RATIONAL CURVES ON FOLIATED VARIETIES

F.A. BOGOMOLOV and M.L. MCQUILLAN

Institut des Hautes Etudes Scientifiques
35, route de Chartres

91440 — Bures-sur-Yvette (France)
Février 2001

IHES/M/01/07



Rational Curves on Foliated Varieties

F.A. Bogomolov &  M.L. McQuillan

Abstract

This article represents a study of ample subbundles of the tangent
sheaf of a variety in a formal neighbourhood of a curve. With the added
hypothesis of integrability it is best possible. A particular corollary is
Mori’s cone theorem for foliations by curves.

0 Introduction

In a series of papers, notably [Bl] and [B2], the first author showed,
amongst other things, that a surprising interplay between the classical
Frobenius theorem on the integrability of vector fields closed under Lie
bracket and various algebro-geometric considerations gave rise to some
rather strong restrictions on the ‘size’ of subbundles of the cotangent
bundle, with a particular corollary being inequalities for Chern numbers
on algebraic surfaces. In refining this circle of ideas Y. Miyaoka, [Mil],
established that any quotient of the cotangent bundle of a surface of gen-
eral type and positive index was big. Rather more remarkably, Miyaoka,
[Mi2], subsequently considered the problem of subbundles of the tangent
bundle with positive slope along a generic complete intersection of ample
divisors, and by extending Mori’s bend and break technique to ‘deforma-
tions along a foliation’ showed that these hypothesis implied the existence
of covering families of rationally chain connected varieties in the direction
of the foliation in question. The surface case of this result is particularly
clean, since it asserts that either the bundle of top weight forms K along
the leaves is pseudo-effective as a divisor, or the foliation is a fibration by
rational curves. Continuing in these directions the second author in ex-
tending the results of the first author on boundedness of moduli of curves
of a given genus on algebraic surfaces to curves with boundary employed
Miyaoka’s semi-positivity theorem in an essential way, cf. [M1]. The use
of the said theorem therein was to force, under the hypothesis of a dense
parabolic leaf, the existence of a global vector field defining the foliation
on a rather crude version of what might be considered it’s minimal model,
i.e. a normal algebraic space on which the positive part of the Zariski de-



composition of Kr coincides with the push forward of the same. It was
natural however to examine this question more carefully, not just in terms
of a more delicate structure of the minimal model but to introduce the
study of the birational geometry of foliations per se, cf. [M2], [Brl], [Br2].
As ever a prerequisite for such a study is the understanding of subvarieties
on which the cotangent bundle of our foliation is negative.

To fix ideas let us consider a foliation by curves, F, on a smooth variety
X. This is equivalent to giving a rank 1 torsion free quotient of Qx, whose
Chern class we denote by K. Miyaoka’s theorem then asserts that if C
is a ‘sufficiently movable’ curve then either K. C' > 0 or F is a (possibly
singular) fibration by rational curves. The main problem here is the hy-
pothesis, ‘sufficiently movable’ which more precisely means that C' moves
in a family {C: | t € T} covering X such that generically C; does not
meet the singularities of F, whereas one really wishes to understand the
implications of the hypothesis Kr. C' < 0 for any curve C. The difficulties
in extending Miyaoka’s method, or its refinement by Shepherd-Barron,
[SB], to this situation are formidable. Firstly one must establish that the
hypothesis imply that the divided symmetric power algebra of K extends
across a finitely generated extension of Z, [Mi2], or rather more straight-
forwardly the foliation is defined by an inseparable scheme quotient in
positive characteristic, [SB]. Even then there is the added complication
that C' may pass through the foliation singularities and so Mori’s bend
and break technique may not apply. The key to resolving this problem
§ 2 lies in finding a F-invariant surface S containing C' ', and so reduce
the study to something more tractable. In finding our surface, however,
we necessarily show that the leaves through C are algebraic curves, and
whence reprove Miyaoka’s theorem in this case without any appeal to re-
duction in positive characteristic, thanks to a theorem of Arakelov, [A],
all be it that the most satisfying proof of Arakelov’s theorem is to proceed
via positive characterictic, cf. [S].

With this example in mind let us consider a more general situation.
We denote by (X, F) any variety equipped with an integrable (i.e. closed
under Lie-bracket) foliation F. The singularities of X are not our interest,
but rather those of 7. What this latter should mean is a measure of how
far away the foliation is from being given everywhere locally by a relatively
smooth fibration. To understand this it is convenient to introduce an
ambient smooth space M. The foliation is given by a subsheaf 7# of Tx
of rank r, say, and for any = € X we have the natural residue map,

Tr @k(z) — T @ k(z).

Should this map be an injection onto a subspace of dimension r, then
Nakayama's lemma forces F to be a bundle in a neighbourhood of z, and

LAdded in preparation: J.-B. Bost, “Algebraic leaves of algebraic foliations over num-
ber fields”, Orsay preprint 2000, uses what may be considered an arithmetic version of this
trick which independently led him to discover the geometric trick, and its higher dimensional
generalisations a la § 2.1.



better still the Frobenius theorem goes through verbatim to force F to be
given locally by a relatively smooth fibration, and indeed our condition is
even necessary for the latter. Naturally then we introduce the notion of
weak regularity, 1.1, which requires 77 to be a bundle, and put:

sing (F) ={z € X | dim (Im {Tr @ k(z) — T @ k(z)}) <r}.

This variety stratifies naturally according to the rank of the image
map, and for C' any curve in X, we denote by r(C) the generic rank. We
are now in a position to state our first theorem, viz:

THEOREM 0.1. (a) Let (X,F) be a weakly regqular (integrable) foliated
variety and C' o curve in X with Tr|c ample then for all x € C there is
a F-invariant rationally connected subvariety Ve 3 x of dimension r(C).

Here we do use reduction modulo p, but only to resolve the correspond-
ing problem for a foliation such that X/F exists as a scheme quotient in
characteristic zero. We therefore not only obtain 0.1 but in fact,

THEOREM 0.1. (b) Notations and hypothesis as above then the minimal
degree of the rational curve connecting any two points in Vy is effectively
computable. In particular there is a rational curve Ly S = tangent to F
such that for any nef. R-divisor H,

H.C
-Kr C°

r(C)

H. Ly <2(r(C) + 1)

In this notation, F, ¢y is the induced foliation on the subscheme of
X where the generic rank is r(C). It is not immediately clear that in-
tersecting with the canonical class has any sense for r(C') < r, but well
definedness will emerge in the course of the proof. One should also note
that there is no need to suppose T'r is saturated in 7x provided there
is closure under Lie-bracket. Without closure under bracket one can of
course find a foliation G corresponding to the minimal subsheaf Tg of Tx
closed under the same. It may happen, however, that this is not a bun-
dle in a neighbourhood of our curve C, although it will certainly be as
‘ample’ as one needs. This poses serious technical problems akin to the
difficulty of doing deformation theory on singular varieties, and so one
only obtains 0.1 and 0.1(b) under the weaker hypothesis that G is weakly
regular in a neighbourhood of C'. This is however perfectly sufficient to
recover Miyaoka’s semi-positivity theorem, where X is supposed normal
and C moves in a large base point free family.

