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Conventions The following notation and terminology are used throughout this paper.
The open (resp. closed) disk of center a and radius r in C is will be denoted D(a, r)

(resp. D(a, r)).
The rank of a vector bundle E (resp. of a linear map ϕ) will be denoted rkE (resp.

rkϕ).
By an algebraic variety over some field k, we mean an integral scheme of finite type

over k. Integral subschemes of such an algebraic variety X over k will be called algebraic
subvarieties of X.

On a complex analytic manifold, we write as usual d = ∂ + ∂ and we let

dc := (i/4π)(∂ − ∂);

consequently:
ddc = (i/2π)∂∂.

1 Introduction

Consider a number field K, a quasi-projective variety X over K, a point P in X(K), and
a germ V̂ of formal subvariety of X through P , namely, a smooth formal subscheme of the
formal completion X̂P of the K-scheme X at the closed point P . We shall say that such a
formal scheme is algebraic when it is a branch (i.e.a component of the formal completion
at P ) of an algebraic subvariety Y of X containing P (see section 2.1, infra, for a more
complete discussion of the concept of algebraic formal germ).

Various questions in arithmetic geometry may be rephrased in terms of the algebraicity
of such formal germs V̂ : one would like to know natural arithmetic conditions on V̂ implying
its algebraicity.

The main examples we have in mind are the following ones:
A.Formal series. Let f ∈ K[[t1, . . . , tN ]] be a formal series in N variables which has a
positive radius of convergence at every place of K, finite or infinite. In other words, for
any non-zero prime ideal p in OK (resp. for any field embedding σ : K ↪→ C), the series f
seen as an element of Kp[[t1, . . . , tN ]] (resp. of C[[t1, . . . , tN ]]) by means of the embedding
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K ↪→ Kp of K in its p-adic completion Kp (resp. by means of σ : K ↪→ C) has a positive
p-adic (resp. complex) radius of convergence.

Then the graph of f defines a smooth formal germ of dimension N ,

V̂ := Graph(f)

in AN+1
K through (0, f(0))—formally, it is defined by the principal ideal generated by z −

f(t1, . . . , tN ) in K[[t1, . . . , tN , z− f(0)]])—and the algebraicity of Gr(f) is equivalent to the
algebraicity of f over the subfield K(t1, . . . , tN ) of the field of fraction of K[[t1, . . . , tN ]] (or
to the fact that f belongs to the integral closure of the local ring OAN ,0 in its completion
ÔAN ,0 ' K[[t1, . . . , tN ]]).
B.Formal subgroups of algebraic groups. Assume that X is a K-algebraic group G
and P = e, the unit element of G(K), and let h be a Lie subalgebra (over K) of g := LieG.
We may consider the formal Lie subgroup V̂ := ˆExp h of the formal group Ĝe over K
attached to G, namely the smooth formal subgroup of Ĝe which admits h as Lie algebra1.
Then the formal germ V̂ is algebraic iff h is an algebraic Lie algebra, i.e., is the Lie algebra
of some algebraic K-subgroup H of G.

For instance, if G is the product G1 × G2 of two K-algebraic groups G1 and G2 with
Lie algebras g1 and g2, a K-Lie algebra isomorphism ϕ : g1 → g2 is the differential of a
K-isogeny from G1 to G2 iff the formal germ V̂ := ˆExp h is algebraic, where h denotes the
Lie subalgebra of g = g1 ⊕ g2 defined by the graph of ϕ.
C.Ordinary differential equations. Consider an algebraic ordinary differential equation
over a number field K, and define V̂ as its formal solution for some initial conditions defined
over K.

For instance, if Q = (Q1, . . . , Qn) is an element in K(X,Y1, . . . , Yn)n and y0 a point in
Kn such that (0, y0) does not lie on the polar divisor of any component Qi of Q, we may
consider the formal solution f in K[[t]]n of the differential equation

f ′(t) = Q(t, f(t)) (1.1)

satisfying the initial condition
f(0) = y0. (1.2)

This solution f is an “algebraic function” iff the graph V̂ of f in AN+1
(0,y0) is algebraic.

More generally, we may consider a smooth variety X over K, a point P in X(K) and
a sub-vector bundle F of rank one of the tangent bundle TX/K , and consider the smooth
formal germ of curve V̂ defined by “integrating” the line bundle F . Formally, it is defined as
the unique smooth formal germ of curve in X through P such that, if i : V̂ ↪→ X denotes the
inclusion morphism, the differential Di, which a priori is an element of Γ(V̂ , i∗TX), indeed
belongs to Γ(V̂ , i∗F ). We recover the previous situation by defining X as the complement

1It may be constructed as follows: if ˆExp denotes the “formal exponential map” of G—that is, the
isomorphism of K-formal schemes from the completion at 0 of the K-affine space defined by g onto Ĝe
defined by the Campbell-Hausdorff series—then ˆExp h is the image by ˆExp of the formal completion at 0
of the K-affine subspace h of g.
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of the polar divisors of the Qi’s in An+1, P as (0, y0), and F as the line bundle generated
by the vector field

∂

∂X
−

n∑
i=1

Qi
∂

∂Yi
.

(Actually, both constructions B and C are special cases of the construction of formal
germs of leaves of algebraic foliations over number fields; cf. [ESBT99] and [Bos01].)

In the three situations A, B, and C above, the formal germ V̂ satisfies the following
analyticity conditions:

For any non-zero prime ideal p in OK (resp. for any field embedding σ : K ↪→ C), the
formal germ V̂Kp (resp. Vσ) in the formal completion at P of XKp (resp. Xσ) deduced from
V̂ by the base field extension K ↪→ Kp (resp. σ : K ↪→ C) is analytic. Namely, it is the
formal germ attached to some (necessarily smooth) germ of Kp-analytic (resp. C-analytic)
subvariety through P of the Kp-analytic (resp. C-analytic space) X(Kp) (resp. X(C)).

This is tautological in case A; in case B and C, this follows from the well known
analyticity properties of the Campbell-Hausdorff series and from the classical Cauchy’s
theorem and its p-adic versions (see for instance [Ser92], section V.4, and [DGS94], Appendix
III).

These analyticity conditions are easily seen to be necessary for the algebraicity of V̂ .
Actually, the latter imposes much stronger conditions. For instance, as early as 1852,
Eisenstein discovered the following fact, now known as Eisenstein’s theorem: if a formal
series

∑+∞
k=0 akt

k in Q[[t]] is algebraic, then there exists integers A,B ≥ 1 such that ABkak ∈
Z for every k ∈ N. Concerning solutions of differential equations considered in B above, it
was pointed out by Grothendieck and Katz around 1970 ([Kat72]) that, if the differential
system defined by a line bundle F in the tangent bundle TX of a smooth variety X over a
number field K is algebraically integrable, then the following arithmetic condition—which
we shall call condition GK —necessarily holds:

For almost every non-zero prime ideal p in OK , the sub-line bundle FFp of TXFp on the
variety XFp obtained by reduction modulo p from some smooth model X of X over some
open dense subscheme S of SpecOK and from a line bundle F ↪→ TX/S extending F is
closed under the p-th power map (where p denotes the characteristic of the residue field
Fp := OK/p).

Actually, Grothendieck and Katz were considering linear differential systems only; the
case of general differential systems explicitly appears in [Miy87], [SB92] and [ESBT99].

In this paper, we are interested in sufficient conditions implying the algebraicity of V̂
in the context of examples A, B, and C above. The investigation of such conditions has a
long and rich history, about which we shall give only a few indications.

The first result concerning sufficient conditions for algebraicity appears to be a theorem
established by E. Borel in 1892 asserting that, if a formal series f ∈ Z[[t]] is the Taylor
expansion at 0 of some fonction meromorphic on a disk D(0;R) of radius R > 1, then f is
the expansion of a rational function.
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Concerning linear differential equations, Grothendieck and Katz conjectured that con-
dition GK is indeed a sufficient condition for algebraic integrability. This conjecture is
formulated in the seminal paper [Kat72] of Katz, where he proves it in the significant
special case of linear differential systems “of geometric origin” (see also [Kat82], [Kat96],
[And99] and [And02] for more recent developments in this direction).

Besides, in their famous works [Ser68] and [Fal83], Serre and Faltings obtained deep
results concerning isogenies between elliptic curves and abelian varieties, which may be
used to handle non-trivial cases of the algebraicity problem in the situation B (see for
instance [ESBT99], sections 3-5).

Finally, around 1984, D.V. and G.V. Chudnovsky discovered how to apply “transcen-
dence techniques” to establish algebraicity statements in the situations A, B, and C ([CC85a]
and [CC85b]). Their work was subsequently extended by André ([And89], [And99] and
[And02]), Graftieaux ([Gra01a] and [Gra01b]), and the author ([Bos01]). We refer the
reader to [CL02] for a synthetic view of these results.

Bernard Dwork himself played a distinguished role in contributing to various aspects of
the algebraicity problem in the situations A and C. It is barely necessary to recall that, in his
famous rationality proof ([Dwo60]), he established a generalized version of Borel’s rationality
criterion discussed above—the Borel-Dwork criterion. Let us also mention its investigations
of Eisenstein’s theorem ([DR79], [DvdP92]) and his papers ([BD79], [Dwo81], [Dwo99])
devoted to the “arithmetic theory of differential equations”. The latter also constitutes one
of the main themes of the beautiful book [DGS94] by B. Dwork, G. Gerotto and F. Sullivan.

This paper is devoted to some algebraicity criterions, implying the algebraicity of formal
germs of curves over number fields in the situations A, B, and C considered above. These
criterions, which are refined versions of the main results of [Bos01] in the special case of
germs of formal curves, are expressed in terms of positivity properties—defined in terms
of its Arakelov degree—of the tangent line TP V̂ equipped with some natural p-adic and
archimedean semi-norms. As our previous results in [Bos01], they are established by a
geometric version of “transcendence techniques”, which avoids the traditional constructions
of “auxiliary polynomials” but is based instead on some geometric version of these, namely
the study of evaluation maps on the spaces of global sections of ample line bundles on a
projective variety, defined by restricting them to formal subschemes or to subschemes of
finite lengths.

Dealing with formal germs of curves only—instead of formal germs of arbitrary dimen-
sion as in [Bos01]—allows various technical simplifications and leads to an algebraization
theorem (Theorem 4.2, infra ) whose statement and proof are particularly simple. However,
Theorem 4.2 admits higher dimensional generalizations on which we plan to return in the
future.

This paper is organized as follows.
In section 2, we discuss the notion of algebraicity of formal germs in algebraic varieties,

and we provide an introduction to the use of auxiliary polynomials, in the geometric guise
of evaluation maps, by showing how simply they lead to non-trivial algebraicity results in
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some purely geometric situations. In particular, we establish an algebraicity criterion for
formal germs over functions fields, which we use to investigate the positivity properties of
the Lie algebras of group schemes over a field of characteristic zero.

Section 3 is of a more analytic nature: we assume that V̂ is a germ of analytic curve
in a complex algebraic variety X, and we explain how the consideration of the metric
properties of the evaluation maps involved in the method of auxiliary polynomials leads to
the construction of some remarkable semi-norm on the complex line TP V̂ . We also study
some “naturality” and “functoriality” properties of this semi-norm, and we establish some
upper-bound on it in terms of potential theoretic invariants.

In section 4, we present an algebraicity theorem concerning formal germs of curves in
algebraic varieties over number fields, which may be seen as an arithmetic counterpart of
the criterion over function fields discussed in section 2. This criterion involves the canonical
complex semi-norms investigated in section 3. Actually, it may be used to formulate a
conjecture about complex linear algebraic differential systems, whose solution would provide
a proof of the conjecture of Grothendieck-Katz asserting that condition GK is a sufficient
condition of algebraic integrability for algebraic linear differential systems over number
fields.

2 Algebraicity of smooth formal germs in algebraic varieties
and auxiliary polynomials

2.1 Algebraic formal germs

Let X be a variety over a field K, P a point of X(K), X̂P the formal completion of X at P ,
and V̂ ↪→ X̂P a smooth formal subscheme. For any non-negative integer i, we shall denote
Vi the i-th infinitesimal neighborhood of P in V̂ . Thus,

V0 = {P} ⊂ V1 ⊂ V2 ⊂ · · ·

and
V̂ = lim

→
Vi.

It will be convenient to let:
V−1 = ∅.

We may consider the Zariski closure of V̂ in X, namely, the smallest closed subscheme Z
of X which contain Vi for every i ≥ 0, or equivalently, such that ẐP contain V̂ . Observe that
it is a subvariety (i.e.an integral subscheme) of X containing P . The ideal in OX,P defining
its germ at P is the intersection of OX,P and the ideal in its completion ÔX,P = OX̂P that
defines V̂ . Since ẐP contains V̂ , the dimension of Z greater or equal to the dimension of V̂ .

