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SUMMARY. — We prove an algebraicity criterion for leaves of algebraic foliations defined over number fields.
Namely, consider a number field K embedded in C, a smooth algebraic variety X over K, equipped with
a K-rational point P, and F an algebraic subbundle of the its tangent bundle TX, defined over K. Assume
moreover that the vector bundle F is involutive, i.e., closed under Lie bracket. Then it defines an holomorphic
foliation of the analytic manifold X(C), and one may consider its leaf F through P. We prove that F is
algebraic if the following local conditions are satisfied:
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i) For almost every prime ideal p of the ring of integers O K of the number field K, the p-curvature of the reduction
modulo p of the involutive bundle F vanishes at P (where p denotes the characteristic of the residue field O K/p).

ii) The analytic manifold F satisfies the Liouville property; this arises, in particular, if F is the image by some
holomorphic map of the complement in a complex algebraic variety of a closed analytic subset.

This algebraicity criterion unifies and extends various results of D. V. and G. V. Chudnovsky, André,
and Graftieaux, and also admits new consequences. For instance, applied to an algebraic group G over K, it
shows that a K-Lie subalgebra h of Lie G is algebraic if and only if for almost every non-zero prime ideal p of O K, of
residue characteristic p, the reduction modulo p of h is a restricted Lie subalgebra of the reduction modulo p of Lie G (i.e., is
stable under p-th powers). This solves a conjecture of Ekedahl and Shepherd-Barron.

The algebraicity criterion above follows from a more basic algebraicity criterion concerning smooth formal
germs in algebraic varieties over number fields. The proof of the latter relies on “transcendence techniques”,
recast in a modern geometric version involving elementary concepts of Arakelov geometry, and on some analytic
estimates, related to the First Main Theorem of higher-dimensional Nevanlinna theory.

RÉSUMÉ. — Nous établissons un critère d’algébricité concernant les feuilles des feuilletages algébriques
définis sur un corps de nombres. Soit en effet K un corps de nombres plongé dans C, X une variété algébrique
lisse sur K, munie d’un point K-rationnel P, et F un sous-fibré du fibré tangent TX, défini sur K. Supposons
de plus que le fibré vectoriel F soit involutif, i.e., stable par crochet de Lie. Il définit alors un feuilletage
holomorphe de la variété analytique X(C) et l’on peut considérer la feuille F de ce feuilletage passant par P.
Nous montrons que F est algébrique lorque les conditions locales suivantes sont satisfaites:

i) Pour presque tout idéal premier p de l'anneau des entiers O K de K, la réduction modulo p du fibré F est stable

par l’opération de puissance p-ième (où p désigne la caractéristique du corps résiduel O K/p).
ii) La variété analytique F satisfait à la propriété de Liouville; cela a lieu, par exemple, lorsque F est l’image

par une application holomorphe du complémentaire d’un sous-ensemble analytique fermé dans une variété
algébrique.

Ce critère d’algébricité unifie et généralise divers résultats de D. V. and G. V. Chudnovsky, André et
Graftieaux. Il conduit aussi à de nouvelles conséquences. Par exemple, appliqué à un groupe algébrique G
sur K, il montre qu’une sous-algèbre de Lie h de Lie G, définie sur K, est algébrique si et seulement si, pour presque
tout idéal premier p de O K, de caractéristique résiduelle p, la réduction modulo p de h est une sous-p-algèbre de Lie de la
réduction modulo p de Lie G ( i.e., est stable par puissance p-ième). Cet énoncé résout une conjecture d’Ekedahl et
Shepherd-Barron.

Le critère d’algébricité ci-dessus découle d’un critère d’algébricité plus général, concernant les germes
de sous-variétés formelles des variétés algébriques sur les corps de nombres. La démonstration de ce dernier
repose sur des “techniques de transcendance”, reformulées dans une version géométrique utilisant diverses notions
élémentaires de géométrie d’Arakelov, et sur des estimations analytiques reliées au premier théorème fondamental
de la théorie de Nevanlinna en dimension supérieure.

Conventions. — The following notation and terminology are used throughout this
paper.

The rank of a vector bundle E (resp. of a linear map ϕ) will be denoted rk E
(resp. rk ϕ).

By an algebraic variety over some field k, we mean an integral separated scheme
of finite type over k. Integral subschemes of such an algebraic variety X over k will be
called algebraic subvarieties of X.