Our study however has so far revealed nothing if r(C) = 0. For folia-
tions by curves this is equivalent to our curve being wholly contained in the
singular locus of the foliation. To address this question we have recourse
to the notion of foliated canonical singularities. This class of singularities
may be understood as the maximal one for which birational geometry of
foliations makes sense, equally the precise definition a la Kawamata-Mori
et al. is given in § 1.1. To explain its implications observe that for a curve



C with generic rank r(C) contained in a component Y of the locus where
the rank is the same there is an exact sequence of sheaves,

0 — Ny —TF @0y — TF,

where we take this as the definition of /. For instance if r(C) is maximal,
N is zero while for foliations by curves if 7(C') = 0 then A is T. In any
case we have,

THEOREM 0.1. (c) Let (X,F) be a weakly reqular (but not necessarily
integrable) foliated variety and C a curve with r(C) the generic rank of
the foliation along C' then N, (cy® Oc has a non-positive rank 1 quotient.

Thus we have established that the rationally connected subvarieties
guaranteed by 0.1(a) exhaust the ampleness of C', and so we may turn to
some applications. Specifically,

THEOREM 0.2. Let (X,F) be a variety foliated by curves with foliated
Gorenstien and foliated canonical singularities (cf. 1.1.1 and sequel) then
there are countably many F-invariant rational curves with Kr. L; < 0
such that if NE(X) is the closed cone of effective curves and NE(X) x>0
the subcone on which Kr is positive then,

NE(X) = NE(X)x >0 + Z Ry [Li].

Better still,

(a) The rays Ry [L;] are locally discrete in the upper half space
NS(X)K}-<0.

(b) If (X, F) is not a ruling by rational curves Kr.L; = —1, Vi, and
L; Nsing(F) # .

(c) Otherwise, K. L; € {—1,—2}.

(d) Bvery extremal ray in the half space NS(X)k <o 1$ of the form Ry
[Li].

A quasi-immediate corollary of this foliated cone theorem is that for
a smooth foliation K is nef or it is a fibring by rational curves, and
more generally the existence of supporting Cartier divisors for extremal
rays. Whence, we have the first step in a minimal model programme for
foliations by curves.

It remains to thank M. Spivakovsky for contributing his expertise (and
patience) in explaining the nature of algorithmic desingularisation, to-
gether with CIMS and IHES for the invitations which permitted this col-
laboration, and as ever to Cécile whithout whom the contents of this
article would have lingered indefinitely in the realm of ‘in preparation’.



1 Singularities

1.1 Revision of definitions

Our objects of study are foliated varieties, i.e. a normal variety X equip-
ped with a foliation F, which we denote by (X,F). On the other hand
we do not wish to think of this as two separate objects, but rather as a
unified whole. As such the singularities which we wish to study have a
priori nothing to do with the space X, although as suggested above we
will make the technically convenient, and rather mild assumption that X
is normal. To proceed further let us note that the precise definition of a
foliation is simply a saturated subsheaf of the tangent sheaf, i.e.

Tr— Tx .

If in addition the subsheaf 7r is closed under Lie bracket, then we
say that (X, F) is integrable. One has of course the classical theorem of
Frobenius over the complex numbers, which asserts that if X is smooth
and Tr is a subbundle of X at some point, then closure under Lie bracket
is equivalent to the foliation being given locally as a fibration, whence the
appellation.

Now in the study of singularities of a variety per se, the main protago-
nists are the cotangent sheaf, and the canonical bundle. The former is the
more classical and its relation with local algebra rather well understood.
The latter is rather more recent, but its study is the essential prerequisite
for birational geometry. Since our results will also encompass the case of
the trivial foliation, i.e. simply the study of curves on varieties, it is not
surprising that we will encounter a similar phenomenon. However rather
than the cotangent sheaf of the foliation, we will work with the tangent
sheaf, via which we introduce our first definition, viz:

DEFINITION 1.1.1. A foliated variety (X, F) is said to be weakly regular if
it is given by a subbundle T'r sitting as a saturated subsheaf of the tangent

sheaf Tx .

This definition is immediately deserving of comment. In the case of
the trivial foliation the definition asserts that the tangent sheaf of the
variety is a bundle. This is a priori strictly weaker than the assertion
that the variety is regular, i.e. that the cotangent sheaf is a bundle. It is
however a conjecture of Zariski and Lipmann that the two are equivalent.
At the other extreme if (X,F) is a foliation by curves, given that X
is normal, weak regularity is equivalent to being foliated Gorenstien as
introduced in [M2], and amounts to the foliation being given everywhere
by a vector field. Given that the said vector field is itself allowed to vanish
in codimension 2, every foliation by curves on a non-singular variety is
weakly regular. On the other hand for a singular variety X, the condition
is highly non-trivial, and can give a great deal of information about the
foliation, cf. op. cit.

The role of normality of the underlying space in the above is fairly
unimportant, where it really makes its appearance is in the consideration



of the canonical sheaf of the foliation, i.e. the dual of the top exterior
power of the tangent sheaf 7. Naturally we denote this by Kz, and
follow Kawamata, Mori et al., in introducing a discrepancy function to
measure the singularities. Specifically suppose Kz is “Q-Cartier”. For
the moment let us be deliberately vague about what this may mean, and
consider any proper birational map p : (X, F) — (X, F) from a foliated
variety to our original variety then for some divisors E; contracted by p,
and rational numbers a;, we must have:

I&’; =p Kr+ Z a; E;

where “=" is some suitable equivalence relation of divisors, such as ratio-

nal or numerical. Given that X is necessarily normal, whence non-singular
in codimension 1, the numbers a; depend only on E; considered as rank
1 discrete valuations of the field of functions of X, and so we may define
a map:

rank 1 discrete
o(, X, F): {valuationsEof k(X)* } —Q - L2

where of course we implicitly assume that the valuations have non-empty
centre, so that a ( ,X,F) is even defined at the level of germs. Finally we
are in a position to introduce the discrepancy of a foliated space, i.e.

discrep(X, F) := i%f a(E,X,F)

and to make,

DEFINITION 1.1.3. A foliated space (X, F) is said to have canonical sin-
gularities if discrep(X, F) > 0, and terminal singularities should this in-
equality be strict.

Necessarily in the case of the trivial foliation, K and Kx coincide,
so that the definitions of canonical and terminal do like wise. However
when the rank of the foliation differs from the dimension of X this is
absolutely not so. For example consider the vector field 0 = x 6% +vy %

in a neighbourhood of the origin in C*. One may easily draw this, viz:

=\
N~

The underlying space X is certainly smooth, and as such has terminal
singularities in the usual sense. However the pair (X, F) is our object of
study and this has discrepancy zero, i.e. it is properly canonical without
being terminal. One can go further, and consider the vector field 0 =

x 6% —y a%' Again this is easily drawn,




The underlying space is as before, but now the discrepancy is actu-
ally —1, for the foliated space. Actually these two examples are fairly
representative of what can happen for an underlying smooth space X of
dimension 2 together with a foliation by curves. Canonical singularities
here correspond to so called reduced singularities or those of Poincaré-
Dulac type, cf. [M2], and every foliation by curves on a surface may be
resolved to one with canonical singularities. Nevertheless as a moment’s
reflection on our initial example shows this is best possible, i.e. unlike the
trivial case one cannot resolve to a birational model with terminal sin-
gularities. Ultimately, however, one gains a rather better feeling for the
definition and its interplay with the singularities of the underlying space
by considering blow ups in foliation equivariant centres. This of course
means that we specify a subvariety Y of X, together with its sheaf of ide-
als 7y and over an affine open subset U of X ask that for all derivations
0 € (U, Tr), 0(Zy) C Zy. This definition behaves well with respect to
localisation, so it easily globalises, and we have:

LEMMA 1.1.4. Letp: X =Bly (X) — X be a blow up of a foliated variety
(X, F) in a F-equivariant centre Y then we have a natural map,

p*Tf-—>7';.