The following proposition is an easy application of the basic properties of dimension and
normalization:

Proposition 2.1 The following three conditions are equivalent:
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(i) There exists an algebraic variety Y over K, a point 0 of Y (K) and a K-morphism
which maps 0 to P and such that the induced morphism on formal completions

f̂0 : Ŷ0 −→ X̂P

factorizes through V̂ ↪→ X̂P and defines a formal isomorphism from Ŷ0 to V̂ .
(ii) There exists a closed subvariety Z of X such that P belongs to Z(K) and V̂ is a

branch of Z through P .
(iii) The dimension of the Zariski closure Z of V̂ in X coincides with the dimension of

the formal scheme V̂ .

We shall say that the formal germ V̂ is algebraic when the above conditions are satisfied.

2.2 Evaluation maps and an algebraicity criterion

Let us keep the notation of the preceding paragraph. Let us moreover assume that X is
projective and consider an ample line bundle L on X.

Let us introduce the following K-vector spaces and K-linear maps:

ED := Γ(X,L⊗D),

ηD : ED −→ Γ(V̂ , L⊗D)
s 7−→ s|V̂ ,

ηiD : ED −→ Γ(Vi, L⊗D)
s 7−→ s|Vi ,

and
EiD := {s ∈ ED | sVi−1 = 0} = ker ηi−1

D .

Observe that we have a canonical isomorphism

Γ(V̂ , L⊗D) ' lim
←
i

Γ(Vi, L⊗D),

by means of which the map ηD gets identified with

lim
←
i

ηiD.

The subspaces EiD define a decreasing filtration of the finite dimensional K-vector space
ED:

. . . ⊂ Ei+1
D ⊂ EiD ⊂ . . . ⊂ E1

D ⊂ E0
D = ED.

Moreover the very definition of Z as the Zariski closure of V̂ shows that, if IZ denotes the
ideal sheaf in OX defining Z, we have⋂

i≥0

EiD = ker ηD = Γ(X, IZ .L⊗D). (2.1)
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Finally, if TV̂ denotes the tangent space of V̂ , then, for any non-negative integer i,
the kernel of the restriction map from Γ(Vi, L⊗D) to Γ(Vi−1, L

⊗D) may be identified with
SiŤV̂ ⊗ L

D
P , and the restriction of the evaluation map ηiD to EiD defines a K-linear map:

γiD : EiD −→ SiŤV̂ ⊗ L
⊗D
P .

Roughly speaking, it is the map which sends a section of L⊗D vanishing up to order i − 1
at P along V̂ to the i-th “Taylor coefficient” of its restriction to V̂ . By construction,

ker γiD = Ei+1
D . (2.2)

Proposition 2.2 The following two conditions are equivalent:
(i) The formal germ V̂ is algebraic.
(ii) There exists c > 0 such that, for any (D, i) ∈ N>0 × N satisfying i/D > c, the map

γiD vanishes.

Condition (ii) may be also expressed by saying that, for every positive integer D the
filtration (EiD)i≥0 becomes stationary—or equivalently that ηD vanishes on EiD—when i >
cD.

The direct implication (i) ⇒ (ii) will be a consequence of the following lemma, which
belongs to the basic theory of ample line bundles (see for instance [Laz01], Chapter 5,
notably Proposition 5.1.9).

Lemma 2.3 Let M be a projective variety of dimension d over a field K, H an ample line
bundle over M , and 0 a point in M(k). Let ε(H, 0) denote the Seshadri constant of H at 0
and

degHM := c1(H)d ∩ [M ]

be the degree of M with respect to H. Then, for any positive integer D and any regular
section s of H⊗D over M which does not vanishes identically, the order of vanishing mult0s
of s at 0 satisfies the following upper bound:

mult0s ≤
degHM
ε(H, 0)d−1

D. (2.3)

Recall that ε(H, 0) is the positive real number defined as follows: let

ν : M̃ −→M

be the blow-up of 0 in M and let E := ν−1(0) be its exceptional divisor; then σ0(H) is the
supremum of the rational numbers q such that the Q-line bundle ν∗H ⊗O(−qE) is ample.

To prove (2.3), one observes that the Cartier divisor on M̃

ν∗div s−mult0s.E

is effective; therefore, for any q as above, the intersection number

c1(ν∗H ⊗O(−qE))d−1 ∩ (ν∗div s−mult0s.E)
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is non-negative. Since this intersection number is easily seen to be

D.degHM −mult0s.q
d−1,

we get (2.3) by letting q go to ε(H, 0).
Proof of Proposition 2.2: To prove the implication (i) ⇒ (ii), let us assume that V̂ is
algebraic and let us consider the normalization n : Zn → Z of the Zariski closure Z of V̂ in
X. Like Z, it is a projective variety of dimension d := dim V̂ . Indeed, the line bundle n∗L
on Zn is ample and, since n is birational,

degn∗LZn = degLZ.

Let 0 ∈ Zn(K) be the preimage of P by n corresponding to the branch V̂ of ẐP . In other
words, the completion of n at 0 induces a formal isomorphism:

n̂0 : Ẑn0 −→ V̂ .

Let s be an element of EiD. Pulling back s by n, we get a regular section n∗s of n∗L⊗N

over Zn which vanishes at order at least i at the point 0. Lemma (2.3) shows that n∗s
vanishes on Zn if

i >
degLZ

ε(n∗L, 0)d−1
D.

This proves that any s ∈ EiD vanishes on V̂ when i > cD, where

c :=
degLZ

ε(n∗L, 0)d−1
.

Conversely, let assume that condition (ii) holds, and let d still denote dim V̂ . Then, for
any (D, i) ∈ N2, the quotient vector space

EiD/E
i+1
D = EiD/ ker γiD ' im γiD

vanishes if i > cD and its rank is always at most

rk (SiŤV̂ ⊗ L
D
P ) =

(
d+ i− 1

i

)
.

This implies that

rk (ED/
⋂
i≥0

EiD) =
∑
i≥0

rk (EiD/E
i+1
D ) ≤

[cD]∑
i=0

(
d+ i− 1

i

)
.

Moreover the last sum is equivalent to cd

d!D
d when D goes to infinity.

Besides, according to (2.1):

ED/
⋂
i≥0

EiD = Γ(X,L⊗D)/Γ(X, IZ .L⊗D).

9



For D large enough, this space may be identified with Γ(Z,L⊗D) and its rank is equivalent
to deg LZ

(dimZ)!D
dimZ when D goes to infinity.

This shows that dimZ is less or equal—hence equal—to d and that deg LZ ≤ cd.
�Proposition 2.2

The implication (ii)⇒ (i) in Proposition 2.2 asserts that, when V̂ is not algebraic, there
exists non-vanishing maps γiD with arbitrary large values of the ratio i/D. Actually, it is
possible to establish a strengthened version of this implication, which will turn out to be
useful in the sequel:

Lemma 2.4 If V̂ is not algebraic, then

lim
D→+∞

∑
i≥0(i/D)rk (EiD/E

i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

= +∞. (2.4)

Observe that, if (2.4) holds, then, for any λ > 0,

lim
D→+∞

∑
i≥λD(i/D)rk (EiD/E

i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

= +∞. (2.5)

Indeed, ∑
i<λD(i/D)rk (EiD/E

i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

≤ λ.

Proof of Lemma 2.4: As observed in the previous proof, we have:∑
i≥0

rk (EiD/E
i+1
D ) = rk (ED/

⋂
i≥0

EiD)

is equal to rk (Γ(Z,L⊗D)) when D is large enough, and therefore grows like DdimZ when D
goes to infinity.

Moreover, for any λ ≥ 0 and any D ∈ N,∑
i≥0

i

D
rk (EiD/E

i+1
D ) ≥ λ

∑
i≥λD

rk (EiD/E
i+1
D ) = λrk (EdλDeD /

⋂
i≥0

EiD), (2.6)

where dλDe denotes the smallest integer ≥ λD. To derive a lower bound on this quantity,
observe that

rk (EdλDeD /
⋂
i≥0

EiD) = rk (ED/
⋂
i≥0

EiD)− rk (ED/E
dλDe
D )

and that
rk (ED/E

dλDe
D ) = rk (im γ

dλDe−1
D )

is bounded from above by the length lg(VdλDe−1) of VdλDe−1. This shows that∑
i≥λD(i/D)rk (EiD/E

i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

≥ λ
(

1−
lg(VdλDe−1)

rk (Γ(Z,L⊗D))

)
.
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Finally, if V̂ is not algebraic, then dimZ > d := dim V̂ and, when D goes to infinity,

lg(VdλDe−1) =
(
dλDe+ d− 1

d

)
= O(Dd) = o(DdimZ) = o(rk (Γ(Z,L⊗D)),

and therefore

lim inf
D→+∞

∑
i≥0(i/D)rk (EiD/E

i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

≥ λ.

As λ is arbitrary, this completes the proof.
�Lemma 2.4

2.3 An algebraicity criterion for smooth formal germs in varieties over
function fields

Let C be a smooth projective connected curve over some field k, and let K := k(C) be its
function field. Consider X a variety over K, P a point in X(K), and V̂ ⊂ X̂P a smooth
formal germ of subvariety through P of X.

In this section, we discuss a criterion for the algebraicity of V̂ , involving a model X
of X over C and the positivity properties of the thickenings of the closure P of P in X
attached to V̂ . This algebraicity criterion will appear as a geometric model for the arithmetic
algebraicity criterion presented in section 4.3 below. Moreover, its proof demonstrates how
simply the use of “auxiliary polynomials” leads to non-trivial results, even in a purely
geometric framework (see for instance Theorem 2.6 infra). The reader is referred to [BM01]
and to [Bos01], section 3.3, for related geometric results and discussions of their relations
with the classical works of Andreotti on pseudo-concavity, and of Hartshorne-Hironaka-
Matsumura on the G2 condition.

After possibly shrinking X, we may assume that it is quasi-projective and choose a
quasi-projective model2 π : X −→ C such that P extends to a section P of π.

As in the preceding section, we denote Vi the i-th infinitesimal neighbourhood of P in
X. We may consider the subschemes Vi of X defined as the closures of these subschemes Vi
of XK . For any i ∈ N, the support of Vi is exactly the image of the section P. In particular,
the subschemes Vi are finite over C. Moreover, their ideal sheaves IVi satisfy the relations

IVi .IVj ⊂ IVi+j+1 , for any (i, j) ∈ N2; (2.7)

indeed, the restriction to the generic fiber of any local section of IVi .IVj is a section of
IVi .IVj = IVi+j+1 . In particular

IV0 .IVi ⊂ IVi+1 ,

and the coherent sheaf IVi/IVi+1 may be identified with a coherent sheaf on V0, or equiva-
lently, thanks to the isomorphism P : C ∼−→ V0, with a coherent sheaf

Ji+1 := π∗IVi/IVi+1

2namely, a quasi-projective k-variety X , equipped with a flat k-morphism π : X → C and an isomorphism
of its generic fiber XK with X.
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over C. Actually, the sheaves Ji+1 are easily checked to be torsion free, and therefore may
be identified with the sheaves of sections of some vector bundles Ji+1 over C.

Recall that, if E is a vector bundle of positive rank on C, its slope is defined as the
quotient

µ(E) :=
degE
rkE

,

and its maximal slope µmax(E) is the maximum of the slopes µ(F ) of sub-vector bundles of
positive rank in E. Observe that, if L is any line bundle on C,

µmax(E ⊗ L) = µmax(E) + degL.

Moreover, if E1 and E2 are vector bundles over C, with E2 of positive rank, and if there
exists some (generically) injective morphism of vector bundles

ϕ : E1 −→ E2,

then the following slope inequality holds:

deg (E1) ≤ rk (E1)µmax(E2). (2.8)

We are now in position to formulate our algebraicity criterion:

Theorem 2.5 With the notation above, if

lim sup
j→+∞

1
j
µmax(Jj) < 0, (2.9)

then V̂ is algebraic.

Observe that, if V̂ extends to a formal subscheme V̂ of X̂P that is smooth over C, then
for any j ∈ N, we have

Jj ' Sj(NP V̂ )̌,

and the numerical condition (2.9) is equivalent to the ampleness3 of the vector bundle
P∗NP V̂ over C. In general, we still have natural maps of vector bundles over C

SjJ1 −→ Jj ,

which are isomorphisms at the generic point SpecK of C. However, they are not always
isomorphisms over C, and in general condition (2.9) is stronger than the ampleness of
P∗NP V̂.
Proof of Theorem 2.5: One easily checks that one may find a projective compactification
of X to which the morphism π extends. Therefore, we may assume that X is indeed
projective, and choose an ample line bundle L on it. Let L be its restriction LK to X, and
let ED, EiD, η

i
D and γiD be as in the previous section 2.2.