If p is a prime number and X a scheme over the finite field with p elements Fp,
we will denote by Frob : X → X the absolute Frobenius morphism of X, defined by
the endomorphism a 7→ a p of the sheaf of rings OX.

If K is a number field, its ring of integers will be denoted OK and the set of
its finite places (or, equivalently, the set of non-zero prime ideals of OK, or of closed
points of Spec OK) will be denoted Vf (K). For any p in Vf (K), we let Fp be the finite
field OK/p, Np := |Fp| the norm of p, Kp (resp. Op) the p-adic completion of K (resp.
of OK), and | |p the p-adic absolute value on Kp normalized in such a way that, for
any uniformizing element $ in O p, we have:

|$|p = Np−1;
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equivalently, if p denotes the residue characteristic of p and e the absolute ramification
index of Kp, then:

|p|p = Np−e = p−[Kp:Qp].

If Λ is an Op-lattice in some finite dimensional Kp-vector space E, the p-adic norm
‖ ‖ on E attached to Λ is defined by the equality

‖
n∑

i=1

xiei‖ := max
16i6n

|xi|p ,

for any Op-basis (e1, ..., en) of Λ and any (x1, ..., xn) ∈ Kn.
On a complex analytic manifold, we write as usual d = ∂ + ∂ and we let

d c := (i/4π)(∂ − ∂ );

consequently:

dd c = (i/2π)∂∂ .

1. Introduction

In this paper, we prove an algebraicity criterion for leaves of algebraic foliations
defined over a number field. Namely, consider a number field K embedded in C,
a smooth algebraic variety X over K, equipped with a K-rational point P, and F
an algebraic sub-vector bundle of the tangent bundle TX, defined over K. Assume
moreover that the vector bundle F is involutive, i.e., closed under Lie bracket. Then it
defines an holomorphic foliation of the analytic manifold X(C), and one may wonder
if the leaf F through P of this foliation is an algebraic subvariety of X. (Recall that,
in general, F is a connected analytic manifold of dimension the rank of F, and that
the inclusion map F ↪→ X(C) is an injective holomorphic immersion, the image of
which may possibly be dense in the analytic topology.) We prove that F is algebraic if

the following local conditions are satisfied:

1. For almost every prime ideal p of the ring of integers OK of the number field K, the

reduction modulo p of the involutive bundle F is stable by p-th power, where p denotes the characteristic

of Fp.

2. The analytic manifold F satisfies the Liouville property (see infra 2.1.2); this condition
is satisfied for instance when F is the image by some holomorphic map of the
complement in a complex algebraic variety of a closed analytic subset.

Applied to translation invariant foliations on an algebraic group G over K, this
criterion shows that a Lie subalgebra h of Lie G (defined over K) is algebraic if and only if for

almost every non-zero prime ideal p of OK, of residue characteristic p, the reduction modulo p of h
is a restricted Lie subalgebra of the reduction modulo p of Lie G (i.e., is stable under p-th powers;
see Theorem 2.3 below). The equivalence of these two conditions may be seen as an
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analogue, for algebraic groups, of the famous conjecture of Grothendieck-Katz relating
the p-curvatures of algebraic linear differential equations to their differential Galois
groups (cf. [Kat72] and [Kat82]; see also [And99] for recent results and comprehensive
references).

The present work has been motivated by the papers [CC85a] and [CC85b] of
D. V. and G. V. Chudnovsky, and by their more recent developments due to André
([And89]; see also [And99]) and Graftieaux ([Gr98] and [Gr01a]). A simple but crucial
innovation in our approach is the introduction of foliations, which leads to a general
theorem unifying various previous results about either systems of linear differential
equations, or particular commutative algebraic groups.

Actually, our algebraicity criterion for foliations follows from a more basic
algebraicity criterion concerning smooth formal germs of subvarieties inside an
algebraic variety over a number field (cf. Theorem 3.4, infra). This criterion relies
on some notion of size, defined for formal germs inside algebraic varieties over p-
adic fields: it involves the collection of sizes associated to such a formal germ over a
number field K by considering its various completions, in a way reminiscent of the
so-called Bombieri conditions in the theory of G-functions. This algebraicity criterion
may also be seen as an arithmetic counterpart of some geometric algebraicity criteria
(see Theorems 3.5 and 3.6 infra), closely related to the classical work of Hironaka,
Matsumura, and Hartshorne on formal functions ([Hir68], [HM68], [Har68]).