Proof. The question is local, so we may assume that X is affine, say
Spec A, and Zy is just the sheafication of an ideal I of A. The assertion
is then simply that if @ € Der(A) lies in the tangent sheaf of the foliation
then the a priori meromorphic vector field p* d is in fact holomorphic.
This is easily verified, since locally a function f on X is of the form ;%
where d is a non-negative integer, g € I¢, and h being in I, where naturally
we think of ourselves as looking at functions on the h # 0 part, then of

course: ho da Oh
g g —ag
o =0 (i) =

and since I? is also F equivariant, O(f) is a function as required. O

As a simple illustration of the lemma consider a foliation by curves
(X,F) with underlying space X non-singular. Locally the foliation is
given by a vector field 0, and where O vanishes is the singular locus of
F. Any point z in the singular locus is of course F equivariant, so in a



neighbourhood of z the discrep is always less than or equal to zero. Con-
sequently under such hypothesis a ‘singularity’ is ‘terminal’? if and only if
the vector field is non-zero, i.e. the foliation is locally a smooth fibration.
The essence of this conclusion extends, as we shall see, to arbitrary weakly
regular integrable foliations. However it is not a classification of arbitrary
terminal singularities, even for foliations on surfaces, for example con-
sider either of the classical foliations on a singular Kummer surface, i.e.
an abelian surface modulo +1, then the 8 fixed points of this action are
all terminal singularities for the corresponding foliations. In any case to
justify the above remark regarding weakly regular foliations we will need
a further lemma, viz:

LEmMA 1.1.5. Let p : ()?,.7?) — (X, F) be the blow up of a foliated
variety (in characteristic zero) in a F-equivariant centre Y as in 1.1.4,
and let p : (X# F#) — ()NC,]-N') be its normalisation then in fact p is
F-equivariant, i.e. we have a natural map,

P P Tr — Tra .

Proof. The assertion precisely regards the locus where X# is not iso-
morphic to X. Better still since X# is S» we only require to show the
existence of the map in codimension 1, so let D# in X# be an irreducible
divisor with generic point n#. If p| % is an isomorphism generically then
for any derivation 0 in T, p* p* 0 is a derivation of the local ring Ox# p#
by the previous lemma, and there is nothing to do. Otherwise let D in
X be the image, and 7 a generic point of D. Since X is normal, D is
necessarily a component of the exceptional divisor on X, and as such is
p" Tx invariant. Whence, let us consider the blow up of X in D around
a neighbourhood of 1. Using the same letter for the space and the local
neighbourhood we have maps,

X +— BIpX «— X*#

IO ] J

D +— UD; +— D¥
(2

where the first square is a fibre square. The fibre over D being generically
finite to one, but definitely not an isomorphism. Now if Dj, say, is the
image of D# then either D# is isomorphic to D;j, and applying lemma
1.1.4 forces p* p* 0 to be a derivation of Oy p# for any 0 in Tr. Other-
wise it is not, and we once more make a local invariant blow up, this time

2‘terminal’ here is to be understood, somewhat incorrectly, as refering to positive discrep-
ancy for divisors arising from a sequence of blow ups in points. Unfortunately if dim X > 3,
smooth points are not terminal.



in D;. On the other hand since there is always a non-trivial fibre over the
generic point of the centre of such a blow up, and all such blow ups are
locally dominated by X#. This cannot continue indefinitely, from which
we conclude. O

Unlike the previous lemma, characteristic zero is essential here in order
to deduce that the centres of the local blowing ups are equivariant under
the foliation — should the exceptional divisor have multiplicity p along
some component in char = p > 0 we’d certainly be in trouble. Applying
the lemma to arbitrary Gorenstien foliations by curves implies that either
the foliation is locally integrable by the usual Frobenius type procedure
or it has at best a canonical singularity. The difficulty in extending such
considerations to arbitrary foliations relies on identifying suitable invari-
ant centres. We will come back to this, and a more precise discussion of
the above remarks on integrability in 1.2. For the moment let us complete
this introduction to singularities by way of some remarks on the condition
Kr is “Q-Cartier”.

The most obvious sense of this is of course to consider the open em-
bedding j : (Xsm,Fsm) — (X, F) of the locus where say both X and F
are smooth, and to demand that there is a positive integer m such that
Jx K%::n is a Cartier divisor. This is rather strong, and so we term it
Q-foliated Gorenstien, and of course foliated Gorenstien if we can take
m = 1. Equally for 2-dimensional normal algebraic spaces, the definition
of “Q-Cartier” can be understood in a linguistically abusive, though not
mathematically abusive, sense via Mumford’s intersection theory. These
remarks are, however, all rather paranthetical since we will be almost ex-
clusively concerned with foliations which satisfy the Gorenstien condition.

1.2 Towards an ideal situation

We now wish to concentrate on how to ameliorate the singularities of a
foliated variety in a neighbourhood of a curve. In this section we will
concentrate on foliations by curves. This not only provides some calcula-
tions essential to the general case, but illustrates the key features of what
we are after without the technical complications that arise in the higher
rank case. The ideal of course would be to find a neighbourhood of the
curve, birationally, where the foliation is everywhere integrable. In abso-
lute generality this is impossible, indeed it is even so on smooth surfaces.
Nevertheless the impossibility only occurs for curves invariant by the fo-
liation. Since we intend to allow arbitrary singularities on the underlying
space X we will consider an embedding X < M of our variety into a
smooth variety. In addition everything will be arbitrarily local, so let’s
just work in the analytic topology. Observe that for a vector field & on
X and z € X it is completely unclear from the definition whether 0 # 0
in Tx @ k(z) implies 0 # 0 in Ths @ k(z). Indeed this difficulty is at the
root of the Zariski-Lipmann conjecture. Whence although it depends on
the embedding let’s call 9 non-singular at z if 9 is non-zero in T ® k(x),



and observe the following straightforward generalisation of the Frobenius
theorem,

LEMMA 1.2.1. Let x be a non-singular point of a Gorenstien foliation by
curves (X, F) then there is a map 7w : X — Y of analytic spaces around
x such that 7 Qy is the conormal bundle of F in X, and m is relatively
smooth.

Proof. We proceed in the obvious way. Namely if I is the ideal of X in
M we have the usual short exact sequence,

I/IZ—)QM|X —)QX — 0.

By the non-singularity hypothesis there is a vector field 0 on M, non-
vanishing at @, with 9(I) C I which induces our given foliation on X,
where of course we permit as much localisation as we need. Now let
Z1,...,%n be coordinate functions on M, then without loss of generality
0(z1) = 1, as usual we may put,

o0
(—=1)"2F 0™ 2 )
= ——— ., 2<i<n
n=0

and one easily checks dy; = 0. Consequently we just put Y to be the
image of X in C"~! under the map, (y2,...,y,): M = C*~ . O

Now we would like to obtain this situation around any point of a
suitable curve C in X. The definition of suitable here is that C' is not
invariant by the foliation, so in particular the singular locus of the foliation
meets C' in a bunch of points. Let us concentrate on one of them, i.e.
denote by X a sufficiently small neighbourhood of the point. It may
of course happen that C is singular at such a point. The point is F
equivariant so we are happy to blow up in it, so that whether self evidently
or by a minor adaptation of lemma 1.1.5 we note:

Fact 1.2.2. Notations as above, there is a sequence of varieties,
X=Xo+— X1+ +— X, =X

where X; — X;—1 is obtained by blowing up in a foliation equivariant
centre, or by normalisation, such that the proper transform of C in X is
non-singular.