3See for instance [Laz01], part II, and its references for the basic results of the theory of ample vector
bundles; see also [Bar71] in the positive characteristic case.
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By replacing X by the Zariski closure Z of V̂ in X and X by the closure Z of Z in X
(which leaves the subschemes Vi and the sheaves Ji unchanged), we may also assume that
V̂ is Zariski dense in X, and therefore that, for any integer D, EiD is the zero subspace for
i large enough.

We are going to show that, when condition (2.9) is satisfied, the “average value” of i/D,
namely ∑

i≥0(i/D)rk (EiD/E
i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

=

∑
i≥0(i/D)rk (EiD/E

i+1
D )

rkED
, (2.10)

stays bounded when D goes to infinity. According to Lemma 2.4, this will prove that V̂ is
algebraic.

To achieve this, let us consider the direct images ED := π∗L⊗D and π|Vi ∗L⊗D. These
are torsion free coherent sheaves, or equivalently vector bundles, on C, which at the generic
point SpecK of C coincide with the K-vector spaces ED and Γ(Vi, L⊗D). Moreover, the
restriction map ηiD : ED −→ Γ(Vi, L⊗D) extends to a morphism of vector bundles:

ηiD : ED −→ π|Vi ∗L⊗D
s 7−→ s|Vi .

The filtration (EiD)i≥0 of ED also extends to the filtration of ED by the sub-vector bundles
E iD := ker ηi−1

D . Finally, the kernel of the restriction map from π|Vi ∗L⊗D to π|Vi−1 ∗L⊗D may
be identified with Ji ⊗ P∗L⊗D and the restriction of the evaluation map ηiD to E iD defines
a morphism of vector bundles

γiD : E iD −→ Ji ⊗ P∗L⊗D,

which coincides with γiD at the generic point of C. The kernel of γiD is E i+1
D and therefore

γiD factorizes through a (generically) injective morphism of vector bundles:

γ̃iD : E iD/E i+1
D −→ Ji ⊗ P∗L⊗D.

Since L is ample, for D large enough, the sheaf ED is generated by its global sections,
and consequently:

deg ED ≥ 0. (2.11)

Moreover, as E iD = {0} when i >> 0, we may write:

deg ED =
∑
i≥0

deg (E iD/E i+1
D ). (2.12)

Combined with the slope inequality 2.8 applied to the morphisms γ̃iD, the relations (2.11)
and (2.12) and the identity

µmax(Ji ⊗ P∗L⊗D) = µmax(Ji) +D deg (P∗L)

show that:
D rkED degP∗L+

∑
i≥0

rk (EiD/E
i+1
D )µmax(Ji) ≥ 0. (2.13)
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If we now assume that condition (2.9) is satisfied, then there exists i0 ∈ N and c > 0
such that, for any integer i ≥ i0,

µmax(Ji) ≤ −c i.

Therefore, from (2.13), we deduce that

D rkED degP∗L+
∑

0≤i<i0

rk (EiD/E
i+1
D )(µmax(Ji) + ci)− c

∑
i≥0

i rk (EiD/E
i+1
D ) ≥ 0.

Since the second sum is bounded by∑
0≤i<i0

rk (SiŤV̂ )(µmax(Ji) + ci),

which does not depend on D, this establishes that the ratio (2.10) is indeed bounded.
�Theorem 2.5

2.4 Application: positivity properties of Lie algebras of group schemes

In spite of the simplicity of its proof, the algebraization criterion in Theorem 2.5 has signif-
icant applications, for instance to algebraic foliations, as demonstrated by the recent work
of Bogomolov and McQuillan [BM01]. In this section, we briefly describe how easily it
leads to some basic positivity properties of Lie algebras of group schemes over a field of
characteristic 0.

Let C be a smooth projective connected curve over a field k, and let π : G → C be a
smooth quasi-projective4 group scheme over C. Let us denote by ε its zero-section, and by
LieG := ε∗Tπ its Lie algebra. It is a vector bundle over C, equipped with a OC-bilinear Lie
bracket:

[., .] : LieG ⊗OC LieG −→ LieG
v1 ⊗ v2 7−→ [v1, v2].

Observe that, by restricting to the generic point SpecK of C, one defines a bijection
between the set of sub-vector bundles of LieG and the set of K-vector subspaces of (LieG)K .
Moreover, (LieG)K may be identified with the K-Lie algebra LieG of the K-algebraic group
G := GK , and a sub-vector bundle F of LieG is a bundle of Lie subalgebras (in other words,
its sheaf of sections is closed under the above Lie bracket) iff FK is a Lie sub-algebra of
LieG.

Theorem 2.6 Assume that k is a field of characteristic zero, and consider a Lie subalge-
bra FK of LieG. If the corresponding sub-vector bundle F of LieG is ample, then FK is
an algebraic Lie subalgebra of LieG. Actually, it is the Lie algebra of a connected linear
unipotent5 K-algebraic subgroup H of G.

4Actually, according to Raynaud [Ray70], Corollaire VI 2.6 et Théorème VIII 2, any smooth group scheme
(of finite type) over a smooth curve is quasi-projective. Besides, a classical theorem of Cartier shows that,
over a field of characteristic zero, any flat group scheme of finite type is smooth.

5Recall that, over a perfect field K, a (smooth) K-algebraic group G is called unipotent if, for some n, it
is isomorphic to a closed subgroup of the algebraic subgroup of the subgroup U(n)K of GL(n)K of matrices
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Since an abelian variety over a field of characteristic zero contains no non-trivial unipo-
tent subgroup, this implies in particular:

Corollary 2.7 Assume that k is a field of characteristic zero. If G is an abelian variety over
K, then the vector bundle Ω1

G/C := (LieG )̌ is semi-positive (in other words, any quotient of
Ω1
G/C has non-negative degree).

This corollary is indeed a classical result of Griffiths, which he established by tran-
scendental techniques. (When k = C, and G is an abelian scheme, this follows from the
computation of the curvature of Hodge bundles; cf. [Gri70], Theorem 5.2. When G is semi-
abelian, the singularities on the metric on Ω1

G/C , seen as a Hodge bundle, at points of bad
reduction of G are logarithmic, and consequently, the positivity properties of its curvature
outside the divisor of bad reduction still allows to derive the semi-positivity of Ω1

G/C . The
general case follows by semi-stable reduction.) It seems plausible that Theorem 2.6 can be
recovered by combining structure theorems on algebraic groups, the rigidity properties of
reductive Lie groups, and Corollary 2.7. (The author confesses that he did not check it in
detail.)

Observe that Corollary 2.7, and a fortiori Theorem 2.6, do not hold in general over a
base field k of characteristic p > 0. As demonstrated by Moret-Bailly in [MB81], Proposition
3.1, counter-examples may be obtained from two supersingular elliptic curves E1 and E2

by considering the abelian surface G over C obtained by quotienting the abelian surface
A := (E1 × E2)C over C by a subgroup scheme of (αp ⊕ αp)C (which lies in A[p]) that is
locally isomorphic to αp,C , but not constant.
Proof of Theorem 2.6: To prove the first assertion, we need to show that, if F is
ample, then the germ of formal subvariety V̂ := ˆExpGFK of Ĝe is algebraic. This is a
straightforward consequence of Theorem 2.5 and of the subsequent observation, since V̂
extends to a formal subscheme of the completion Ĝε of G along its zero section ε which is
smooth over C, and the normal bundle to ε in V̂, pulled back to C by ε, may be identified
with F . Indeed, we may consider the relative formal exponential map ˆExp G/C . It maps
the completion of the total space V(Lie Ǧ) of the vector bundle LieG along its zero section
isomorphically onto the completion Ĝε of G along its unit section ε. Consequently, the
image under ˆExp G/C of the completion along its zero section of the total space V(F̌ ) of the
subbundle F of LieG provides the required extension.

For any vector bundle E over C, we shall denote E the commutative algebraic group
over C defined by the total space V(Ě) of this vector bundle equipped with the group law
deduced from the additive structure of E.

We now turn to the special case of Theorem 2.6 when FK is an abelian Lie subalgebra
of LieG, namely:

Lemma 2.8 With the notation of Theorem 2.6, if the vector bundle is ample and if FK
is an abelian Lie subalgebra of LieG (i.e., if [., .] vanishes on F ⊗ F ), then there exists an

(gij)1≤i,j≤n such that gii = 1 and gij = 0 if i < j. A connected K-algebraic group is unipotent iff there
exists a composition series G = G0 ⊃ G1 ⊃ · · · ⊃ Gs = {e} by connected K-algebraic subgroups such that
the quotients Gi/Gi+1 are isomorphic to additive groups Ga

r over K. See for instance [Bor91], I.4 and V.15
for proofs and references.
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embedding of algebraic group
j : FK −→ G,

the differential of which along ε coincides with the inclusion map iK : FK ↪→ LieG.

Observe that Lemma 2.8 already implies Corollary 2.7.
Proof of Lemma 2.8: Consider the group scheme F×C G over C. Its Lie algebra F ⊕LieG
contains the graph of i as a Lie subalgebra, which moreover is ample. Therefore the graph
of iK is the Lie algebra of a connected algebraic subgroup H of FK × G, which is easily
shown to be the graph of a group embedding j : FK → G.

�Lemma 2.8

In the sequel of the proof, we freely use the basic properties of the Harder-Narasimhan
filtration and of the slopes of vector bundles on a curve over a field of characteristic zero.

To prove the second assertion in Theorem 2.6, we may assume that the vector bundle
LieG has positive rank and consider its Harder-Narasimhan filtration:

E0 = {0} ⊂ E1 ⊂ . . . ⊂ EN = LieG.

By definition, the quotient bundles Ei/Ei−1, 1 ≤ i ≤ N, are semi-stable and their slopes

µi := µ(Ei/Ei−1)

satisfy
µ1 > . . . > µN .

We also define
i+ := max{i ∈ {1, . . . , n} | µi > 0} if µ1 > 0

:= 0 if µ1 = 0,

and
E+ := Ei+ .

Any sub-vector bundle of LieG which is ample is contained in E+. Consequently, to
complete the proof of Theorem 2.6, it is sufficient to show that E+,K is the Lie algebra of
a unipotent algebraic subgroup of G. This will follow from the following Lemma, inspired
by a similar observation by Shepherd-Barron ([SB92], Lemma 9.1.3.1):

Lemma 2.9 (i) For any i ∈ {1, . . . , N} such that µi ≥ 0, Ei,K is a Lie subalgebra of LieG.
Moreover, for any element j ∈ {1, . . . , i}, Ej,K is a Lie ideal in Ei,K .

(ii) For any i ∈ {1, . . . , N} such that µi > 0, the quotient Lie algebra Ei,K/Ei−1,K is
abelian.

Indeed, combined with the first assertion of Theorem 2.6, Lemma 2.9 (i) shows that the
K-vector spaces E1,K ⊂ . . . ⊂ Ei+,K are the Lie algebras of connected algebraic subgroups
H1 ⊂ . . . ⊂ Hi+ in G, and that H1, . . . ,Hi+−1 are normal subgroups of Hi+ . Moreover,
Lemma 2.9 (ii) and Lemma 2.8 show that the algebraic groups H1, H2/H1,. . . ,Hi+/Hi+−1

are additive groups.
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Proof of Lemma 2.9: Observe that, for any i ∈ {1, . . . , N}, the maximal slope of E/Ei−1

is µi. Moreover, for any (i, j) ∈ {1, . . . , N}2, Ei/Ei−1 ⊗ Ej/Ej−1 is semi-stable of slope
µi + µj , and consequently the minimal slope of Ei ⊗ Ej is µi + µj .

For any i ∈ {1, . . . , N − 1}, we may consider the following morphism of vector bundles
over C:

αi : Ei ⊗ Ei ↪→ E ⊗ E [.,.]−→ E � E/Ei.

If µi ≥ 0, the minimal slope 2µi of its source Ei ⊗Ei is larger than the maximal slope µi+1

of E/Ei, and therefore αi is the zero morphism. This shows that, if µi ≥ 0, then Ei,K is a
Lie subalgebra of LieG.

The other assertions of Lemma 2.9 are similarly established by considering the mor-
phisms:

βij : Ei ⊗ Ej ↪→ E ⊗ E [.,.]−→ E � E/Ej .

and
γi : Ei ⊗ Ei

[.,.]−→ Ei � Ei/Ei−1.

�Lemma 2.9 and Theorem 2.6

3 The canonical semi-norm attached to a germ of analytic
curve in a complex algebraic variety

3.1 The basic construction

Consider a complex algebraic variety X, a point P in X, and a germ C of smooth analytic
curve through P in X. In this section, we describe a construction which attaches—in a
canonical way—a semi-norm ‖.‖(X,P,C) on the tangent line TPC to any such data (X,P,C).
This construction focuses on the metric behavior of the evaluation maps ηiD and γiD already
considered in the proof of the algebraicity criterion Proposition 2.2, and turns out to play
a key role in the arithmetic algebraization theorem, Theorem 4.2 infra.