Our proofs of algebraicity criteria rely on “transcendence techniques”, inspired
by the ones in the above mentioned works, but of a rather unconventional nature.
Indeed, we avoid the traditional constructions of “auxiliary polynomials” by using
instead a few basic concepts from Arakelov geometry − namely, the formalism of
slopes for hermitian vector bundles over arithmetic curves − which provide a concise
and geometric reformulation of basic transcendence and diophantine approximation
techniques. (This new approach was introduced in [Bos96] in relation with the work
of Masser and Wüstholz on abelian varieties, but has a much wider scope; see for
instance [Gr01a], [Gr01b], and [CB01].)

The basic idea of our algebraicity proofs may be roughly described as follows.
Let X be a projective variety over a number field K, and L an ample line bundle on
X. To prove that a (say smooth) formal subscheme V̂ of the completion X̂P of X at a
rational point P in X(K) − supposed to satisfy suitable local conditions − is a branch
of some algebraic subvariety Y of X through P, we consider the successive infinitesimal
neighbourhoods of P in V̂:

V0 = {P} ⊂ V1 ⊂ ... ⊂ Vn ⊂ Vn+1 ⊂ ...

and, for any (D, n) ∈ N×N, we introduce the evaluation map

ϕD , n : Γ(X, L⊗D) −→ L⊗D
|Vn

.
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Basically, we need to show that, for any large D, the kernel of ϕD , n stays large enough
when n goes to infinity. To achieve this, we choose models over the ring of integers
OK, as well as hermitian structures at infinite places, for X, L, and T

V̂ , P
. From these

data, we deduce integral and hermitian structures on Γ(X, L⊗D) and (subquotients of)
L⊗D
|Vn

, which therefore possess Arakelov type invariants, their Arakelov degrees and more
generally, their Arakelov slopes; these structures also allow to attach a natural height to
ϕD , n. The local conditions on V̂ are used to show that these heights are “very negative”
− or, roughly speaking, that ϕD , n is “very small” − when n/D goes to infinity. This
would contradict the asymptotic behaviour of the slopes of Γ(X, L⊗D) and L⊗D

|Vn
if the

kernel of ϕD , n were too small.
A crucial point in this line of arguments is the “smallness” of ϕD , n at some

archimedean place, which will be derived from the Liouville property by means of
analytic techniques closely related to the First Main Theorem of higher dimensional
Nevanlinna theory.

A short time after the results in this paper had been announced, N. Shepherd-
Barron kindly sent me a copy of his joint work [ESB99] with T. Ekedahl, where they
present some evidence for what they call Conjecture F, namely, that an involutive bundle F
as above is algebraically integrable if (and only if) for almost every prime ideal p of OK, the

p-curvature of the reduction modulo p of the bundle F vanishes identically. Most of this evidence
concerns the special case of the conjecture where the bundle F is a translation invariant
bundle over an abelian variety, which they state as Conjecture A, and is now solved by
Theorem 2.3 below.

Finally, I would like to mention the recent papers of Bogomolov and McQuillan
[BMQ01] and Chambert-Loir [CB01], which present very interesting developments
related to the results of this paper.

This paper is organized as follows.
Firstly, in Section 2, we state our algebraicity criterion for leaves of algebraic

foliations, and we derive various applications of it, where, in some way or another, it is
possible to get rid of the Liouville condition. Besides translation invariant foliations on
algebraic groups mentioned above, we apply it to foliations defined by flat connections
on principal bundles, and we recover and extend earlier results, due to D. V. and
G. V. Chudnovsky and André, concerning the original Grothendieck-Katz conjecture.

Section 3 is devoted to the formulation of the algebraicity criterion concerning
smooth formal germs in algebraic varieties over number fields from which our result
on foliations is derived. In particular, we introduce and discuss the basic properties
of the relevant notion of “size” for formal germs, and we discuss the geometric
counterpart of this second algebraicity criterion and its relation with classical results
such as Hartshorne’s G2 Theorem. We also show that it indeed entails the algebraicity
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criterion for leaves of foliations discussed in Section 2 by establishing lower bounds for
the p-adic sizes of germs of formal leaves of foliations.

Finally, in Section 4, we establish the algebraicity criterion for formal germs,
along the lines described above. The fundamental simplicity of this proof is worth
mentioning: besides some basic notions in algebraic geometry, it only relies on some
rudimentary concepts of Arakelov geometry (the definitions of which use only the
product formula for number fields; cf. 4.1, infra), some elementary estimates concerning
power series with coefficients in p-adic fields and their radii of convergence, and simple
properties of plurisubharmonic functions on complex manifolds.