Of course we like such sequences since they are “unramified” in the
foliation direction by virtue of lemmas 1.1.4 and 1.1.5, so now we want
to use a similar sequence, starting with a smooth C, to get into the local
integrability situation of 1.2.1.

Consequently let x1,...,z, be coordinates on our ambient smooth
space M, and suppose C is given by z2 = --- = z, = 0. We of course
consider a vector field 0 on M which leaves the ideal I of X invariant,
and restricts to our given foliation on X which is necessarily supposed

10



Gorenstien. Necessarily we are supposing that 0 is singular at the origin,
we write 0 = Y a; a%i and consider how 0 transforms around C' under
the blow up p : M — M in the origin. We have a new coordinate system
x1 = &1, i = &1 &, with C transforming to {» = --- = &, = 0. Putting v;
to be the multiplicity of a; at the origin, a; = @; x], and understanding
this notation in the natural way when some a; = 0, we obtain:

0
o

* ~ L~V 0 - ~  eV;— ~ sV —
Pazaiﬁfa_&“‘Z(ai 1 -G 1 151)
=2

Better still, we also have,
multo(ai|c) = multo(ai|c) —Vv;.

Now we distinguish two cases. In the first a1 # 0, then on replacing p
by a sequence of blow ups invariant in the pull-back of d (so even invariant
by the foliation in the case of canonical singularities) we have without loss
of generality,

PPN P
PO =g 3&+2b16&.

Furthermore some b; is not identically zero on C, so that possibly after
some more blow ups of the same form, the pull-back of 0 is a regular, and
non-singular derivation along the proper transform of C'. In the case that
a1 is identically zero, the same conclusion is even more immediate. Now
let us summarise these reflections by way of a definition and proposition,

DEFINITION 1.2.3. Call a foliation F on a variety X smoothly integrable
at a point © € X if it arises as in lemma 1.2.1.

Then we have,

PROPOSITION 1.2.4. Let C be a non-invariant curve in a Gorenstien
foliated variety (X, F) then there is a neighbourhood (Xo, Fo) of C together
with a proper birational map p : ()?0,7?0) — (Xo,Fo) such that Fo is
smoothly integrable around every point of the proper transform of C, and
better still there is a natural map by pulling back, p* Try — T;O.

1.3 General case

We now wish to study arbitrary integrable and weakly regular foliations
around curves. Our only restriction will be that the curve is not contained
in the singular locus of the foliation. The study again being local this
statement is to be understood in terms of the foliation not having full
rank in the tangent space of some smooth variety M into which X is
embedded. The tricky thing here is that a singular point x may no longer
be foliation invariant. Indeed by definition they are invariant precisely
when the map at the residue field level, Tr ® k(z) — Twm ® k(z) is zero,

11



so we have to do a little more work to identify invariant centres. To this

end, and much as before, let x1,...,z, be coordinates on M and write,
0-—zn:a--i 1<i<r, 1<j<n
z — (¥ amj ’ = = ’ _] =
=

where r is the rank of the foliation. It goes without saying that the 0;
leave the ideal Ix of X in M invariant, and induce our given weakly
regular foliations F. Not surprisingly the matrix A = [a;;] of functions
on X will play a key role, let us denote by s the dimension of the image
of Tr ® k(z) in Ty @ k(z) around our point of study z. Observe that
by row and column reduction of matrices we may find s x (n — s) and
(r —s) x (n— s) matrices B, D of functions in the maximal ideal at  such
that without loss of generality,

I : B
A:

0 : D

Equally, for the same reason, there is a r X (n —r) matrix of meromor-
phic functions Ay, such that,

A:[IEAO].

Now with these notations let us pause to consider the case of r = s
and the Frobenius theorem in this context. This time let’s start with the
definition, viz:

DEFINITION 1.3.1. A foliated variety (X,F) is said to be smoothly in-
tegrable at x € X, if there is a relatively smooth map 7 : X — Y in a
neighbourhood of x such that ™ Qy generates the conormal bundle of F.

Then of course we have,

LEMMA 1.3.2. Notations as above if s = r at * € X, then (X,F) is
smoothly integrable at x.

Proof. Proceeding as in lemma 1.2.1 we can actually choose our coordinate
functions on M, such that Ap is not only a matrix of functions around z,
but in fact the first row is identically zero. Now let us consider invariance
under Lie bracket. By the invariance of I under the lifting of our various
vector fields, this may simply be calculated in M and restricted to X.
Consequently understanding Ao as a (r — 1) X (n — r) matrix of functions,
we obtain a (r — 1) x (r — 1) matrix A of functions on X around x such

that,
[o : aAO]:A[I : AO]

’ 01’1
which of course forces % Ap to be identically zero on X. Consequently if
we let X; be the image of X in C*! under the map (z2,...,zn) : M —

12



C*~!, and 7 the induced map then 7 is relatively smooth and there is a
foliation F1 on X1, closed under Lie-bracket of rank (r — 1) which induces
our given foliation, so that we may conclude by induction. O

We can now turn to the situation of s < r and see how for this discus-
sion can be pushed. Allowing a meromorphic Ao, shows that at the first
stage of the induction procedure (assuming of course s # 0) that there
are (s — 1) meromorphic vector fields on X, which together with 9/0x:
generate our given foliation. Proceeding by induction gives a prefered
coordinate system such that,

0; = 3(2'1 R 1<i1<s
a,:zai»i i>s ~(1.3.3)
( J 01'] )
J>s
with the a;; holomorphic functions of #s41,...,2, which all vanish at
the origin. We have thus identified, locally, a suitable foliation invariant
centre, viz: xs41 = --- = x, = 0. By way of our curve, C, passing through
our singular point, we first consider its image under (zs41,...,2Zn) : M —

C*~#, and ask whether the curve itself is singular there or not. Argueing
exactly as in 1.2.2 we may via a sequence of equivariant blow ups pass
without loss of generality to the situation where the image of C' is given
by Tsq2=--- =z, =0.

Now for a curve C' whose tangent space does not generically factor
through that of the foliation, we may proceed more or less as in the case
of foliations by curves, namely, blow up in centres of the type we have
identified until such times as the rank increases. Once the rank increases
change coordinates in the obvious way, resolve any singularities on the
new projection of our curve, then blow up in some foliation equivariant
centres until we increase the rank again. Consequently we obtain,

PROPOSITION 1.3.4. Let C be a curve in o weakly regular foliated va-
riety (X,F) whose tangent space does not generically factor through F
and which is not contained in the singular locus of F then there is a
neighbourhood (Xo,Fo) of C together with a proper birational map p :
(AN’O,.%O) — (Xo, Fo) such that Fo is smoothly integrable at every point in
the proper transform of C, and pull-back of derivations yields a natural
map p* Try — T;O.