For a while, let us assume that X is complete and consider a line bundle L on X. Let
us also choose a norm ‖.‖0 on the complex line TPC and a continuous hermitian metric ‖.‖
on L. Then, for any non-negative integer D, we may consider the D-th tensor power of
this hermitian metric on L⊗D and the L∞-norm ‖.‖L∞ it induces on the finite dimensional
complex vector space

ED := Γ(X,L⊗D).

For any non-negative integer i, we may also consider the norm ‖.‖i,D on the complex line

ŤPC
⊗i ⊗ L⊗DP

deduced by duality and tensor product from the norm ‖.‖0 on TPC and the norm ‖.‖ on
LP .
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By applying the construction of “auxiliary functions” in section 2.2 to the formal germ
of curve V̂ through P defined by the germ of analytic curve C, we define subspaces

EiD := {s ∈ ED | s|C has a zero of order ≥ i at P},

and evaluation maps

γiD : EiD −→ SiŤPC ⊗ L⊗DP ' ŤPC⊗i ⊗ L⊗DP
which send a section of L⊗D vanishing up to order i − 1 at P along C to the i-th “Taylor
coefficient” of its restriction to C. Finally we may consider the operator norm

‖γiD‖ := max
s∈EiD,‖s‖L∞≤1

‖γiD(s)‖i,D

of γiD with respect to the norms on EiD and ŤPC
⊗i ⊗ L⊗DP considered above.

A straightforward application of Cauchy’s inequalities establishes the existence of posi-
tive real numbers r and C such that, for any non-negative integers i and D,

‖γiD‖ ≤ r−iCD. (3.1)

Equivalently, if we let a := log r−1 and b := logC, we have:

log ‖γiD‖ ≤ ai+ bD, (3.2)

and consequently the upper limit

ρ(X,P,C, L) := lim sup
i
D
→+∞

1
i

log ‖γiD‖(= lim
x→+∞

sup
i
D
≥x

1
i

log ‖γiD‖) (3.3)

belongs to [−∞,+∞[. Moreover one easily checks that it does not depend on the choice of
the metric ‖.‖ on L and that, if ‖.‖0 is replaced by eλ‖.‖0, then ρ(X,P,C, L) is replaced by
ρ(X,P,C, L)− λ. This shows that

‖.‖(X,P,C,L) := eρ(X,P,C,L) ‖.‖0 (3.4)

is a semi-norm on the complex line TPC independent of the choices of the auxiliary metrics
‖.‖0 and ‖.‖. It vanishes iff ρ(X,P,C, L) = −∞.

The following properties of the semi-norm ‖.‖(X,P,C,L) are simple consequences of its
definition:

Lemma 3.1 1) For any two line bundles L1 and L2 over X such that there exists a regular
section of Ľ1 ⊗ L2 which does not vanish at P , we have:

‖.‖(X,P,C,L1) ≤ ‖.‖(X,P,C,L2). (3.5)

2) For any line bundle L over X and any positive integer k,

‖.‖(X,P,C,L⊗k) = ‖.‖(X,P,C,L). (3.6)

Lemma 3.1 shows that, when X is projective, the set of semi-norms ‖.‖(X,P,C,L) on TPC
obtained by varying the line bundle L possesses one greatest element, namely the semi-norm
‖.‖(X,P,C,L) where L is any ample line bundle on X. This greatest semi-norm will be called
the canonical semi-norm on TPC and denoted ‖.‖(X,P,C).
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3.2 Birational invariance of the canonical semi-norm

It turns out that the construction of the canonical semi-norm may be extended to the
situation where X is an arbitrary complex variety (not necessarily projective) and that it
satisfies remarkable “functorial” properties. This will be a consequence of the following
proposition.

Proposition 3.2 Let f : X ′ → X be a morphism of complete complex algebraic varieties,
and let P ′ be a point in X ′ and C ′ a germ of smooth complex analytic curve through P ′

in X ′ such that the restriction of f to C ′ defines an analytic isomorphism from C ′ onto a
germ of smooth complex analytic curve C through P := f(P ′)6.

1) For any line bundle L on X, the isomorphism of complex lines

Df|C(P ′) = Df(P ′)|TP ′C′ : TP ′C ′ −→ TPC

satisfies, for any v ∈ TP ′C ′ :

‖Df(P ′)v‖(X,P,C,L) ≤ ‖v‖(X′,P ′,C′,f∗L). (3.7)

2) Moreover, equality holds in (3.7) if one of the following conditions holds:
i) the canonical morphism of sheaves

OX −→ f∗OX′

is an isomorphism;
ii) the line bundle L is ample and the canonical morphism of sheaves

OX −→ f∗OX′

is an isomorphism on some open neighborhood of P in X.

Observe that condition i) in 2) holds for instance when f is dominant (or equivalently
surjective) with geometrically connected generic fiber and X is normal.
Proof : For any non-negative integer i, we shall denote Ci (resp. C ′i) the i-th infinitesimal
neighbourhood of p (resp. P ′) in C (resp. C ′). Let us choose a continuous hermitian metric
on L and let us endow f∗L with this metric pulled back by f . Let us also choose some
norms on the complex lines TPC and TP ′C

′ such that Df|C(P ′) : TP ′C ′ −→ TPC is an
isometry.

The inequality (3.7) will be obtained by examining the following commutative diagrams:

ED := Γ(X,L⊗D)
ϕD−−−−→ E′D := Γ(X ′, f∗L⊗D)yηiD yη′iD

Γ(Ci, L⊗D) ∼−−−−→ Γ(C ′i, f
∗L⊗D)

6This condition is satisfied iff the tangent space TPC is not contained in the kernel of the differential
Df(P ) (which is a linear map between Zariski tangent spaces, from TP ′X ′ to TPX).
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where the horizontal maps are defined by pulling back sections of L⊗D by f , and where ηiD
and η′iD denotes the restriction maps.

Indeed, these diagrams induce the following ones:

EiD := ker ηi−1
D

ϕD−−−−→ E′iD := ker ηi−1
DyγiD yγ′iD

ŤPC
⊗i ⊗ L⊗DP

IiD−−−−→ ŤP ′C
′⊗i ⊗ f∗L⊗DP ′ .

(3.8)

As in the construction of ‖.‖(X,P,C,L) described in the previous section, the metrics in-
troduced above may be used to define the norms of γiD and of γ′iD. Moreover, in the
commutative diagram (3.8), the map ϕD decreases the L∞-norms, while the map

IiD : ŤPC⊗i ⊗ L⊗DP −→ ŤP ′C
′⊗i ⊗ f∗L⊗DP ′ ' ŤP ′C

′⊗i ⊗ L⊗DP

may be identified with tDf|C(P ′)⊗i ⊗ IdL⊗DP , which is an isometry. This shows that

‖γiD‖ ≤ ‖γ′
i
D‖. (3.9)

Using the definition of ‖.‖(X,P,C,L) and ‖.‖(X′,P ′,C′,f∗L) (see (3.3) and (3.4)), this yields (3.7).
To prove that equality holds in (3.7) when condition i) or ii) holds, first observe that

these conditions imply that f is surjective, and therefore that the maps ϕD preserve the
L∞-norms.

Moreover, when condition i) is satisfied, the linear maps ϕD define isomorphisms

ϕD : EiD −→ E′
i
D,

and therefore equality holds in (3.9), hence in (3.7).
To prove the equality in case ii), one may consider the Stein factorization of f and write

it as the composition of a morphism satisfying i) and of a finite morphism. Thus one is
reduced to handle the case where L is ample and where f is a finite morphism that defines
an isomorphism between open neighbourhoods of P in X and of P ′ in X ′. In this case, as
L and f∗L are ample, the metrics which appear in (3.7) are the canonical metrics ‖.‖(X,P,C)

and ‖.‖(X′,P ′,C′), and we may replace L by any ample line bundle on X.
In particular, if I denotes the coherent ideal sheaf in OX defined as the annihilator of

the cokernel of the canonical morphism OX −→ f∗OX′ , we may assume that there exists a
section s0 in Γ(X, I.L) which does not vanishes at P . Then for any non-negative integers i
and D, and any s′ ∈ E′iD, the product f∗s0 ⊗ s′ may be written ϕD(s) with s ∈ EiD+1 and
its image s0(P )⊗ γ′iD(s′) by γ′iD+1 coincides with IiD+1(s0(P )⊗ γiD(s)). This shows that

‖γ′iD‖ ≤
‖s0‖L∞(X)

‖s0(P )‖
‖γiD+1‖.

These estimates lead to the inequality opposite to (3.7).
�Proposition 3.2
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Corollary 3.3 Let X and X ′ be two projective complex varieties and i : U ′ → U an
isomorphism between Zariski open subsets U and U ′ of X and X ′ respectively. If P ′ is a
point of X and C a germ of smooth analytic curve through P in X, and if P := f(P ′) and
C := f(C ′), then the isomorphism

Di(P ′) : TP ′C ′ −→ TPC

satisfies:
‖Di(P ′)v‖(X,P,C) = ‖v‖(X′,P ′,C′), for any v ∈ TP ′C ′. (3.10)

Proof : By considering the closure of the graph of i in X×X ′ and its projections to X and
X ′, we see that to prove (3.10) we may assume that i is the restriction of some (birational)
morphism i : X ′ → X. Let us also choose ample line bundles L and L′ on X and X ′

respectively.
By the equality case (ii) in Proposition 3.2, we have:

‖Di(P ′)v‖(X,P,C) = ‖Di(P ′)v‖(X,P,C,L) = ‖v‖(X′,P ′,C′,i∗L). (3.11)

Besides, if k is a large enough positive integer, the line bundle Ľ′⊗i∗L⊗k admits a regular
section on X ′ which does not vanish at P ′. (Indeed, Γ(X ′, Ľ′⊗i∗L⊗k) may be identified with
Γ(X, i∗Ľ′⊗L⊗k) and i∗Ľ′⊗L⊗k is generated by its global sections for k >> 0.) Therefore,
by applying Lemma 3.1, 1) and 2), we get:

‖.‖(X′,P ′,C′,L′) ≤ ‖.‖(X′,P ′,C′,i∗L⊗k) = ‖.‖(X′,P ′,C′,i∗L).

This shows that
‖.‖(X′,P ′,C′,i∗L) = ‖.‖(X′,P ′,C′). (3.12)

Finally, (3.10) follows from (3.11) and (3.12).
�Corollary 3.3

Let us now assume that the variety X is arbitrary, and consider some quasi-projective
open neighbourhood U of P in X and some projective variety U containing U as an open
subvariety. Corollary 3.3 shows that the canonical metric ‖.‖(U,P,C) on TPC is independent
of the choices of U and U , and we shall extend the previous definition of the canonical
metric by letting:

‖.‖(X,P,C) := ‖.‖(U,P,C).

3.3 Functorial properties of the canonical semi-norm

We may now generalize the “functoriality properties” established in Proposition 3.2 and
Corollary 3.3 when the ambient varieties are projective. Indeed, from these properties and
the definition of the canonical semi-norm, it is straightforward to deduce assertions 1) and
2-i) in the following proposition:

Proposition 3.4 Let X (resp. X ′) a complex algebraic variety, P (resp. P ′) a point in X
(resp. X ′), and C (resp. C ′) a germ of smooth analytic curve through P (resp. P ′) in X
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(resp. X ′). Let also f : X ′ → X be a morphism of complex algebraic varieties such that
f(P ′) = P and f|C′ is an analytic isomorphism from C ′ to C.

1) The isomorphism of complex lines

Df|C(P ′) : TP ′C ′ −→ TPC

satisfies, for any v ∈ TP ′C ′ :

‖Df(P ′)v‖(X,P,C) ≤ ‖v‖(X′,P ′,C′). (3.13)

2) Moreover, equality holds in (3.13) if one of the following conditions holds:
i) the morphism f defines an isomorphism from some open neighborhood of P ′ in X ′ onto
some open neighborhood of P in X;
ii) the morphism f is an embedding.

To prove that equality holds in (3.13) when f is an embedding, we may assume that X
and Y are projective. Then it is a consequence of the following proposition of independent
interest, a stronger form of which is established in Appendix A at the end of this article.

Proposition 3.5 Let X be a complex projective variety, Y a closed subvariety of X, L
an ample line bundle over X, and ‖.‖ an arbitrary continuous metric on L. There exists
C ∈ R∗+ satisfying the following condition: for any positive large enough integer D and any
s ∈ Γ(Y, L⊗D), there exists s̃ ∈ Γ(X,L⊗D) such that

s̃|Y = s

and
‖s̃‖L∞ ≤ CD‖s‖L∞ .