It is a pleasure to thank P. Gille, L. Illusie, Y. Laszlo, and M. Raynaud for helpful
questions and advice during the writing of this paper, and A. Ancona and N. Sibony
for illuminating discussions concerning potential theory and complex manifolds. I am
also very grateful to Y. André and P. Graftieaux for the communication of their papers
[And99] and [Gr01a] and related discussions, and to A. Chambert-Loir, M. McQuillan,
J.-P. Serre, and the referees for comments and suggestions on the first version of this
paper.

A first version of our main algebraization theorem (Theorem 3.4, infra), based
on the techniques in Section 4.3.3 below, has been presented during the conference
Alan Baker 60 − Number Theory and Diophantine Geometry held at E.T.H., Zürich, in
September 1999; I am very grateful to G. Wüstholz, who invited me to talk at this
conference, and so gave me the opportunity to clarify the application of the “method
of slopes” to algebraicity results “à la Chudnovsky”. The consequences of Theorem 3.4
concerning foliations and algebraic groups (in particular Theorems 2.1 and 2.3, infra)
have been announced during a talk at the Séminaire d’arithmétique et de géométrie algébrique

of Orsay, in January 2000.

2. An algebraicity criterion for leaves of algebraic foliations over number
fields

2.1. Preliminary definitions

2.1.1. Involutive bundles and foliations

Let X be a smooth algebraic variety over some field K, and let F be a sub-
vector bundle of the tangent bundle TX of X (defined over K). Recall that F is said
to be involutive if its sheaf of regular sections is closed under Lie bracket, and that a
smooth algebraic subvariety Y of X is called an integral subvariety of F if the differential
Di : TY → i∗TX of the inclusion map i : Y→ X maps TY to i∗F. These definitions are
clearly geometric, i.e., invariant under extension of the base field K.
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When the characteristic p of K is positive, the sheaf of regular sections of TX,
which may be identified with the sheaf of derivations DerK(O X), is endowed with
the p-th power operation, which maps any local K-derivation D of O X to its p-th
iterate D[p]. When F is involutive, the map which sends D to the class in TX/F of D[p]

is p-linear and defines a section of Frob∗F̌⊗ TX/F over X, the p-curvature of F. The
subbundle F is said to be closed under p-th powers if, for any regular local section D of F,
the section D[p] of TX is indeed a section of F, or equivalently, when F is involutive, if
its p-curvature vanishes everywhere. Also observe that the p-curvature of an involutive
subbundle F of TX vanishes along any smooth integral subvariety of F. (See [Eke87],
[Miy87], and [MP97], Part I, Lecture III, for more information concerning involutive
bundles and foliations in characteristic p > 0.)

When K is a subfield of C, the vector bundle F defines a holomorphic subbundle
FC of the holomorphic tangent bundle of the complex manifold X(C). If F is involutive,
then FC is analytically involutive and defines a holomorphic foliation of X(C); moreover,
for any P ∈ X(K), the following conditions are easily seen to be equivalent:

1. There exists an algebraic subset of dimension r := rk F of X(C) containing the
germ of leaf of FC through P.

2. The maximal leaf F of FC through P in X(C) is a closed algebraic subvariety
of X(C) (necessarily smooth).

3. There exists a (necessarily unique) smooth closed connected algebraic K-
subvariety Y in X of dimension r, which contains P and is an integral
subvariety of F.

When they are satisfied, the maximal leaf F coincides with the set of complex
points Y(C) of Y and we shall say that the leaf of F through P is algebraic.

2.1.2. The Liouville property for complex manifolds

We shall say that a connected complex manifold M satisfies the Liouville property

when every plurisubharmonic function on M bounded from above is constant, or,
equivalently, when every bounded plurisubharmonic function on M is constant (see
for instance [Hör94], chapter IV, or [Kli91], chapter 2, for basic properties of
plurisubharmonic functions).

Examples of complex manifolds satisfying the Liouville property are provided by
the following simple observations:

L1. The affine space M = CN satisfies the Liouville property. This is well known when
N = 1, and this special case entails the general one.

L2. Any connected compact complex manifold M satisfies the Liouville property. In fact, any
plurisubharmonic function on M is constant by the maximum modulus principle.