2 Algebrisation
2.1 The Graphic neighbourhood

Let us concentrate our attention in this section on a curve C inside a
foliated variety (X, F) with the foliation of rank r, integrable, and with
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weakly regular singularities where additionally we will suppose that C
is neither contained in the singularities nor does its tangent space fac-
tor through T». Now by the considerations of § 1, we may find an open
neighbourhood Xy of C' (either formally or in the analytic topology) to-
gether with a proper birational map (in the category of analytic spaces)
p: Xo — Xo such that the induced foliation Fo _is smoothly integrable
in a neighbourhood V of the proper transform C of C. At this point
we wish to consider the induced foliation F# on V x B, where B is the
normalisation of C', in a neighbourhood of the graph T' of the natural
map from B to C. The tangent bundle of F# is simply the pull-back of
that of .7-'0, and is of course smoothly integrable around I'. Whence let us
take a union of A,, a € A, of small open analytic sets covering I', and
denote by ma : Aa — Z, the relatively smooth map of analytic spaces
which yields ‘7:#|Acz' Further for each a, we have an ideal I, of functions
on A,, generated by functions on Z, vanishing on I'. Necessarily the I,
patch and define a smooth analytic subvariety F' of U A, of dimension

r+1, such that the normal bundle of I" in F', Nr|p, is isomorphic to T;|p.
Rather more intuitively what we have done is create an analytic space F'
by adding to each point of B the germ of the locally smooth integrable
subvariety through each point of C' guaranteed by 1.3.4, while equipping
F with a map p to B, and ¢ to X, i.e.

ip

|
|
|
|
F 8, (@xp)(F) 5
|
|
|
Il

[
[
—onp e [
[
[

With this in mind we can deliver the coup de grace to the transcen-
dental nature of our problem by way of,

Fact 2.1.1. If Tx|c is ample then the Zariski closure of o x p(F) is of
dimension (r + 1), and as such every F-integrable subvariety through a
point of (o X p)(T') is algebraic.

Proof. Since F comes equipped with a projection to B which pushes
forward an integrable subvariety to a point, it is wholly sufficient to prove
the claim on the Zariski closure. Equally both X and B are algebraic, so
all we need show is that for any line bundle L on F' there is a constant
C(L) such that hO(F,L®™) < Cn™**, for all positive integers. Better still
if F' is the completion of F along C, we have an injection HO(F, 1°™) —
HO(F, L"), so we might as well just consider F, and this is essentially a
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trivial exercise. Specifically for m € N, let Fy, be the m® infinitesimal
thickening, and observe by construction that there is a map T|r — Nr|p
which is generically an isomorphism, so Np|p is ample. On the other hand
we have the usual exact sequence,

0 — H°(T,Sym™ Nyjp @ L%") — H®(Fpq1, L%") — H®(Fp, L®").

Necessarily the first group vanishes for m < C(L)n, where the constant
C(L) is of the form 0 (| degr L|), and whence,

Cn
RO(F, L% < Z h°(T, Sym" Nyjp ® LO™) < Cn™*!
k=0

where the last inequality may involve a slightly different constant, but
nevertheless only depends on L as required. O

REMARK 2.1.2. Evidently the role of the analytic topology is only for
convenience of exposition, since the above is really a proposition about
formal schemes.

2.2 Cleaning up

We will continue to concentrate on the example of the previous section.
Thanks to 2.1.1, we have obtained an algebraic variety W of dimension
r + 1, fibered over B by p, together with a section s of p, such that every
fibre of W over B projects to a F-invariant subvariety of X through the
corresponding point of C. Even better our bundle of derivations T’ on
X, lifts naturally to a bundle of Op-derivations, which we will continue
to denote by T, on W since after all dualising coherent sheafs is com-
patible with flat pull-back. Now intuitively we'd like to think of W/B
as relatively smooth in a neighbourhood of s(B) with relative tangent
bundle Tr. However, for the reasons detailed in 1.2, this is potentially
rather false around points where F is not smoothly integrable. Whence
we seek to resolve W to W in such a way that T’ will admit a map to
Tﬁ// around the section, and such that in a neighbourhood of the section
the fibration will be smooth. In light of lemma 1.1.4, what is therefore
required is equivariant desingularisation with respect to Tz considered as
a bundle of derivations. Considered with respect to a fixed smooth em-
bedding W — M we have as ever a stratification of the singularities by
closed subschemes W, defined as,

We={w e W |dim(Im{Tr ® k(w) — T @ k(w)}) < s}.

Now let Y < W be a smooth centre in which we may wish to blow up
in order to carry out the desingularisation algorithm of [BM]. For y € Y,
there exists a unique s such that y € W,\W,_1, where by convention W_;
is empty. We may apply 1.3.3, to find a coordinate system z1,...,z, on
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M in the analytic topology with respect to which a basis of T'r around y
is given by,

3}

_'Oxi’

i 1<i<s

31':‘2 aijaimjy s<i<r
Jj=s+1
where a;; = aij(®s41,-..,2,). Furthermore we have a locally smooth
map, 7 : W — Z around y, given by (Zs+1,...,2,). By construction
the algorithmic desingularisation procedure respects m, so we may find
functions fi,..., fm of s41,..., 2, which generate Iy ® Ow,y, where the
local ring is understood formally or analytically. With these preliminaries
in mind for any derivation 0 of Tr over an open subset U containing y,
our explicit choice of coordinates imply,

0(Iy) cm(y).

Since this holds for all 9 and all y € Y, we see that Y is in fact F equiv-
ariant. Blowing up in Y therefore leaves Tx as a bundle of derivations
on the blow up, and so we may continue with the algorithmic desingu-
larisation procedure to obtain a f—equivaﬁi/ant resolution W of W. Ofuvr
section s necessarily lifts to a section s of W which immediately forces W
to be relatively smooth in a neighbourhood of 5(B). Changing notations
slightly, we have therefore established,

BETTER Fact 2.2.1. Let (X,F) be a weakly regular foliated variety of
rank r and f : B — X a map from a smooth curve such that f*Tr is
ample, and f(B) is not contained in the singularities of F nor generically
tangent to F, then there is a smooth algebraic variety W of dimension
(r + 1), equipped with projections o, p to X and B respectively together
with a section s of p such that if Wy, denotes the smooth subvariety passing
through s(b) then o(Wy) is an F-invariant subvariety through f(b). In
addition there is a natural map, o™ Tx — Tw/p in a neighbourhood of the
section.

2.3 Complements

Firstly we consider the case where our curve C' is not contained in the
singularities but may be generically tangent to F. Again let B be the
normalisation of C, and continue to denote by F the induced foliation on
the product X x B, with T' the graph of B. We observe that ' is now
a curve which is NOT generically tangent to F, but Tx|r is ample if it
were already so for T'r|c. Passing to a modification X x B of our product
around I', as in 1.3.4 we obtain a neighbourhood V' of the proper trans-
form I' on which the induced foliation F is smoothly integrable. Whence
by 2.1.2 there is a F-invariant subvariety W,. Through every point z of T’
of dimension the rank of F. Projecting forward to X gives a F-invariant
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subvariety W D C' of the appropriate dimension. The equivariant desin-
gularisation arguements of 2.2 go through verbatim to yield a resolution
W such that Tﬁ/ is ample on the proper transform C of C, and indeed we
may even take the later isomorphic to B should we wish.