3.4 Canonical semi-norm and capacity

Observe that, if a germ C of smooth analytic curve through a point P in a complex algebraic
variety is algebraic, then the canonical semi-norm ‖.‖(X,P,C) on TPC vanishes. Indeed the
direct implication in the algebraicity criterion Proposition 2.2 shows that, if we assume—as
we can—the variety X projective and if we denote by L an ample line bundle on X, then
the evaluation maps considered in 3.1

γiD : EiD −→ SiŤPC ⊗ L⊗DP ' ŤPC⊗i ⊗ L⊗DP

vanish if i/D is large enough; accordingly,

ρ(X,P,C, L) := lim sup
i
D
→+∞

1
i

log ‖γiD‖ = −∞.

In this section, we derive an upper bound on the canonical metric ‖.‖(X,P,C) in terms of
classical potential theoretic invariants of a Riemann surface “extending” C, which implies
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its vanishing when C is algebraic as a very special case. As will be clear in the proof, this
lower bound is a geometric version of the classical Schwarz lemma, which plays a prominent
role in transcendance and Diophantine approximation proofs.

We defer examples of analytic germs with non-trivial canonical semi-norms to section
4.5 infra.

3.4.1 Green functions and Riemann surfaces

Let us briefly recall some basic facts and introduce some notation concerning Green functions
on Riemann surfaces. We refer the reader to the monographs [Tsu59],[Rum89], and [Ran95]
and to [Bos99], 3.1 and Appendix, for proofs and additional information.

Let M be a connected Riemann surface and O a point of M . Consider a relatively
compact domain Ω in M containing O with a non-empty and regular enough boundary
∂Ω. Precisely, we assume that Ω has only regular boundary points in the sense of potential
theory. (This condition is satisfied for instance if the non-empty compact set ∂Ω is locally
connected without isolated points. Actually, it would be enough for the sequel to consider
the case where Ω is the interior of some compact submanifold of codimension 0 with C∞

boundary.) Then we may consider the Green function, or equilibrium potential, of P in Ω. It
is the unique continuous function gP,Ω on M \{O} satisfying the following three conditions:
EP1. It vanishes identically on M \ Ω;
EP2. It is harmonic on Ω \ {O};
EP3. It possesses a logarithmic singularity at O; namely, if z denotes a local holomorphic
coordinates on some open neighborhood U of P , we have:

gP,Ω = log |z − z(O)|−1 + h on U \ {O},

where h is an harmonic function on U .
The Green function gO,Ω represents the electric field of a unit charge placed at the

point O in the two-dimensional world modeled by M , when Ω (resp. M \Ω) is made of an
insulating material (resp. of a conducting material wired to the earth). It is positive on
Ω \ {O}, and conditions EP2 and EP3 may be expressed as the equality of currents:

ddcgO,Ω = −1
2
δO on Ω. (3.14)

The value h(P ) of the function h in condition EP3 may be interpreted as the capacity
of M \ Ω with respect to P . Of course, this value depends on the choice of the local
coordinate z. Intrinsically, we may define a “capacitary norm” ‖.‖capP,Ω on the complex line
TOM = C ∂

∂z |P by the equation:

‖ ∂
∂z |P

‖capP,Ω := e−h(P ) = lim
Q→O

e−gO,Ω(Q)

|z(Q)− z(O)|
. (3.15)

Let us now assume that M is not compact and consider an increasing sequence (Ωn)n∈N
of relatively compact domains of M containing O, with “regular” boundaries, such that
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M =
⋃
n∈N Ωn. Then the sequence of Green functions (gO,Ωn)n∈N is non-decreasing, and

consequently the sequence of norms (‖.‖capO,Ωn)n∈N is non-increasing.
Their limit behavior turns out to depend on the “type” of the Riemann surface M in

the sense of the classical works of Myrberg-Nevanlinna-Ahlfors (see for instance [Ahl52] and
[AS60], chapter IV). Recall that a connected Riemann surface S is said to be “parabolic” in
the sense of Myrberg, or equivalently, to have “null boundary” in the sense of R. Nevanlinna,
or to belong to the class OG, when any negative subharmonic function on S is constant. This
arises for instance when S is a complex (smooth connected) algebraic curve. Otherwise,
S is said to be “hyperbolic”, or to have “positive boundary”. Using this terminology, the
following alternative holds:

(1) If the Riemann surface M is hyperbolic, then the pointwise limit gO,M of (gO,Ωn)n∈N
is everywhere finite on M\{O}. Moreover it is a positive harmonic function on M\{O}, with
a logarithmic singularity at O—indeed, gO,M is minimal amongst the functions satisfying
these conditions, and, by definition, is the Green function of O in M . We may also define
a capacitary norm ‖.‖capO,M on TOM by the equality

‖ ∂
∂z |P

‖capO,Ω := lim
Q→O

e−gO,M (Q)

|z(Q)− z(O)|
. (3.16)

This norm coincides with the limit limn→∞ ‖.‖capO,Ωn .
(2) If the Riemann surface M is “parabolic”, then the point-wise limit of (gO,Ωn)n∈N is

everywhere +∞ and
lim
n→∞

‖.‖capO,Ωn = 0.

Then we let:
‖.‖capO,M = 0.

To sum up, the “capacitary semi-norm” ‖.‖capO,M on TOM always coincide with the limit
limn→∞ ‖.‖capO,Ωn , and vanishes iff M is parabolic.

It is natural to extend the preceding discussion to the situation where M is compact
(hence parabolic) by letting ‖.‖capO,M = 0 in that case also.

Observe finally that, if F is any closed polar subset of M (e.g., a closed discrete subset)
not containing O, then the semi-norms ‖.‖capO,M and ‖.‖capO,M\F coincides. Indeed, the Riemann
surfaces M and M \ F have the same type, and, when they are hyperbolic, gO,M\F is the
restriction of gO,M to M \ F .

3.4.2 An upper bound on canonical semi-norms

As before, we consider a complex algebraic variety X, a point P in X, and a germ C of
smooth analytic curve through P in X.

Let also M be a connected Riemann surface, O a point in M and

f : M −→ X

an analytic map which sends O to P and maps the germ of M at O to the germ C. (Thus f
defines an analytic isomorphism from the germ of M at O onto the germ C, unless Df(O)
vanishes.)
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Proposition 3.6 For any v in TOM , we have:

‖Df(O)v‖(X,P,C) ≤ ‖v‖
cap
O,M . (3.17)

In particular, this proves:

Corollary 3.7 If f maps the germ of M at O isomorphically onto the germ C at P and if
the Riemann surface M is parabolic, then the canonical semi-norm ‖.‖(X,P,C) vanishes.

Applied to the normalization of the Zariski closure of C, this corollary shows again that
the canonical semi-norm ‖.‖(X,P,C) vanishes when the germ C is algebraic.

Observe that the capacitary norm at the origin on the open disk D(0, 1) is the “standard
norm”:

‖ ∂
∂z |0
‖cap0,D(0,1) = 1.

Indeed, the disk D(0, 1) is hyperbolic and

g0,D(0,1)(z) = log |z|−1 for any z ∈ C.

Therefore the special case of Proposition 3.6 where (M,O) = (D(0, 1), 0) reads:

Corollary 3.8 For any analytic map

f : D(0, 1) −→ X

which sends 0 to P and maps the germ of C at 0 to the germ C, we have:

‖Df(0)(
∂

∂z
)‖(X,P,C) ≤ 1. (3.18)

In more geometric terms, this estimate asserts that the canonical semi-norm ‖.‖(X,P,C)

on TPC is bounded from above by the Poincaré metric at P on any Riemann surface
which“extends C and maps to X”.
Proof of Proposition 3.6:. To establish (3.17), we may assume that M is not compact
(by deleting one point if necessary) and then it is enough to prove that, for any relatively
compact domain Ω in M with regular boundary containing O, the following inequality holds
for any v in TOM :

‖Df(O)v‖(X,P,C) ≤ ‖v‖
cap
O,Ω. (3.19)

Clearly, we may also assume that Df(O) is not zero (hence an isomorphism) and that
X is projective.

To derive (3.19), we choose an ample line bundle L on X, a C∞ hermitian metric ‖.‖
on L, an holomorphic coordinate z on some open neighborhood of O in M that vanishes at
O, and we define a norm ‖.‖0 on TPC by letting

‖Df(O)(
∂

∂z |O
)‖0 = 1.
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Finally, we choose a real valued C∞ function ψ, defined on some open neighborhood of Ω
in M such that

ψ(O) = 0 and ddcψ ≥ f∗c1(L) on Ω.

(If h1 and h2 are two holomorphic functions vanishing at O defined on some open neigh-
borhood of Ω with disjoint ramification divisors, then we can take

ψ := C(|h1|2 + |h2|2)

for any large enough C in R∗+.)
Using these data, we may define EiD, γ

i
D, ‖γiD‖ and ρ(X,P,C, L) as in section 3.1, and

the inequality (3.19) may be rewritten as:

ρ(X,P,C, L) ≤ ‖ ∂
∂z |O

‖capO,Ω. (3.20)

To prove (3.20), observe that, for any section s in EiD, we have:

‖γiD(s)‖ = lim
Q→O

‖s ◦ f(Q)‖
|z(Q)|i

.

Therefore, provided s does not vanish identically on f(M), log ‖γiD(s)‖ is the value at O of

log ‖s ◦ f‖ − i log |z|,

which defines a locally integrable continuous function with values in [−∞,+∞[ on a neigh-
borhood of O in M . This is also the value at O of the function

log ‖s ◦ f‖+ i(gO,Ω + log ‖ ∂
∂z |O

‖capO,Ω) +
D

2
ψ (3.21)

from M to [−∞,+∞[, which indeed is subharmonic on Ω. This follows from the equality
of currents on M

ddc log ‖s ◦ f‖2 = δf∗div s − f∗c1(L),

from which we derive:

ddc(log ‖s ◦ f‖2 +Dψ) ≥ iδO = −2iddcgO,Ω on Ω.

By the the maximum principle, log ‖γiD(s)‖ is therefore not greater than the supremum of
(3.21) on ∂Ω. Since gP,Ω vanishes on ∂Ω, we finally get:

log ‖γiD(s)‖ ≤ log ‖s‖L∞ + i log ‖ ∂
∂z |O

‖capO,Ω +
D

2
max
∂Ω

ψ.

This shows that
1
i

log ‖γiD‖ ≤ log ‖ ∂
∂z |O

‖capO,Ω +
D

2i
max
∂Ω

ψ

and yields (3.19).
�Proposition 3.6
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4 Algebraicity criteria for smooth formal germs of subvari-
eties in algebraic varieties over number fields

In this section, we discuss some algebraization theorems concerning formal germs of sub-
varieties in algebraic varieties over number fields, which involve the canonical semi-norm
studied in the previous paragraphs. These theorems are improvements of the main result
of [Bos01] applied to formal germs of curves.

When dealing with number fields and p-adic fields, we will use the following notation
and terminology.

If K is a number field, its ring of integers will be denoted OK and the set of its finite
places (or, equivalently, the set of non-zero prime ideals of OK , or of closed points of
SpecOK) will be denoted Vf (K). For any p in Vf (K), we let Fp be the finite field OK/p,
Np := |Fp| the norm of p, Kp (resp. Op) the p-adic completion of K (resp. of OK), and
| |p the p-adic absolute value on Kp normalized in such a way that, for any uniformizing
element $ in Op, we have:

|$|p = Np−1;

equivalently, if p denotes the residue characteristic of p and e the absolute ramification
index of Kp, then:

|p|p = Np−e = p−[Kp:Qp].

If Λ is an Op-lattice in some finite dimensional Kp-vector space E, the p-adic norm ‖ ‖ on
E attached to Λ is defined by the equality

‖
n∑
i=1

xiei‖ := max
1≤i≤n

|xi|p,

for any Op-basis (e1, . . . , en) of Λ and any (x1, . . . , xn) ∈ Kn.

4.1 Sizes of formal subschemes over p-adic fields

We now recall some constructions from [Bos01], to which we refer for details and proofs.
Let k be a p-adic field (i.e., a finite extension of Qp), O its subring of integers (i.e.,

the integral closure of Zp in k), | | : k → R+ its absolute value, and F its residue field.
(Actually we might assume more generally that k is any field equipped with a complete
non-Archimedean absolute value | | : k → R+ and let O := {t ∈ k | |t| ≤ 1} be its valuation
ring.)

4.1.1 Groups of formal and analytic automorphisms

If g :=
∑

I∈Nd aIX
I is a formal power series in k[[X1, · · · , Xd]] and if r ∈ R∗+, we define

‖g‖r := sup
I
|aI |r|I| ∈ R+ ∪ {+∞}.