L3. If a connected complex manifold M satisfies the Liouville property and if F is a closed

pluripolar subset (e.g., a closed analytic subset of positive codimension) of M, then M\F satisfies the
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Liouville property. Indeed, any plurisubharmonic function bounded from above on M \ F
extends to a plurisubharmonic function on M.

L4. Let M and M′ be two connected complex manifolds and f : M′ → M a holomorphic

map. If f (M′) contains an open subset of M, the complement of which is a Lebesgue null set, and

if M′ satisfies the Liouville property then so does M. This follows from the fact that for any
plurisubharmonic function ϕ on M, the function f ∗ϕ := ϕ ◦ f is plurisubharmonic on
M′. Conversely, when M and M′ have the same dimension and f is surjective and proper, if M satisfies

the Liouville property then so does M′. To prove this, observe that, by Property L3 above,
we may assume that f : M′ → M is a finite étale covering; then, if ϕ : M′ → [0, 1] is
plurisubharmonic and if p ∈ [1, +∞[, the non-negative function ψp on M defined by
ψp(x) := (

∑
x′∈ f −1(x) ϕ(x′)p)1/p is plurisubharmonic and bounded by the degree of f, hence

constant; this shows that ϕ( f −1(x) ) does not depend on x, and consequently that ϕ
takes a finite number of values and therefore is constant.

From L1-4, it follows that the manifold of complex points of any smooth connected complex

algebraic A variety satisfies the Liouville property. One may indeed assume that A is affine,
and observe, either that it may be realized as the complement of a divisor in some
projective smooth complex connected variety (by Hironaka’s resolution of singularities),
or that there exists some finite morphism from A onto the affine space AdimM

C .
Observe however that complex manifolds satisfying the Liouville property are far

from exhausted by smooth complex algebraic varieties and complements of their closed
analytic or pluripolar subsets. For instance, any connected complex Lie group satisfies
it. Indeed, if G is such a group and if E ⊂ G is the image of the exponential map
from Lie G to G, then L1 shows that any bounded plurisubharmonic function ϕ on
G is constant on each translate g.E, g ∈ G, hence locally constant on G. For further
examples, see for instance Proposition 2.10, infra, and [Tak93] (where a criterion for
the Liouville property involving volume growth is established).

In complex dimension 1, manifolds satisfying the Liouville property are the
Riemann surfaces which, equipped with any smooth conformal metric, are recurrent

Riemannian varieties, i.e., Riemannian varieties whose Brownian motion is a recurrent
process (see for instance [Anc90] or [Gri99]). These Riemann surfaces are classically
said to be parabolic, or to belong to the class OG (see for instance [AS60], Chapter IV).

2.2. Algebraic leaves of algebraic foliations over number fields

2.2.1. An algebraicity criterion

Theorem 2.1. — Let X be a smooth algebraic variety over a number field K, F an involutive

subbundle of the tangent bundle TX of X (defined over K), and P a point in X(K). For some

sufficiently divisible integer N, let X (resp. F ) be a smooth model of X over S := Spec OK[1/N]
(resp. a sub-vector bundle of the relative tangent bundle TX /S over X such that F K coincides

with F).
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Assume that the following two conditions are satisfied:

i) For almost every non-zero prime ideal p of OK[1/N], the subbundle F Fp
of

TX /S , Fp
' TX Fp

over X Fp
is stable by p-th power, where p-denotes the characteristic of Fp.

ii) There exists an embedding σ0 : K ↪→ C such that the analytic leaf through Pσ0 of

the involutive holomorphic bundle Fσ0 on the complex analytic manifold Xσ0 (C) contains an open

neighbourhood of Pσ0 which satisfies the Liouville property.

Then the leaf of F through P is algebraic.

Observe that condition ii) is implied by the following one:
ii)′ There exist an embedding σ0 : K ↪→ C, a complex manifold M satisfying the Liouville

property, a point O of M, and a holomorphic map f : M → Xσ0 (C), which sends O to P and

maps the germ of M at O biholomorphically onto the germ of leaf through P of the involutive

holomorphic bundle Fσ0 on Xσ0 (C).
Indeed, it follows from Section 2.1.2. that the open submanifold of M where f is

étale satisfies the Liouville property, and also its image, which is an open neighbourhood
of Pσ0 in the leaf of Pσ0 through Fσ0 .