Let us finally consider the case where our curve C' is contained in
the singular locus, and let s be the generic rank of F along C'. Denote
therefore by Y a component of X, containing C'. The coordinate system
1.3.3 imply that Y is F-invariant so let G be the induced foliation of
rank s. The immediate thing to note is that G is not necessarily weakly
regular. However at a point y of C' where the rank drops to ¢ < s we
are guaranteed a space of derivations of Y of dimension s — ¢ if C' is not
tangent to G, respectively s — ¢t — 1 otherwise, which are not identically
zero. The resolution procedure 1.3 therefore goes through verbatim, and
we make neighbourhoods of the normalisation B of C exactly as before
which are equivariant under Tx. Since Y is also Tr-equivariant, and the
new foliation is generically a quotient of T'r, we therefore have:

FiNaL FacT 2.3.1. Let s be the generic rank of F along C, then for
every point © € C' there is a smooth algebraic variety W, of dimension s
together with a map o : Wy — X such that o (Wy) > x is a F-equivariant
subvariety. Better still if f : B — C' is the normalisation then either,

(a) Tr, is not generically tangent to C, and the W, are the fibres of
a smooth variety p : W — B through a section s, and there is a natural
map, 0" Tr = Tw,p, generically an isomorphism around B.

(b) T'r, is generically tangent to C, Wy is independent of x and con-
tains a copy of B such that there is a map of pairs (W, B) — (X, C) and
a natural map o™ Tr — Tw, generically an isomorphism around B.

3 Deformation Theory
3.1 The Set up

We have thus reduced our initial highly transcendental problem to an
algebraic one, either to produce rational curves in a smooth variety in
which there is a curve on which the ambient tangent space is ample, or to
find rational curves in a family of varieties over a curve in which there is
a section on which the relative tangent space is ample. The latter is less
standard and implies the former by the graph construction a la 2.3 so we
will concentrate upon it. The former case is more or less in the literature,
modulo one little trick which can easily be extracted from our discussion.
We will of course be following Mori’s method of reduction modulo p,
so in this section we make our set up with the necessary precision, and
summarise the appropriate minor variations that we require from [K],
specifically § 1.2 and § IL.3.

To this end let B be a smooth projective curve over a field k of arbitrary
characteristic, let ¢ : C' — B be a finite morphism from another curve,
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7 : X — B a projective flat family and f : C/B — X/B a morphism
of B-schemes (with respect to the structure maps ¢ and 7) where X/B
is supposed relatively smooth in a neighbourhood of f(C). We wish to
study the scheme of B-morphisms, Homp(C, X) in a neighbourhood of f.
The next proposition contains all that we will need,

ProproSITION 3.1.1. Notations as above then,

(a) The tangent space of Homg(C, X) at f is isomorphic to, H*(C, f*
TX/B)

(b) The dimension of every irreducible component of Homp(C, X) at
f is at least,

B(C, f* Txyp) = b (C, f" Txym) -

(c) The deformations of f are unobstructed if H'(C, f* Tx/p) = 0. In
particular should this occur Homp(C, X) is smooth at f.

(d) If Z C X has codimension at least 2, and H"(C, f* Tx,5(—c)) =0
YV geometric points ¢ of C then a generic ¢ € Homp(C,X) has image
disjoint from Z.
Proof. For part (a), we wish to consider the graph I" of f in the relative

product C' xp X and calculate its conormal bundle. To this end consider
the commutative diagram,

idxg f
—LE s CxyX

/ qu
1dxf

—> CxX

qxrc
qgxq A
BxB

where by definition the vertical square is Cartesian, and I' is the image of
id x g f. This in turn leads to a commutative diagram of exact sequences
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of sheaves on I, viz:

l

Ian,BxB
I2—®OF

In,BxB
z ® Or

A,BxB A,BXB
0 — jgc—xx — Qoxx®O0r — Qr — 0
r,CxX
g‘CA“ — Qoxpgx®O0r — Or — 0
r,CxpX
0 0

where the notation I.. means the ideal of whatever subscheme inside the
other. Now the middle row is exact because of the natural splitting of
Qe x, while the middle column is exact for general nonsense. Specifically
X is by hypothesis smooth around I', so ¢« x is a bundle, the conormal
sheaf IA,BXB/IZ,BXB = Qp is also a bundle, and the map from Qg

to Qcxx is not zero, so it must be an injection of sheaves. Whence the
left hand column is in fact exact, and so also is the bottom row by the
9 lemma, and/or a trivial diagram chase. From which we conclude an
isomorphism via the splitting of the middle row,

It oxpx [Tt oxpx — Qr\Qoxpx @ Or = Qx/p @ Or

which proves (a). Better still C' xp X is non-singular around I' by hy-
pothesis, T' is itself smooth, so the deformations are generically unob-
structed which proves (b) and (c). To prove (d), we start by taking a
smooth open neighbourhood U of f in Hompg(C, X). For any geometric
point ¢ € C, and for g in a possibly smaller U, we have by hypothesis,
H"(C,g" Tx/p(—c)) = 0. Consequently if Homp(C, X, g|.) is the space
of morphisms taking ¢ to g(c), then a minor variation of the previous ar-
guement forces U NHomp(C, X, g|.) to be smooth around ¢ of dimension
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h°(C,g* Tx/p) — dim (X/B). On the other hand,

{geUlgCnz#ey=J |J{oeUlg@ =2},

ceC xze€Z

So that this space has dimension at most,
h°(C,g" Tx,p) — dim (X/B) + dim C xp Z < dim U — 1

which completes the proof of (d). O

3.2 Bend and Break

We begin with a simple lemma,

LEMMA 3.2.1. Let E be an ample vector bundle on a smooth curve C over
a field of positive characteristic, then there is a sufficiently high power
F, : C — C, of the absolute Frobenius F such that for all geometric
points ¢ of C,

H'(C,F; E(=c))=0.

Proof. Fix an ample divisor D on C, and using F; to denote as large
a power of Frobenius as we require, we obtain by Riemann-Roch global
sections of F,; E(—D). Consequently for F of rank more than 1 we obtain
a dévissage of bundles,

0—FE —F'E—E'—0

where E’ is ample of rank 1. Moreover E' is ample, and the proposition is
clear for line bundles via Serre-duality, so for some high power of Frobenius
F, and ¢ € C any geometric point we obtain a short exact sequence,

0 — Fp E'(—¢) — FrynE(—¢) — Fjy E"(—¢) — 0

where by induction the kernel and cokernel are acyclic. O

Now let us return to the notation of the previous section, viz: B, C'
smooth projective curves, ¢ : C' — B, w : X — B the structure maps, with
the latter family flat, and f : C'/B — X/B a map of B-schemes such that
X is smooth in a neighbourhood of f(C'). Moreover let everything be over
a field of positive characteristic p, f* x,p ample, and f not contained in
a fibre of B. The map = trivially yields an inseparable equivalence relation
mon X, with quotient Y = X/II factoring the geometric Frobenius on X
(i.e. if locally b is a coordinate on B, and z1,. .., o, the fibre coordinates,
X =Y :(bz1,...,2n) = (by2},...,2%)). Denote the corresponding
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factorisation as below,

X
LN

Y =Xx/T — XU

then Y is a normal (QMfactorial variety with p* Ky = pwx/p + 7 ws,
where we define wx,;p = Kx — 7" wp. Better still since Y is normal
there is a subset Z of X of codimension at least 2 such that Y is smooth
outside p (Z). Consequently for a generic point # € X, proposition 3.1.1
and lemma 3.2.1 guarantee the existence of a curve C' 3 x, not contained
in a fibre of B, algebraically equivalent to a large multiple of the geometric
Frobenius composed with f, so at the numerical level, C' ~ p™ C, say.