The “norm” ‖g‖r is finite iff the series g is convergent and bounded on the open d-
dimensional ball of radius r.
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The group Aut Âd
k of automorphisms of Âd

k, the formal completion at the origin of the d-
dimensional affine space over k, may be identified with the space of d-tuples f = (fi)1≤i≤d of

formal series fi ∈ k[[x1, · · · , xd]] such that f(0) = 0 and Df(0) :=
(
∂fi
∂xj

(0)
)

1≤i,j≤d
belongs

to GLn(k). We shall consider the following subgroups of Aut Âd
k:

• the subgroup Gfor formed by the formal automorphisms f such that Df(0) belongs
to GLn(O);

• the subgroup Gω formed by the elements f := (fi)1≤i≤d of Gfor such that the series
fi have positive radii of convergence;

• for any r ∈ R∗+, the subgroup Gω(r) of Gω formed by the elements f := (fi)1≤i≤d
of Gfor such that the series (fi)1≤i≤d satisfy the bounds ‖fi‖r ≤ r. This group may
be seen as the group of analytic automorphisms, preserving the origin, of the open
d-dimensional ball of radius r. Moreover,

r′ > r > 0⇒ Gω(r′) ⊂ Gω(r) and
⋃
r>0

Gω(r) = Gω.

4.1.2 The size R(V̂ ) of a formal germ V̂

The filtration (Gω(r))r>0 of the group Gω will now be used to attach a number R(V̂ ) in
[0, 1] to any smooth formal germ V̂ in an algebraic variety over k, which will provide some
quantitative measure of its analyticity.

Let V̂ be a formal subscheme of Âd
k. For any ϕ in Aut Âd

k, we may consider its inverse
image ϕ∗(V̂ ), which is again a formal subscheme of Âd

k. Moreover, the following conditions
are equivalent:

1. V̂ is a smooth formal scheme of dimension v.
2. There exists ϕ in Aut Âd

k such that ϕ∗(V̂ ) is the formal subscheme Âv
k × {0} of Âd

k.

3. There exists ϕ in Gfor such that ϕ∗(V̂ ) is the formal subscheme Âv
k × {0} of Âd

k.
Similarly, the following two conditions are equivalent:

1. V̂ is the formal scheme attached to some germ at 0 of smooth analytic subspace of
dimension v of the d-dimensional affine space over k.

2. There exists ϕ in Gω such that ϕ∗(V̂ ) is the formal subscheme Âv
k × {0} of Âd

k.

When they are satisfied, we shall say that the formal germ V̂ is analytic and smooth.
These observations lead to define the size of a smooth formal subscheme V̂ of dimension

v of Âd
k as the supremum R(V̂ ) in [0, 1] of the real numbers r ∈]0, 1] for which there exists

ϕ in Gω(r) such that ϕ∗(V̂ ) is the formal subscheme Âv
k × {0} of Âd

k. It is positive iff V̂ is
analytic.

More generally, if X is an O-scheme of finite type equipped with a section P ∈ X (O)
and if V̂ is a smooth formal subscheme of the formal completion X̂PK of X := XK at PK ,
then the size RX (V̂ ) of V̂ with respect to the model X of X may be defined as the size
of i(V̂ ), where i : U ↪→ Ad

O is an embedding of some open neighbourhood U in X of the
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section P into an affine space of large enough dimension d, which moreover maps P to the
origin 0 ∈ Ad

O(O). This definition is independent of the choices of U , d, and i, and extends
the previous one.

When V̂ is a smooth germ of analytic curve, we shall define a p-adic norm on the tangent
line TP V̂ by letting:

‖.‖(X ,P,V̂ ) := RX (V̂ )−1‖.‖0,

where ‖.‖0 denotes the p-adic norm on TP V̂ which makes the differential Di(P ) : TP V̂ →
T0Ad

k ' kd isometric when kd is equipped with the “standard” p-adic norm, the unit ball
of which is Od.

Observe that, if V̂ extends to a formal subscheme V̂ of the formal completion of X along
P which is smooth along P, then RX (V̂ ) = 1. If moreover V̂ is a formal germ of curve, the
norm ‖.‖(X ,P,V̂ ) on TP V̂ is therefore the p-adic norm attached to its O-lattice defined by

the normal bundle of P in V̂.

4.1.3 Sizes of solutions of algebraic differential equations

It is possible to establish lower bounds on the sizes of formal germs of solutions of algebraic
ordinary differential equations. These play a key role in the application of our arithmetic
algebraization criterion to the solutions of algebraic differential equations over number fields
(see [Bos01], 2.2 and 3.4.3, and infra, 4.6.

Proposition 4.1 Let X be a smooth scheme over SpecO, P a section in X (O), and F a
sub-vector bundle of rank 1 in TX/O. Let X := Xk, P := Pk, and F := Fk, and let V̂ be the
formal germ of curve in X̂P defined by integration of the (involutive) line bundle F in TX .

1) The size R(V̂ ) of V̂ with respect to X satisfies the lower bound:

R(V̂ ) ≥ |π| := |p|
1
p−1 . (4.1)

2) If moreover k is absolutely unramified and if the reduction FF ↪→ TXF of F to the
closed fiber XF of X is closed under p-th power, then

R(V̂ ) ≥ |p|
1

p(p−1) . (4.2)

This is proved in [Bos01], Proposition 3.9, with the exponent 3/p2 instead of 1/p(p−1) in
(4.2); however, a closer inspection of the proof shows that indeed it holds with the exponent
1/p(p− 1).

Observe that the lower bound (4.1) is basically optimal, as demonstrated by the differ-
ential system

X := A2
O, P := (0, 0), and F :=

(
∂

∂x
+ (y + 1)

∂

∂y

)
OA2 .

Indeed, then V̂ is the formal germ

Graph(x 7→ expx− 1),
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the size of which is not larger than the radius of convergence |π| of the exponential series.
Observe also that, after exchanging the two coordinates, V̂ may also be seen as the

graph of the series

log(1 + t) :=
∞∑
n=1

(−1)n+1

n
tn,

whose radius of convergence is 1. This shows that the size R(Graph(φ)) of the graph of
some formal series φ may be strictly smaller than its radius of convergence.

4.2 Normed and semi-normed lines over number fields

We define a normed line
L := (LK , (‖.‖p), (‖.‖σ))

over a number field K as the data of a rank one K-vector space LK , of a family (‖.‖p) of
p-adic norms on the Kp-lines LK ⊗K Kp indexed by the non-zero prime ideals p of OK ,
and of a family (‖.‖σ) of hermitian norms on the complex lines LK ⊗K,σ C, indexed by the
fields embeddings σ : K ↪→ C. Moreover the family (‖.‖σ) is required to be stable under
complex conjugation. (The data of these families of norms is equivalent to the data of a
family (‖.‖v)v, indexed by the set of all places v of K, of v-adic norms on the rank one
vector spaces Lv := LK ⊗K Kv over the v-adic completions Kv of K.)

If L and M are normed lines over K, then we will denote by Ľ (resp. by L ⊗ M)
the normed line over K defines by the K-line ĽK := HomK(LK ,K) (resp. the K-line
LK ⊗K MK) equipped with the p-adic and hermitian norms deduced by duality (resp. by
tensor product) from the ones defining L (resp. L and M).

We shall say that a normed K-line is summable if, for some (or equivalently, for any),
non-zero element l of LK , the family of real numbers (log ‖l‖p)p is summable. Then we
may define its Arakelov degree as the real number

d̂egL :=
∑
p

log ‖l‖−1
p +

∑
σ

log ‖l‖−1
σ . (4.3)

Indeed, by the product formula, the right-hand side of (4.3) does not depend on the choice
of l.

If L and M are summable normed lines over K, then the normed K-lines Ľ and L⊗M
also are summable. Moreover, as a straightforward consequence of the definition of the
Arakelov degree, we have:

d̂eg Ľ = −d̂egL (4.4)

and
d̂egL⊗M = d̂egL+ d̂egM. (4.5)

Observe that hermitian line bundles over SpecOK , as usually defined in Arakelov ge-
ometry (see for instance [Bos01], 4.1.1) provide examples of normed lines over K. Namely,
if L = (L, (‖.‖σ)σ:K↪→C)) is such an hermitian line bundle—so L is a projective OK-module
of rank 1, and (‖.‖σ)σ:K↪→C) is a family, invariant under complex conjugation, of norms on
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the complex lines Lσ := L ⊗σ:OK→C C—the corresponding normed K-line is LK equipped
with the p-adic norms defined by the Op-lattices L⊗OK Op in L⊗OK Kp ' L⊗K Kp and
with the hermitian norms (‖.‖σ). The normed lines so-defined are summable, and their
Arakelov degree, as defined by (4.3), coincide with the usual Arakelov degree of hermitian
line bundles.

It is convenient to extend the definitions of normed lines and Arakelov degree as follows:
we shall define a semi-normed K-line L as a rank one K-vector space LK equipped with
families of semi-norms (‖.‖p) and (‖.‖σ), where the latter is assumed to be stable under
complex conjugation. (In other words, we allow some of the ‖.‖p or ‖.‖σ to vanish.) We
shall say that the Arakelov degree of a semi-normed K-line L is defined if, for some (or
equivalently, for any), non-zero element l of LK , the family of real numbers (log+ ‖l‖p)p
is summable. Then we may again define its Arakelov degree by means of (4.3), where we
follow the usual convention

log 0−1 = +∞.
It is a well defined element of ]−∞,+∞]. The definition of the tensor product of normed
K-lines immediately extends to semi-normed K-lines. Moreover, if two semi-normed K-
lines have well defined Arakelov degrees, then their tensor product also and the additivity
relation (4.5) still holds. (Observe however that the duality relation (4.4) makes sense only
for summable normed K-lines.)

4.3 An arithmetic algebraization theorem

We are now in position to state an arithmetic analogue of the algebraization criterion of
section 2.3, which concerns germs of formal curves in algebraic varieties over number fields:

Theorem 4.2 Let X be a quasi-projective variety over a number field K, P a point in
X(K) and V̂ a germ of smooth formal curve in X through P that is analytic at every
place7.

Let X be a model of X, quasi-projective over SpecOK , such that P extends to a section
P in X (OK), and let t be the semi-normed K-line defined by the tangent line TP V̂ equipped
with the p-adic norms ‖.‖(XOp ,POp ,V̂Op ) and the hermitian semi-norms ‖.‖(Xσ ,Pσ ,V̂σ).

If the Arakelov degree of t is well-defined and if

d̂eg t > 0, (4.6)

then the formal germ V̂ is algebraic.

Observe that, conversely, if V̂ is any algebraic smooth formal germ through a rational
point in an algebraic variety over a number field, then it is analytic at every place, almost all
its p-adic sizes are equal to 1 8, and its complex canonical semi-norms vanish. In particular,
the Arakelov degree of t is well defined, and assumes the value +∞.

7Recall that this means that V̂ is a one-dimensional smooth formal subscheme of X̂P such that, for any
non-zero prime ideal p in OK (resp. any field embedding σ : K ↪→ C), the smooth formal curve V̂Kp (resp.

V̂σ) in XKp (resp. Xσ) is indeed Kp-analytic (resp. C-analytic).
8Actually, for any model X of X over OK , there is a non-empty subscheme SpecOK [1/N ] and a section

P ∈ X (OK [1/N ]) such V̂ extends to a formal subscheme of X along P that is smooth over OK [1/N ].
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Corollary 4.3 Let V̂ be a smooth formal germ of curve through a rational point P in an
algebraic variety X over a number field K, analytic at every place.

Let us denote by (Rp) the family of p-adic sizes of V̂ , defined with respect to some model
U over OK of an open neighborhood U of P in X such that P extends to an integral point
P ∈ U(OK), and suppose that the following conditions are satisfied:

1) the product ∏
p∈SpecOK\{(0)}

Rp,

which is a well-defined number in [0, 1], is positive;
2) for at least one embedding σ : K ↪→ C, the canonical semi-norm ‖.‖(Xσ ,Pσ ,V̂σ) vanishes.

Then the formal germ V̂ is algebraic.

Observe that condition 1) is actually independent of the choice of U and U . Moreover,
condition 2) is satisfied if , for some embedding σ, there exists a parabolic Riemann surface
M , a point O in M and an analytic map f : M −→ Xσ(C) which defines an isomorphism
from the formal germ of M at O to V̂σ. In this way, we recover the main result of [Bos01]
(Theorem 3.4) for one-dimensional formal germs as a special instance of Theorem 4.2.

Corollary 4.3 is a straightforward consequence of Theorem 4.2: after possibly shrinking
U and changing U , we may assume that U is quasi-projective over OK and apply Theorem
4.2 to X = U ; indeed, condition 1) shows that d̂eg t is well defined, and condition 2) that
its value is +∞.

Theorem 4.2 and Corollary 4.3 are in the same spirit as the algebraization theorems for
formal germs of D.V. and G.V. Chudnovsky ([CC85a], Section 5, and [CC85b], Theorem
1.2) and André ([And89], Chapter VIII, especially Theorem 1.2, [And99], Theorem 2.3.1,
and [And02], Theorem 5.4.3), which however are technically somewhat different.