In turn, condition ii)′ is implied by:
ii)′′ There exist an embedding σ0 : K ↪→ C, a complex algebraic variety A, a smooth point O

of A(C), and a meromorphic map f : A(C) Xσ0 (C), holomorphic on some neighbourhood of O,

which maps the germ of A(C) at O biholomorphically onto the germ of leaf through Pσ0 of the

involutive holomorphic bundle Fσ0 on Xσ0 (C).
Indeed, the maximal open subset of the complex manifold of smooth points

of A(C) on which f is holomorphic satisfies the Liouville property.
Conditions i) and ii) for the algebraicity of the leaf of F through P are “almost

necessary”. Indeed, the algebraicity of this leaf obviously implies ii)′′, hence ii). It also
implies that, for almost every non-zero prime ideal p of OK[1/N], the p-curvature of
the subbundle F Fp

of TX Fp
over X Fp

vanishes at PFp
, and the algebraic integrability

(cf. 2.2.2. infra) of the involutive vector bundle F implies i).
Their sufficiency will be established in Section 3.4, as a consequence of the main

technical result in this paper, namely Theorem 3.4.
Theorem 2.1 should be compared with a famous theorem of Miyaoka concerning

the algebraicity of leaves of an involutive vector bundle on a complex projective variety
([Miy87]; see also the simpler approaches of Shepherd-Baron, in [SB92] and [MP97],
and of Bogomolov and McQuillan in [BMQ01]): Miyaoka’s result holds under a
purely geometric hypothesis of positivity on F, which is never satisfied in the arithmetic
applications of Theorem 2.1 which we develop in the next subsections.

2.2.2. Variants

In this section, I would like to mention briefly some variants of Theorem 2.1.
Firstly, it is possible to weaken the regularity hypothesis on the variety X, in the
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spirit of [BMQ01]: X may be assumed, say, only normal provided the foliation is still
smooth, i.e., may be described locally (in the analytic topology) as a relatively smooth
analytic fibration.

Secondly, it is possible to prove a version of Theorem 2.1 concerning the
algebraicity, not of a single leaf, but of all leaves of the involutive bundle F
simultaneously.

Consider indeed a smooth variety X over a field K of characteristic 0, equipped
with an involutive subbundle F of TX. We may introduce the formal graph of the foliation
(X, F), namely the smooth formal subscheme of the completion of X×K X along the
diagonal ∆X, admitting ∆X as subscheme of definition, such that:

(i) Gfor(X, F) is a formal equivalence relation on X;
(ii) the normal bundle N∆XGfor(X, F) of Gfor(X, F) along ∆X coincides with the

subbundle F of N∆X(X×K X) ' TX.
When K = C, the formal graph Gfor(X, F) is the formal subscheme defined by a

germ of analytic submanifold Gan(X, F) of X(C)×X(C) along ∆X(C). Moreover, for any
P ∈ X(C), the intersection of Gan(X, F) with X(C) × {P} ' X(C) coincides with the
analytic germ of leaf through P of the analytic foliation on X(C) defined by F.

We shall say that the involutive bundle F is algebraically integrable when the Zariski
closure (1) of Gfor(X, F) in X×K X has the same dimension dim X + rk F as Gfor(X, F).
This is a geometric condition (i.e., invariant by extension of the base field K). When
K = C, this Zariski closure coincides with the one of Gan(X, F), and the algebraic
integrability of F is easily seen to imply the algebraicity of all the leaves of the analytic
foliation of X(C) defined by F − indeed, the converse application also holds (use Baire’s
theorem to prove that if all the leaves of this analytic foliation are algebraic, then they
form a bounded family; compare [ESB99], §2).

Theorem 2.2. — Let X be a smooth geometrically connected algebraic variety over a number

field K and F an involutive subbundle of the tangent bundle TX of X (defined over K). For some

sufficiently divisible integer N, let X (resp. F ) be a smooth model of X over S := Spec OK[1/N]
(resp. a sub-vector bundle of the relative tangent bundle TX /S over X such that F K coincides

with F).

Then the involutive bundle F is algebraically integrable if and only if the following two

conditions are satisfied:

i) For almost every non-zero prime ideal p of OK[1/N], the reduction modulo p of F is

stable by p-th power (where p-denotes the characteristic of Fp).

ii) There exist a complex manifold M satisfying the Liouville property, an embedding

σ0 : K ↪→ C, a holomorphic embedding i : Xσ0 (C) → M and a holomorphic map f :
M → Xσ0 (C) × Xσ0 (C) such that f ◦ i coincide with the diagonal embedding ∆Xσ0 (C) :

(1) Namely, the smallest closed subscheme of X×K X containing Gfor (X , F); one easily checks that it is reduced.
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Xσ0 (C) ↪→ Xσ0 (C) × Xσ0 (C) and f restricts to an isomorphism from the analytic germ of M
along i(Xσ0 (C) ) onto Gan(Xσ0 , Fσ0 ).

