHY 155

[FJ04] C. Favre & M. Jonsson – The valuative tree, Lecture Notes in Mathematics,
vol. 1853, Springer-Verlag, Berlin, 2004.

[FW94] G. Faltings & G. Wüstholz – “Diophantine approximations on projective
spaces”, Invent. Math. 116 (1994), no. 1-3, p. 109–138.

[Gas00] C. Gasbarri – “Heights and geometric invariant theory”, Forum Math. 12 (2000),
no. 2, p. 135–153.

[Gau08] É. Gaudron – “Pentes des fibrés vectoriels adéliques sur un corps global”, Rend.
Semin. Mat. Univ. Padova 119 (2008), p. 21–95.

[GI63] O. Goldman & N. Iwahori – “The space of p-adic norms”, Acta Math. 109
(1963), p. 137–177.

[GP11] P. Gille & P. Polo (eds.) – Schémas en groupes (SGA 3). Tome III. Structure
des schémas en groupes réductifs, Documents Mathématiques (Paris) [Mathemati-
cal Documents (Paris)], 8, Société Mathématique de France, Paris, 2011, Séminaire
de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of
Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck
with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P.
Serre, Revised and annotated edition of the 1970 French original.

[Gro53] A. Grothendieck – “Résumé de la théorie métrique des produits tensoriels
topologiques”, Bol. Soc. Mat. São Paulo 8 (1953), p. 1–79.

[Gro64] , “Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas. I”, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20,
p. 259.

[Gro67] , “Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas IV”, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32,
p. 361.

[Gro71] , Revêtements étales et groupe fondamental , Springer-Verlag, Berlin, 1971,
Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé
par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud, Lecture
Notes in Mathematics, Vol. 224.

[GS82a] V. Guillemin & S. Sternberg – “Convexity properties of the moment mapping”,
Invent. Math. 67 (1982), no. 3, p. 491–513.

[GS82b] , “Geometric quantization and multiplicities of group representations”, In-
vent. Math. 67 (1982), no. 3, p. 515–538.

[GS84] , “Convexity properties of the moment mapping. II”, Invent. Math. 77
(1984), no. 3, p. 533–546.

[Hab75] W. J. Haboush – “Reductive groups are geometrically reductive”, Ann. of Math.
(2) 102 (1975), no. 1, p. 67–83.

[Kan89] E. Kani – “Potential theory on curves”, in Théorie des nombres (Quebec, PQ,
1987), de Gruyter, Berlin, 1989, p. 475–543.



156 BIBLIOGRAPHY

[Kem78] G. Kempf – “Instability in invariant theory”, Ann. of Math. (2) 108 (1978), no. 2,
p. 299–316.

[KN79] G. Kempf & L. Ness – “The length of vectors in representation spaces”, in
Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen,
1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, p. 233–243.

[MFK94] D. Mumford, J. Fogarty & F. Kirwan – Geometric invariant theory, third ed.,
Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics
and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.

[Mil88] V. D. Milman – “The heritage of P. Lévy in geometrical functional analysis”,
Astérisque (1988), no. 157-158, p. 273–301, Colloque Paul Lévy sur les Processus
Stochastiques (Palaiseau, 1987).

[MS72] D. Mumford & K. Suominen – “Introduction to the theory of moduli”, in Alge-
braic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math.), Wolters-
Noordhoff, Groningen, 1972, p. 171–222.

[Nak99] M. Nakamaye – “Intersection theory and Diophantine approximation”, J. Alge-
braic Geom. 8 (1999), no. 1, p. 135–146.

[Nee85] A. Neeman – “The topology of quotient varieties”, Ann. of Math. (2) 122 (1985),
no. 3, p. 419–459.

[Nic14] J. Nicaise – “Berkovich skeleta and birational geometry”, arXiv:1204.6277, 2014.

[Osg85] C. F. Osgood – “Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna
bounds, or better”, J. Number Theory 21 (1985), no. 3, p. 347–389.