4.4 Proof of the algebraization theorem

The proof of Theorem 4.2 is similar to the proof of the algebraization criterion over function
fields, Theorem 2.5. It constitutes a refined variant of the proof of the main result (Theorem
3.4) in [Bos01], and, like the latter, it relies on some simple inequalities relating slopes of
hermitian vector bundles and heights of linear maps, for which we refer to [Bos01], 4.1.

In the sequel, we freely use the basic definitions and results concerning hermitian vector
bundles, slopes and height of linear maps which are recalled in loc. cit.

4.4.1 Auxiliary hermitian vector bundles and linear maps

Observe that X may be imbedded, as a scheme over SpecOK , into some projective space
PNOK . By replacing X by its closure in PNOK , we may assume that it is projective. We
may also assume that V̂ is Zariski dense in X, by replacing X by the closure in PNOK of
the Zariski closure Z of V̂ in X considered in section 2.1. Observe that these reductions
leave unchanged the (semi-)norms defining the generalized hermitian line bundle t. (For the
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p-adic norms, this follows from the independence of the size of a formal germ with respect
to the imbedding i used to define it; for the archimedean canonical semi-norms, this follows
from Proposition 3.4. Actually, we could avoid to rely on this non-trivial Proposition by
not assuming that V̂ is Zariski dense. This would only require more complicated notation
and minor modifications in the proof below.)

Let us also choose the following additional data:
– an hermitian line bundle L := (L, ‖.‖L) on X such that L := LK is ample on X := XK ;
– a positive Lebesgue measure µ on X(C), invariant under complex conjugation (see [Bos01],
4.1.3);
– a family (‖.‖0,σ)σ:K↪→C, invariant under complex conjugation, of norms on the complex
lines (TP V̂σ)σ:K↪→C.

Using these data, we may define:
– for any positive integer D, the direct image ED := π∗L⊗D of L⊗D by the structural
morphism π : X → SpecOK . (In other words, ED is the locally free coherent sheaf on
SpecOK associated to the OK-module Γ(X ,L⊗D).)
– the L2-norms (‖.‖L2,σ)σ:K↪→C on the finite dimensional complex vector spaces

ED,σ ' Γ(Xσ(C), L⊗Dσ )

associated to the measure µXσ(C) and the D-th tensor power of the given metric ‖.‖L on
Lσ. By endowing ED with these hermitian norm, we obtain an hermitian vector bundle ED.
– a normed K-line t0, associated to an hermitian line bundle over SpecOK , by endowing the
K-line TP V̂ with the archimedean norms (‖.‖0,σ)σ:K↪→C and with its naive OK-structure9

defined from the model X of X.
Theorem 4.2 will be established by applying the algebraicity criterion involving evalu-

ation maps established in section 2.2 (see Proposition 2.2 and Lemma 2.4), and we define
ED, E

i
D, η

i
D, and γiD as in this section. Observe that ED := Γ(X,L⊗D) may be identified

with ED,K . Moreover, since V̂ is Zariski dense in X, for any given D, the evaluation map

ηiD : ED := Γ(X,L⊗D) −→ Γ(Vi, L⊗D)

is injective—and therefore Ei+1
D vanishes—provided i is large enough. In particular,∑

i≥0

rk (EiD/E
i+1
D ) = rkED.

For any p ∈ SpecOK \ {0}, the size of the formal germ V̂Kp with respect to the model
XOp will be denoted Rp. Since the Arakelov degree of t is well defined, the series with

9In other words, for any p ∈ SpecOK \ {0}, the p-adic norm on TP V̂ ⊗K Kp defining t0 is the norm
‖.‖0 considered at the end of section 4.1.2. Equivalently, the OK-submodule of ŤP V̂ defining the integral

structure of the dual hermitian vector bundle ť0 is given by the image of the composite map

P∗Ω1
X/OK

→ (P∗Ω1
X/OK

)K ' Ω1
X/K,P → ŤP V̂ .
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positive terms ∑
p∈SpecOK\{0}

logR−1
p

has a finite sum.
By definition, the canonical semi-norm on TP V̂σ is given by

‖.‖(Xσ ,Pσ ,V̂σ) = exp

(
lim sup
i/D→+∞

1
i

log ‖γiD‖σ

)
‖.‖0,σ,

where ‖γiD‖σ denotes the operator norm of

γiD,σ : EiD,σ −→ ŤP V̂
⊗i
σ ⊗ L⊗DPσ

when the source space is equipped with the L∞-norm and the range space with the norm
deduced by tensor product from the norms ‖.‖0,σ on TP V̂σ and ‖.‖L on LPσ . As a matter
of fact, we could—and, in the sequel, we shall—use the L2-metric on EiD,σ (namely, the
restriction of the one on ED,σ = ED,σ considered above), and still define the same canonical
semi-norm. Indeed, the logarithm of the ratio of the L∞ and L2 norms on ED,σ is O(D)
when D goes to infinity (see for instance [Bos01], 4.1.3).

The very definitions of the normed lines t and t0 and of their Arakelov degree show that
the latter satisfy the following relation:

d̂eg t = d̂eg t0 +
∑

p∈SpecOK\{0}

logRp −
∑

σ:K↪→C
lim sup
i/D→+∞

1
i

log ‖γiD‖σ. (4.7)

Consequently, as d̂eg t belongs to ]0,+∞], there exists positive real numbers λ and d such
that, for any (D, i) ∈ N>0 × N satisfying i > λD,

d̂eg t0 +
∑

p∈SpecOK\{0}

logRp −
∑

σ:K↪→C

1
i

log ‖γiD‖σ ≥ d. (4.8)

4.4.2 Application of the slope inequalities

We are going to show that the ratio∑
i≥λD(i/D)rk (EiD/E

i+1
D )

rkED
(4.9)

stays bounded when D goes to infinity. According to Lemma 2.4 and (2.5), this will prove
that V̂ is algebraic. As in [Bos01], our main tool will be the slope inequalities applied to
the evaluation morphisms

ηnD : ED := ED,K −→ Γ(Vn, L⊗D).

Specifically, if n is so large that ηnD is injective, the slope inequalities of loc. cit.,
Proposition 4.6, applied to the hermitian vector bundle ED, the linear map ηnD, and the
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filtration of Γ(Vn, L⊗D) by the order of vanishing read as the following estimates (compare
[Bos01], (4.18)):

µ̂(ED) ≤ 1
rkED

∑
i≥0

rk ((EiD/E
i+1
D )

[
d̂eg (̌t

⊗i
0 ⊗ P∗L

⊗D) + [K : Q]h(E iD, ť
⊗i
0 ⊗ P∗L

⊗D
, γiD)

]
.

(4.10)
The left hand side of (4.10) is the slope of ED:

µ̂(ED) :=
d̂eg (ED)

rkED
.

Recall also that h(ED, ť
⊗i
0 ⊗ P∗L

⊗D
, γiD) denotes the height of the linear map γiD. By

definition, it is given by the sum of the “local norms” of γiD:

[K : Q]h(E iD, ť
⊗i
0 ⊗ P∗L

⊗D
, γiD) =

∑
p∈SpecOK\{0}

log ‖γiD‖p +
∑

σ:K↪→C
log ‖γiD‖σ,

where the archimedean norm ‖γiD‖σ has the same meaning as above, and where the p-adic
norm ‖γiD‖p is defined as the operator norm of

γiD,Kp
: EiD,Kp

−→ ŤP V̂
⊗i
Kp
⊗ L⊗DP,Kp

,

defined by using the p-adic norm on EiD,Kp
(resp. on ŤP V̂ ⊗iKp

⊗L⊗DP,Kp
) defined by the lattice

E iD,Op
(resp. by P∗(ť⊗i0 ⊗ L⊗D)Op).

As shown in [Bos01], Proposition 4.4, the left hand side of (4.10) satisfies the following
lower bound, where c denotes some positive constant, and D any natural integer:

µ̂(ED) ≥ −cD. (4.11)

To derive an upper bound on the right hand side of (4.10), first observe that

d̂eg (̌t
⊗i
0 ⊗ P∗L

⊗D) = −i d̂eg t0 +D d̂egL. (4.12)

To estimate the height of γiD, recall that, from the definition of the p-adic sizes Rp, it
follows that, for any p ∈ SpecOK \ {0},

‖γiD‖p ≤ R−1
p

(see [Bos01], Lemma 3.3 and 4.9). Consequently,

[K : Q]h(E iD, ť
⊗i
0 ⊗ P∗L

⊗D
, γiD) ≤ i

∑
p∈SpecOK\{0}

logR−1
p +

∑
σ:K↪→C

log ‖γiD‖σ (4.13)

Moreover, the archimedean norms ‖γiD‖σ satisfy the Cauchy type estimates (3.1) and (3.2).
Therefore, there exist constants α and β, such that, for any non-negative inetegers D and
i: ∑

σ:K↪→C
log ‖γiD‖σ ≤ αi+ βD. (4.14)
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From (4.13) and (4.14), we already derive the existence of some constant c(λ) such that,
for any natural integer D,

1
rkED

∑
0≤i≤λD

rk ((EiD/E
i+1
D )

[
−i d̂eg t0 + [K : Q]h(E iD, ť

⊗i
0 ⊗ P∗L

⊗D
, γiD)

]
≤ c(λ)D.

(4.15)
The slope inequality (4.10), combined with the lower bound (4.11) on its left hand side

and with (4.12) and (4.15), leads to the estimate:

−cD ≤ D d̂egP∗L+c(λ)D+
1

rkED

∑
i>λD

rk ((EiD/E
i+1
D )

[
−i d̂eg t0 + [K : Q]h(E iD, ť

⊗i
0 ⊗ P∗L

⊗D
, γiD)

]
.

(4.16)
Moreover, (4.8) and (4.13) show that, if i > λD, then

−i d̂eg t0 + [K : Q]h(ED, ť
⊗i
0 ⊗ P∗L

⊗D
, γiD) ≤ −id.

Together with (4.16), this leads to the upper bound∑
i≥λD(i/D)rk (EiD/E

i+1
D )

rkED
≤ c+ c(λ) + d̂egP∗L

d

and concludes the proof.

4.5 Analytic germs with positive canonical semi-norms

In this section, we apply our algebraization theorem to investigate the canonical semi-norm
associated to a germ of smooth analytic curve in the affine plane A2(C).

We may restrict to analytic germs C through the origin (0, 0) in A2(C), the restriction
to which of the first projection

A2 −→ A1

(z1, z2) 7−→ z1

is étale. These germs are exactly the germs of the form

Cϕ := Graph(ϕ),

where

ϕ(z) =
+∞∑
n=1

anz
n

is a complex formal series with positive radius of convergence. For any such germ, we let

vϕ :=
∂

∂z1
+ ϕ′(0)

∂

∂z2
.

It a basis vector of the complex line T(0,0)Cϕ.
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Observe that, according to Corollary 3.8, for any such series ϕ of radius of convergence
at least 1, we have:

‖vϕ‖(A2,(0,0),Cϕ) ≤ 1.

Moreover, as observed in section 3.4,

‖vϕ‖(A2,(0,0),Cϕ) = 0

when Cϕ, or equivalently ϕ, is algebraic.
Besides, if the coefficients an of the series ϕ are integers, then the formal germ V̂ through

the origin in A2
Q defined as the graph of ϕ seen as a formal series is analytic at every place.

Actually it is straightforward to check that, for any prime number p, the p-adic size of this
germ, computed with respect to the model A2

Zp is 1 and that, with the notation of Theorem
4.2 applied with K = Q, X = A2

Q, and X = A2
Z, we have:

d̂eg t = − log ‖vϕ‖(A2,(0,0),Cϕ).

According to Theorem 4.2, the germ Cϕ is therefore algebraic if

‖vϕ‖(A2,(0,0),Cϕ) < 1.

These observations establish the following proposition:

Proposition 4.4 If ϕ(z) =
∑+∞

n=1 anz
n is an element, vanishing at 0, of the ring R of for-

mal series with integer coefficients whose complex radius of convergence is ≥ 1, then either
(i) ϕ is algebraic and ‖vϕ‖(A2,(0,0),Cϕ) = 0, or (ii) ϕ is not algebraic and ‖vϕ‖(A2,(0,0),Cϕ) = 1.

It is not difficult to prove that, in case (i), the series ϕ is actually the expansion of a
function in Q(z)10. We shall not use this fact in the sequel.