Roughly speaking, condition ii) means that the germ Gan(Xσ0 , Fσ0 ) of analytic
manifold along the diagonal in Xσ0 (C) × Xσ0 (C) “extends” to a submanifold of
Xσ0 (C) × Xσ0 (C) which satisfies the Liouville property. It holds for instance when the
holonomy groupoid of the holomorphic foliation on Xσ0 (C) defined by Fσ0 satisfies the
Liouville property.

The necessity of conditions i) and ii) follows again easily from the properties
of the p-curvature discussed above and from the fact that smooth connected complex
algebraic varieties satisfy the Liouville property, by considering the normalization of
the Zariski closure of Gfor(X, F). Their sufficiency will also be derived from Theorem
3.4 in Section 3.4.3.

2.3. Algebraic Lie algebras and restricted Lie algebras

2.3.1. Algebraic subgroups and Lie subalgebras closed under p-th powers

Let G be an algebraic group over a number field K.
For any sufficiently divisible integer N, there exists a model G of G, i.e., a

smooth quasi-projective group scheme over S := Spec OK[1/N] whose generic fiber GK

coincides with G (as K-algebraic group). The restriction to the zero-section of G of
the relative tangent bundle TG /S defines the Lie algebra Lie G of G : it is a finitely
generated projective module and a Lie algebra over OK[1/N], and the K-Lie algebra
(Lie G )K may be identified with Lie G. Moreover, for every non-zero prime ideal p
of OK[1/N] with residue field Fp of characteristic p, the Fp-Lie algebra (Lie G )Fp

is
canonically isomorphic to the Lie algebra of the smooth algebraic group G Fp

over
the finite field Fp, and is therefore endowed with a p-th power map, given by the
restriction of the p-th power map on global sections of TG Fp

to the left-invariant ones.
For instance, if G is the multiplicative group Gm , K, we may choose G := Gm , O K

as model of G over Spec OK. Let X denote the tautological coordinate on Gm, defined
by the inclusion morphism Gm ↪→ A1. The OK-Lie algebra Lie G is freely generated

by the invariant derivation D := X
∂

∂X
. The image Dp of D in Lie G Fp

defines a base

of Lie G Fp
, and the p-th power map on Lie G Fp

is the p-linear endomorphism which
maps DFp

to itself.
If G is an elliptic curve E over Q which admits good reduction over Z[1/N],

and if G is the elliptic curve E over Spec Z[1/N] which extends E, then the p-th
power map on Lie G Fp

= Lie E Fp
is the multiplication by the class in Fp of

ap(E) := p + 1− | E (Fp) | .
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This follows from the basic properties of the Hasse invariant of G Fp

(2).

Theorem 2.3. — For any Lie subalgebra h of Lie G (defined over K), the following two

conditions are equivalent:

i) For almost every non-zero prime ideal p of OK[1/N], the Fp-Lie subalgebra

(h ∩ Lie G )Fp
of Lie G Fp

is closed under p-th powers.

ii) There exists an algebraic subgroup H of G (defined over K) such that h = Lie H.

Proof. — To prove the implication i) ⇒ ii), we apply Theorem 2.1 to the situation
where X is G, P is the neutral element e of G(K), and F is the left-invariant subbundle
of TG whose fiber at e is the subspace h of Lie G. Since h is a Lie subalgebra of Lie G,
this subbundle is involutive. We may take G as model X of X = G, and define F as
the saturated subsheaf of TG /S such that F K = F. Condition i) in Theorem 2.1 then
follows from (indeed, is equivalent to) condition i) in Theorem 2.3. Moreover, condition
ii) in Theorem 2.1 is satisfied for any embedding σ0 : K ↪→ C; indeed, condition ii)′

is satisfied by the restriction to the subspace hσ0 of Lie Gσ0 of the exponential map
of the complex Lie group Gσ0 (C). Therefore Theorem 2.1 shows that, if condition i)
holds, then the leaf of F through e is algebraic; this algebraic leaf provides the required
algebraic subgroup H of G.