Now let H be any nef. R-divisor on X, and suppose p* Ky - C < 0
then by [K] there is a rational curve M, in Y containing x such that,

o HY - p(C")
pH-C
—(pwx/p-C+7*wp-C)’

cH® . M, < 2dimX

2dim X

Consequently if L, is the rational curve in the pre-image of M, under
p, then either,

(a) p|r, is inseparable, and:

pH - C

H-L,<2dimX
@z = 2dm —(pwx/p-C+rm*wp-C)

or
(b) p|z, is birational, and:
H-C
—(pwx/p-C+r*wp-C)’

H-L,<2dimX

This is all we’ll need of the bend and break technique so let’s denote it by
a number 3.2.2, and conclude this section.

Finding rationally connected varieties

We now consider our data of maps ¢ : C — B, # : X — B and
f : C/B — X/B with all the previous hypothesis on smoothness am-
pleness etc., and proceed to show that the fibres of X/B are rationally
chain connected. None of our hypothesis are changed by supposing X
non-singular, so let’s throw that in for good measure. As usual we take
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our given data over C and find an integral affine Z-scheme, S, of finite
type over which everything is defined and our initial characteristic zero sit-
uation corresponds to the generic fibre. So in fact we’ll actually use C, B,
X, q, 7 f, etc. for schemes and maps thereof, and rather abusively denote
the generic fibre by the subscript C. In any case given ¢ > 0 for a closed
point s of S with residue field of sufficiently large positive characteristic,
we may apply the considerations of the previous section to conclude the
existence of a component W, of the Chow scheme parametrising 1-cycles
with rational components of degree at most 2dim X %ﬁs(‘ + ¢ such
that the map from the universal family C. over W. to X, is dominant.
Since this holds for all s in an open set, there is in fact such a component
over the generic fibre. Better still since this must be true for all ¢ > 0 and
there are at most finitely many such components there is a component W
of the Chow scheme parametrising 1-cycles with rational components of
degree at most 2dim X ﬁ such that the universal family C dom-
inates X. Moreover the universal family is proper over X, and by the
inequality 3.2.2(b), these rational 1-cycles are all contained in fibres of 7.

Now, we are in characteristic zero, so we can find a map well defined
in codimension 1, v : X¢ —— — X, ¢, where X ¢ is smooth, with generic
fibre a smooth rational curve in the family parametrised by W. These
fit into a diagram of Bg-schemes,

X - Xl,LC

-l
Be /

Forgetting for a moment the subscript C we require to calculate wx, /g :=
Kx, — 7" wp. Note that since 7* wp is saturated in Qx over an open set
which surjects onto B, the same is true for 7° wp in Qx,, so that outside
of a closed set T which is at worst the union of something of codimension
at most 2 and components of some fibres which do not meet the said open
neighbourhood we have a map of bundles, which is injective as a map of
sheaves,
l/* QXl/B — QX/B .

Now without loss of generality we may assume that everything is de-
fined over the same Z-scheme S of finite type, and consider a generic
deformation g : C,,, — X of a sufficiently large power of the geometric
Frobenius C;, — C of our given curve composed with f. Specifically we
wish to calculate the degree of g* v* Q1x, /g via our knowledge of f* Qx, 5.
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So in the first place let,
0=ToCTiC---CT.=9¢" Tx/n
be the Harder-Narasimhan filtration of g* T'x,p. By definition we have,

tmax (9" Tx/p) = p(T1) > -+ > p(Ti=1\T.) = pimin (9" Tx/B) -

In addition by lower semi-continuity in our family of deformations, and
given we take g generic,

Mmin (g* TX/B) Z Mmin (Fr):‘L f* TX/B)

where Fy, : Cp, — C is the appropriate power of the geometric Frobe-
nius. However by the ampleness of T'x,p and the commutativity of Proj
with base change, there is an ¢ > 0 such that pu(Q) > ep™ for any
line quotient @ of F,, f*Tx;p. On the other hand if g is the genus
of C' then by Riemann-Roch we can find such a quotient with p(Q) <
tmin(Fy, " Tx/p) + g, so taking p > 0 we may as well say, ftmin(Fp, [~
Tx,p) > ep™ for a possibly smaller ¢, and whence: Cy,., wx, /5 < —ep™.
Turning now to the inseparable scheme quotient p : X1 — Y7, defined via
m : X1 — B as before, through a generic point x of X; we can find for
p > 0 a deformation missing the set 7" and any subset of codimension
2 we may introduce by passing to the quotient and so find L, C X; a
rational curve containing x on which p is inseparable, and,

H.-C

T wp-C\ °
(e — =)

H-L,<2dimX

Lifting everything to characteristic zero as previously we get a rul-
ing on X by rational curves, which maps trivially to B, and a quotient
v: X; ——— X by this ruling, well defined in codimension 2. We may
thus continue by induction to establish that the fibres of X/B are ratio-
nally chain connected, with an appropriate bound on the degree of the
connecting rational curves, by way of Tsen’s theorem.

The entire discussion evidently goes through quasi-verbatim on replac-
ing B by a point. The extra little idea in this case which yields a result not
already in the literature is to use the deformations of f in X guaranteed
a priori in positive characteristic, rather than trying to establish sufficient
regularity of the quotient map X — X; around C' in characteristic zero.

4 Principal results and corollaries

4.1 The main theorem

Consider a weakly regular integrable foliated variety (X, F). The discus-
sion of the previous chapters shows that if C is a curve in X, and Tr|c
is ample then through every point x € C there is a rationally chain con-
nected variety whose dimension is the generic rank along C' and whence
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by [KMM] rationally connected, F-invariant subvariety V, with appropri-
ate bounds on the degree of the connecting curves. It therefore remains
to discuss the case of curves contained in the singular loss of F in more
detail which is where the hypothesis of canonical singularities will inter-
vene. To illustrate the principle idea let’s suppose for the moment X is
non-singular, and F is a foliation by curves. Denote by Z any subscheme
contained in the singular locus of F considered scheme theoretically (i.e. if

locally 0 =) a; %7 then the ideal of the singular locus is that generated

by the a;). Observe that we have maps,
I, C Oy
ld

Q —— Kre Ly C Kre l,

® 0,
D
I
R RREEEEEEES >~ Krely)

We claim that the total composite of the maps on the right factors
through I7/I%, and better still defines an Oz-linear map, which we will
denote by D. The linearity is automatic by the Leibniz rule, and this
in turn automatically forces the said factorisation. Let’s observe some
simple facts about this map. Firstly suppose W C Z then we get maps
for either subscheme, and a natural commutative diagram,

I7/1% — Iw /Iy

Lo Lo

I(y:@[z/[% — IX’}'@IW/I{%V

Now suppose we’re considering a singular point z, with coordinate
functions z1,...,x,, and say 0 a derivation defining the foliation at the

point, then of course, d =) a; %, but a; — ai; x; € m?, the square of
i

the ideal at the point, with a;; constants. In this case D is just the linear

transform of the residue of the cotangent bundle given by,

D:Qx @k(z) — Qx @ k() : dz; = ajde; .