Observe that the set of algebraic elements of R, vanishing at 0, is infinite countable
(indeed the Zariski-closure in A2

C of a germ Cϕ with ϕ ∈ Q[[z]] is defined over Q). Therefore
the set of series of type (ii) in Proposition 4.4 constitute a set with the power of the
continuum. Explicit elements of this set are provided by lacunary series such as

ϕ(z) :=
+∞∑
k=0

z2k ,

or, more generally, by the series

ϕn(z) :=
+∞∑
k=0

znk ,

10This a special case of Proposition 2.1 and Corollary 2.2 in [Har88], which may be established as follows.
For any holomorphic function ϕ over the open unit disk D(0, 1) that is algebraic over C[t], there is a non-zero
polynomial Q in C[t] such that Qϕ is integral over C[t], and therefore extends to a continuous function on
the closed disk D(0, 1). In particular the coefficients of the Taylor expansion of Qϕ at 0 converge to 0. If
moreover f belongs to R, then Q may be chosen in Z[t], and consequently these coefficients belong to Z,
and only a finite number of them does not vanish.
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where n = (nk)k∈N is a sequence of positive integers such that

inf
k∈N

nk+1

nk
> 1. (4.17)

Indeed, according to a classical theorem of Hadamard, the holomorphic functions on the
unit disc D(0, 1) defined by such series admit the full circle ∂D(0, 1) as natural boundary,
and therefore cannot be algebraic.

Observe also that, for any polynomial P in C[z], vanishing at 0, the automorphism

TP : A2
C −→ A2

C
(z1, z2) 7−→ (z1, z2 + P (z1))

of A2
C transforms the germ Cϕ into the germ CP+ϕ, and its differential DTP (0, 0) maps vϕ

to vP+ϕ. In particular,

‖vP+ϕ‖(A2,(0,0),CP+ϕ) = ‖vϕ‖(A2,(0,0),Cϕ).

In particular, for any P ∈ C[z] and any non-algebraic element of R vanishing at 0,

‖vP+ϕ‖(A2,(0,0),CP+ϕ) = 1.

This construction shows in particular that, amongst the series ϕ holomorphic on the unit
disk, the ones such that ‖vϕ‖(A2,(0,0),Cϕ) = 1 are dense in the topology of uniform conver-
gence on compact subsets of D(0, 1).

4.6 Application to differential equations

We finally discuss how our algebraicity criterion Theorem 4.2 may be applied to ordinary
differential equations.

As in the situation C described in the introduction, we consider a smooth variety X over
a number field K, a point P in X(K) and a sub-vector bundle F of rank 1 of the tangent
bundle TX/K , and we are interested in the algebraicity of the formal germ of integral curve
V̂ through P .

The conjecture of Grothendieck-Katz has been generalized to possibly non-linear dif-
ferential systems by Ekedahl, Shepherd-Barron, and Taylor ([ESBT99]) as the following
question:

With the notation above, does the condition GK —which asserts that almost all the
reductions of F modulo a prime ideal p of OK are closed under the p-th power map—imply
the algebraicity of V̂ ?

Observe that the formal germ V̂ is analytic at every place and that, when moreover
the condition GK is satisfied, we may apply the lower bound (4.2) to V̂Kp for almost every
non-zero prime ideal p in OK . Therefore, under this assumption, the sizes Rp defined as in
Corollary 4.3 satisfy the following lower bounds:

Rp > 0 for every p ∈ SpecOK \ {0}
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and
Rp ≥ p−

[Kp:Qp]

p(p−1) for almost every p ∈ SpecOK \ {0}.

(As usual, p denotes the residue characteristic of p.) In particular, the product∏
p∈SpecOK\{(0)}

Rp

is positive. Together with Corollary 4.3, this establishes the following:

Proposition 4.5 If a sub-line bundle F of the tangent bundle TX of smooth variety X over
a number field K satisfies the condition GK, then its formal germ of integral curve through
a point P in X(K) is algebraic if (and only if), for at least one embedding σ : K ↪→ C, the
canonical semi-norm ‖.‖(Xσ ,Pσ ,V̂σ) vanishes.

Consequently, the conjecture of Grothendieck-Katz and its non-linear generalization
leads us to wonder wether the canonical semi-norm attached to a germ of integral curve of
a complex algebraic differential equation always vanishes.

It seems quite sensible to expect that this is true for linear differential equations. Accord-
ing to Proposition 4.5, this would establish the original conjecture of Grothendieck-Katz.
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A Appendix: extensions of sections of large powers of ample
line bundles

A.1 Recall that a continuous metric ‖.‖ on a line bundle L over an analytic space X is
called positive if, for any trivializing section s of L over an open subset U of X, the function
log ‖s‖−1 is strongly plurisubharmonic on U .

In this Appendix, we prove the following sharp version of Proposition 3.5, concerning
line bundles equipped with positive metrics :

Theorem A.1 Let X be a complex projective variety, Y a closed subvariety of X, L an
ample line bundle over X, and ‖.‖ a positive metric on L. There exist an integer D0 ≥ 0
and, for any ε > 0, a positive real number Cε satisfying the following condition: for any
integer D ≥ D0 and any s ∈ Γ(Y,L⊗D), there exists s̃ ∈ Γ(X,L⊗D) such that

s̃|Y = s

and
‖s̃‖L∞(X) ≤ CεeεD‖s‖L∞(Y ). (A.1)

Since the validity of Proposition 3.5 does not depend on the choice of the metric on L,
and since any ample line bundle on a projective variety admits a positive metric, Theorem
A.1 implies Proposition 3.5.

Observe that, besides the proof of Proposition 3.4, Theorem A.1 also possesses applica-
tions to Arakelov geometry, in the study of heights of cycles and subschemes (cf. [Zha95],
[Ran02]). Actually, similar results have been established in the literature by means of L2 es-
timates à la Hörmander. However, they are often less precise, and require some smoothness
hypothesis on X and Y (see for instance [Man93], [Zha95] Theorem 2.2, [Dem00], [Ran02]
section 3.1.1). The proof that we present in this Appendix is based instead on the classical
finiteness results of Grauert on strictly pseudo-convex domains (in the spirit of the proof of
Satz 2 in [Gra62], p. 343) and the Banach open mapping theorem, and allows us to handle
singular varieties as well.
A.2 Specifically, we shall use the following theorem of Grauert, which he established in
course of his famous solution of the Levi problem ([Gra58], Proposition 4, p. 466; in this
paper, Grauert considers only analytic manifolds, however, as observed in [Gra62], p. 344,
the proof immediately extends to analytic spaces):

Theorem A.2 Let M be a reduced complex analytic space and Ω a relatively compact open
subset of M , with strictly pseudo-convex boundary. For any coherent analytic sheaf F on
Ω, the cohomology group H1(Ω;F) is finite dimensional.

Besides, we shall use the following version of the open mapping theorem (see for instance
[Bou81], I.28 exercice 4), and I.19 Corollaire 3):

Theorem A.3 Let E and F be two Fréchet spaces and u : E −→ F a continuous linear
map.
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If cokeru := F/u(E) is finite dimensional, then u(E) is closed in F and the map
u : E −→ u(E) is open. In particular, for any continuous semi-norm p on E, there exists a
continuous semi-norm q on F satisfying the following condition: for any y in u(E), there
exists x in E such that

u(x) = y

and
p(x) ≤ q(y).

A.3 In the sequel, the algebra of analytic functions on some complex analytic space M will
be denoted Oan(M).

Let X, Y, L, and ‖ ‖ be as in the statement of Theorem A.1, and let ‖ ‖ also denote the
metric on Ľ dual to the metric ‖ ‖ on L. We may consider the total spaces V(X,L) and
V(Y,L) of the line bundle Ľ over X and Y , and, for any r ∈ R∗+, the disk bundles

D(X, r) ↪→ V(X,L)(C )

and
D(Y, r) ↪→ V(Y,L)(C ),

formed by the elements v in the fibers of Ľ such that ‖v‖ < r. These are relatively compact
open subsets of the analytic spaces V(X,L)(C ) and V(Y, L)(C ), and their boundary is
strongly pseudo-convex, as a consequence of the positivity of the metric ‖ ‖ on L.

We shall also denote byD(X) (resp. D(Y )) the unit disk bundleD(X, 1) (resp. D(Y, 1)).
Observe that the closed embedding of complex algebraic varieties

i : V(Y,L) ↪→ V(X,L)

restricts to a closed embedding of analytic spaces

j : D(Y ) ↪→ D(X).

For any r ∈]0, 1[, we denote ‖ ‖X,r (resp. ‖ ‖Y,r) the norm ‖ ‖L∞(D(X,r)) (resp. the norm
‖ ‖L∞(D(Y,r))) on Oan(D(X)) (resp. on Oan(D(Y ))). The family of norms (‖ ‖X,r)r∈]0,1[

(resp. (‖ ‖Y,r)r∈]0,1[) defines the natural Fréchet space structure on Oan(D(X)) (resp. on
Oan(D(Y ))).

The spaces V(X,L) and V(Y, L) are equipped with natural Gm-actions, defined by the
action of homotheties on fibers of Ľ, and the imbedding i is Gm-equivariant. These actions
restrict to analytic actions of

U(1) := {u ∈ C | |u| = 1}

on D(X) and D(Y ), and, for any integer k, we shall define Oan(D(X))k as the subspace of
Oan(D(X)) consisting of the analytic functions f on D(X) such that, for any u ∈ U(1) and
any z ∈ D(X),

f(uz) = ukf(z).
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One defines a projection

pX,k : Oan(D(X)) −→ Oan(D(X))k

by letting

pX,k(f)(z) :=
∫ 1

0
e−2πiktf(e2πitz)dt.

It is continuous; indeed, for any r ∈]0, 1[ and any f ∈ Oan(D(X)),

‖pX,k(f)‖X,r ≤ ‖f‖X,r. (A.2)

Observe also that Oan(D(X))k may be identified with the vector space Γ(X,L⊗k) of
algebraic regular—or equivalently, of analytic—sections of L⊗k, by means of the map which
sends s ∈ Γ(X,L⊗k) to the analytic function f on D(X) defined by

f(z) := 〈s(π(z)), z⊗k〉 for any z ∈ D(X).

(Observe that s(π(z)) belongs to the complex line L⊗kπ(z), and z⊗k to the dual line Ľ⊗k.)
Moreover, with the above notation, the norms of f and s are related by:

‖f‖X,r := rk‖s‖L∞(X). (A.3)

Similarly, we may define a subspace Oan(D(Y ))k of Oan(D(Y )), and a projection

pY,k : Oan(D(Y )) −→ Oan(D(Y ))k.

The subspace Oan(D(Y ))k may be identified with Γ(Y, L⊗k), and (A.3) still holds (with Y
instead of X). Moreover, for any f ∈ Oan(D(X)),

pY,k(f|D(Y )) = pX,k(f)|D(Y ). (A.4)

A.4 Consider the ideal sheaf IV(Y,L) of V(Y,L) in V(X,L) and the associated short exact
sequence of sheaves of OV(X,L)-modules:

0 −→ IV(Y,L) −→ OV(X,L) −→ i∗OV(Y,L) −→ 0.

This sequence induces a short exact sequence of analytic coherent sheaves on D(X):

0 −→ Ian
D(Y ) −→ O

an
D(X) −→ j∗Oan

D(Y ) −→ 0,

and, consequently, by taking the cohomology on D(X), an exact sequence of complex vector
spaces

Oan(D(X))
ρ−→ Oan(D(Y )) −→ H1(D(X); Ian

D(Y )),

where ρ denotes the restriction map from functions on D(X) to functions on D(Y ).
According to Theorem A.2, the cohomology group H1(D(X); Ian

D(Y )) is finite dimen-
sional. Therefore, by Theorem A.3, ρ(Oan(D(X))) is a closed subspace of Oan(D(Y )), and,
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for any positive ε, there exists Cε and r(ε) ∈]0, 1[ such that, for any f ∈ ρ(Oan(D(Y ))),
there exists f̃ ∈ Oan(D(X)) mapped to f by ρ such that

‖f̃‖X,e−ε ≤ Cε‖f‖Y,r(ε). (A.5)

The restriction morphism ρ is clearly equivariant with respect to the U(1)-action on
Oan(D(X)) and Oan(D(Y )). Therefore its cokernel—which is a finite dimensional separated
locally convex complex vector space—is naturally endowed with a continuous action of U(1),
and consequently, may be decomposed as a finite direct sum

coker ρ =
⊕
k∈I

(coker ρ)k,

where (coker ρ)k denotes the subspace of coker ρ on which U(1) acts by the character (u 7→
uk).

Let D0 be any non-negative integer larger that all the integers in I. Then, for any
integer D ≥ D0 and any s ∈ Γ(Y, L⊗D), the class in coker ρ of the function f ∈ Oan(D(Y ))D
associated to s vanishes, and therefore f may be written ρ(f̃), where f̃ is an element of
Oan(D(X)) satisfying (A.5). Moreover, (A.4) and (A.2) show that, by replacing f̃ by
pX,D(f̃), we may also assume that f̃ belongs to Oan(D(X))D. Then the corresponding
section s̃ in Γ(X,L⊗D) satisfies

s̃|Y = s

and, according to (A.5) and (A.3),

e−εD‖s̃‖L∞(X) ≤ Cεr(ε)D‖s‖L∞(Y ).

Since r(ε) < 1, this establishes the required estimate (A.1).
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