[Poi13a] J. Poineau – “Espaces de Berkovich sur Z : étude locale”, Invent. Math. 194
(2013), no. 3, p. 535–590.

[Poi13b] , “Les espaces de Berkovich sont Angéliques”, Bull. Soc. Math. France 141
(2013), no. 2, p. 267–297.

[Rou81] G. Rousseau – “Instabilité dans les espaces vectoriels”, in Algebraic surfaces
(Orsay, 1976–78), Lecture Notes in Math., vol. 868, Springer, Berlin-New York,
1981, p. 263–276.

[RR84] S. Ramanan & A. Ramanathan – “Some remarks on the instability flag”, Tohoku
Math. J. (2) 36 (1984), no. 2, p. 269–291.

[RTW10] B. Rémy, A. Thuillier & A. Werner – “Bruhat-Tits theory from Berkovich’s
point of view. I. Realizations and compactifications of buildings”, Ann. Sci. Éc.
Norm. Supér. (4) 43 (2010), no. 3, p. 461–554.

[RTW11] , “Bruhat-Tits buildings and analytic geometry”, (2011).

[Rum89] R. Rumely – Capacity theory on algebraic curves, Lecture Notes in Mathematics,
vol. 1378, Springer-Verlag, Berlin, 1989.

[Rum93] , “On the relation between Cantor’s capacity and the sectional capacity”,
Duke Math. J. 70 (1993), no. 3, p. 517–574.



BIBLIOGRAPHY 157

[Sch00] G. W. Schwarz – “Quotients of compact and complex reductive groups”, Travaux
en cours, vol. 61, Hermann et cie., 2000.

[Ses77] C. S. Seshadri – “Geometric reductivity over arbitrary base”, Advances in Math.
26 (1977), no. 3, p. 225–274.

[Sou95] C. Soulé – “Successive minima on arithmetic varieties”, Compositio Math. 96
(1995), no. 1, p. 85–98.

[Ste86] N. Steinmetz – “Eine Verallgemeinerung des zweiten Nevanlinnaschen Haupt-
satzes”, J. Reine Angew. Math. 368 (1986), p. 134–141.

[Thu05] A. Thuillier – “Théorie du potentiel sur les courbes en géométrie non archimé-
dienne. application à la théorie d’arakelov.”, Ph.D. Thesis, Unversité de Rennes 1,
2005, Thèse de doctorat, p. viii+184 pp.

[Tot96] B. Totaro – “Tensor products in p-adic Hodge theory”, Duke Math. J. 83 (1996),
no. 1, p. 79–104.

[Vio85] C. Viola – “On Dyson’s lemma”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12
(1985), no. 1, p. 105–135.

[Voj89] P. Vojta – “Dyson’s lemma for products of two curves of arbitrary genus”, Invent.
Math. 98 (1989), no. 1, p. 107–113.

[Voj96] P. Vojta – “Roth’s theorem with moving targets”, Internat. Math. Res. Notices
(1996), no. 3, p. 109–114.

[Wey39] H. Weyl – The Classical Groups. Their Invariants and Representations, Princeton
University Press, Princeton, N.J., 1939.

[Woo10] C. Woodward – “Moment maps and geometric invariant theory”, in Hamiltonian
Actions: invariants et classification (M. Brion & T. Delzant, eds.), vol. 1, Les cours
du CIRM, no. 2, 2010, p. 55–98.

[Zha94] S. Zhang – “Geometric Reductivity at Archimedean Places”, Internat. Math. Res.
Notices (1994), no. 10, p. 425–433.

[Zha95] , “Positive line bundles on arithmetic varieties”, J. Amer. Math. Soc. 8
(1995), no. 1, p. 187–221.

[Zha96a] , “Heights and reductions of semi-stable varieties”, Compositio Math. 104
(1996), no. 1, p. 77–105.

[Zha96b] S. Zhang – “Heights and reductions of semi-stable varieties”, Compositio Math.
104 (1996), no. 1, p. 77–105.