This map may of course be zero, but a moments thought shows that
this cannot happen if the singularities are canonical. Indeed for general Z,
we can just use the maps in the middle row together with the natural map
from I7/I} to the cotangent bundle to define a map, again denoted D,
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from Qx ® Oz to Qx @ Oz (K ) which at every point is as above. Whence
in turn for each 1 < n < dim X we obtain via symmetric functions a global
section, Sp, € I'(Z,Oz(K#)). The issue is therefore whether S, is zero or
not. If not this contradicts the ampleness of T'r on taking Z to be our
curve, so what we’ll show is that if S, is zero for all n, the singularity is
not canonical. It is wholly sufficient to prove this at a singular point, so
say notations as above with x the origin. If all the symmetric functions
vanish then the matrix [a;;] is nilpotent. Linear changes of coordinates
conjugate the matrix, so we can suppose:

3—5:13- —8 +4
N ! 3$i+1

i=k

where § € m? Tx,.. We blow up in the origin, and look on the z, # 0
patch, i.e. change coordinates to xn = {n, i = §; {n, ¢ < n. Denote the
blow up by p: X — X, then we have:

n—2

* 0 . .
p 3:251 m + p™ §(mod m? Tx,0)
i=k

where m continues to denote the maximal ideal at the origin. Superficially
it may appear that we have reduced the complexity of the matrix, this
may not however be the case since we can only guarantee,

n—1

x 0
p d= Zai &n o (mod m* Tx )

i=1

and so the dimension of the eigenspace may not increase. Now writing
things rather more invariantly we have a new linear map,

D : Q;@k((]) —>Q;®k(0)

with 5d§n =0, and all the terms, 5 say, that we have lumped under the
appellation mod m* enjoy the additional property of being divisible by

&n, with the exception of a term of the form — Y &,_1&; aig-' So let’s
i#En ¢

blow up in the origin again, but this time look at the £,_1 # 0 patch on

the blow up, i.e. put {én—1 = C(n—1, & = (i (n—1, so that denoting the blow

up morphism again by p, and the maximal ideal of the new origin still by

m, we have,

n—3 n—2
* _ . a i jz_ 2
p o= Z;Q —OQH +Z;alcn G (mod m” T'x o)

where the respective sums are understood to be zero if &k < n — 3 or
1 < n—2, respectively. The new linear map ZN)7 say, still has characteristic

polynomial zero, but has at least one more eigenvector than D, so by
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induction, we conclude that our singularity could not have been canonical.
Evidently to conclude the main theorem in this case it is sufficient that
the singularities are canonical in dimension 1, i.e. canonical outside of
a bunch of points. Furthermore by embedding in a smooth manifold,
and using lemma 1.1.5 to control any non-normality that the blow up
procedure may introduce, we see that the hypothesis that X is smooth
is not really essential, and whence arrive to our theorem in the case of
foliations by curves.

The general situation is rather more delicate. We start as ever with
a weakly regular foliated variety (X,F) of rank r, and a curve C' in X
with s the generic rank of F along C'. We have for Y a component of X,
containing C' an exact sequence of the form,

0— N —=Tre0y — Ty

where the image has rank s, and all the maps are generically of the same
rank after tensoring with O¢. Consequently if f : B — C is the normal-
isation, then there is a rank r — s subbundle N of f* Tx saturating the
map on the left. This bundle admits a rather clean geometric description
as follows, viz: we can find a neighbourhood V' of the proper transform
C of C in some F-equivariant modification of ¥ such that the induced
foliation G is smoothly integrable with tangent bundle Tg, say, and so NV
must be the kernel of the map of bundles f* Tx —— f* Tg. Now let 7 be
the ideal sheaf of C' in the ambient modification X of X, then we have an
05 linear map,

D:T/T° — T/I° @ Ker {Tr — Tg}" .

This map is not in general extendable to Qv, but no matter, since T —
Tg is a surjection of bundles around C', should E be the double dual of
f*I/T* we in fact have an induced map of bundles,

D:E—EgNY.

Finally letting L be the tautological bundle on P(NY) we have a map,
D : E — E ® L, and global sections given by symmetric functions Sq €
HOY(P(NY),L%). On the other hand these functions are non-zero if and
only if, in our usual coordinate system, the matrix a;; of functions in
ZTs41,--.,2Tn 18 nilpotent for each s < i < r. The identical analysis to
before shows this is not possible for canonical singularities, and whence
we get our desired global section over B of Sym? NV for some d.

4.2 Foliations by curves

In the case of foliations by curves there are some particularly beautiful
corollaries of the main theorem, since the canonical bundle and cotangent
bundle of the foliation now coincide. In particular let (X, F) be a variety
foliated by curves, then & la Mori we introduce the closed cone NE(X)
inside NS; (X )p generated by effective curves and consider the subcone,

NE(X)x,>0 := {a € NE(X) | Kz a > 0}.
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Then we obtain,

THEOREM 4.2.1. Let (X, F) be a variety foliated by curves with foliated
Gorenstien and foliated canonical singularities then there are countably
many F-invariant rational curves L; with, Kz L; < 0 such that,

NE(X) = W(X)Kfzo + ZM[LZ]

Better still,

(a) The rays Ry[L;] are locally discrete in the upper half space,
Nsl(X)K}-<0 .

(b) If (X, F) is not a ruling by rational curves Kz Ly = —1, Vi.

(c) Otherwise, =2 < Kr- L; < —1.

(d) Every extremal ray R of NE(X) (i.e. a4+ 8 € R, a, 8 € NE(X) =
a,B € R). Lying in the half space NS1(X )k <o is of the form Ry [L;].

Proof. Everything in the corollary except (b) and (c) follows verbatim
for the corresponding theorem for Kx, as found in [K], Theorem III.1.2.
To prove (b) and (c) consider an embedding of X in a smooth ambient
manifold M. Observe firstly that the foliation defines a quasi-section (i.e.
a section in codiemsnion 2) of P(Q%) — X. Let X be the closure of
this section, and M the tautological restricted to it. Further let L be the
normalisation of any one of our L;, then L maps to X, by f say, and:

M. .L=-2—Ramgy
!

where f: L — L; — X is the corresponding map. Moreover we put,
Ssing(F) (L) = I(]:-f L—-—M_L>0
f

which is precisely the contribution of the locus where F is singular in the
sense of 1.2. Now if L; is singular at z € X, then in fact z is a singular
point of f, so by a sequence of F-equivariant blow ups we can assume
that L; = L (remember Kz cannot change). Whence,

-1> Kf'fL = Ssing(}')(L) -2>-2

and —2 is obtained only if L does not pass through the singularities of
F. Consequently F must be smoothly integrable in a neighbourhood of
L, and we can apply the algorithmic decomposition procedure once more
to obtain a desingularisation X# of X which is F-equivariant around L.
However the classical Frobenius theorem now forces L to have flat, whence
trivial normal bundle in X#. Consequently L moves in a dim X —1 family
which covers X#. Should C be any curve in this family, K5 C = Kz L <
0, so there is an F-invariant rational subcurve of bounded degree through
the generic point of X as required. O
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We may also observe from the proof that to have an extremal ray
on a foliated variety which is not a fibration is rational curves requires
singularities, and so we even have,

COROLLARY 4.2.2. Let (X, F) be an everywhere smooth foliation by curves
which is not a fibration in rational curves then Kr is nef.

There is yet another case where usual Mori theory considerations, cf.
[K], yield a theorem of some interest. Call Hr € NS'(X) a supporting
function of an extremal ray R if Hg is nef., and Hg- « = 0 iff @« € R, then:

THEOREM 4.2.3. Hypothesis as in 4.2.1, and R C NE(X) and extremal
ray in the half space NS1(X)x, < 0 then there is a Q-Cartier divisor Hg
which is a supporting function for R, and moreover n Hr — K is ample
for n € N sufficiently large.
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