The implication ii) ⇒ i) follows from the existence of a smooth model H in G

of the subgroup H of G (possibly after increasing N). Then the Lie algebra h∩Lie G

is canonically isomorphic with Lie H , and its reduction modulo p gets identified with
the Fp-Lie subalgebra Lie H Fp

of Lie G Fp
, defined by the smooth algebraic subgroup

H Fp
of G Fp

, and is therefore stable under p-th powers. ¤

Observe that conditions i) and ii) in Theorem 2.3 are also equivalent to the
following one:

iii) The formal Lie subgroup exp h, with Lie algebra h, of the formal completion Ĝe of G

at the neutral element e extends to a formal Lie subgroup of the completion Ĝe over Spec OK[1/N′]
for some large enough integer N′.

Indeed, we clearly have ii) ⇒ iii) ⇒ i).
When G is an abelian variety, the implication iii) ⇒ i) is basically due to

Graftieaux (3).
Let us emphasize the arithmetic significance of Theorem 2.3. For instance,

applied to the algebraic group G := Gm , K × Gm , K over some number field K and

(2) For a “modern” proof, see for instance [KM85], (12.4.1.2) and (12.4.1.3), and [Kat73], (3.2.1).
(3) See [Gr01a] and [Gr01b]; actually, Graftieaux’s results hold under additional hypotheses − they involve

semistable Néron models and require the extension of exp h to exist over Spec O K − but, when these are satisfied, provide
quantitative statements.
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to the Lie subalgebra h of Lie G defined as the graph of the multiplication by some
scalar λ ∈ K in Lie Gm , K, it amounts to the following statement, which goes back to
Kronecker ([Kro80]) and is indeed a consequence of Čebotarev’s density theorem (see
also [CC85a], Section 4):

Corollary 2.4. — If λ is an element of a number field K such that, for almost every non-zero

prime ideal p of OK, its class in Fp belongs to the prime field Fp, then λ belongs to Q.

Proof. — The description of the p-th power map on Lie Gm , Fp
recalled above

shows that the reduction of h modulo p is stable under p-th power if and only if the
class of λ in Fp belongs to the prime field Fp. Besides, h is algebraic if and only if λ
belongs to Q, since one-dimensional connected algebraic subgroups of Gm , K × Gm , K

are defined by one equation of the form XaYb = 1, where (a , b) is a pair of coprime
integers. ¤

When K is Q and G is the product E × E′ of two elliptic curves E and E′

over Q, then Theorem 2.3 boils down to the following special case of Faltings isogeny
theorem ([Fal83], §5, Corollary 2; see also [Ser68], IV.2.3, for the case where j(E) ∈/ Z):

Corollary 2.5. — For any two elliptic curves E and E′ over Q, the following conditions are

equivalent:

1) E and E′ are Q-isogenous.

2) For almost every prime number p,

(2.1) ap(E) = ap(E′).

Proof. — Let h be any one-dimensional Q-vector subspace of Lie G = Lie E ⊕
Lie E′, distinct from Lie E⊕ {0} and {0} ⊕ Lie E′. Choose N sufficiently divisible, and
define G as the product of the two elliptic curves E and E ′ over Z[1/N] which
respectively extend E and E′. Then, for any prime p which does not divide N, the fact
that the p-th power map on Lie E Fp

(resp. on Lie E ′
Fp

) is given by the multiplication
by ap(E) (resp. by ap(E′)) shows that the reduction of h modulo p is stable under p-th
power if and only if (2.1) holds modulo p. Moreover, if h is algebraic, the algebraic
subgroup H of E × E′ such that h = Lie H is Q-isogenous both to E and E′. This
shows that the implication 2) ⇒ 1) is a straightforward consequence of Theorem 2.3.
The converse implication 1) ⇒ 2) is well known (4). ¤

In their paper [CC85b] − which indeed has been one the main motivations
of the present work − D. V. and G. V. Chudnovsky present a proof of a statement

(4) In fact, the previous construction (applied to the Lie algebra h of the graph of an isogeny from E to E′) shows
that condition 1) implies that (2.1) holds modulo p for almost every prime p; the equality (2.1) in Z then follows for p large
enough from the Hasse bound | ap(E) |6 2

√
p.
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similar to Corollary 2.5, based on an algebraicity criterion which is a special case
of our Theorem 3.4. However, their proof requires more delicate results of Honda
concerning the formal groups (over Z) of Néron models of elliptic curves over Q (cf.
[Hon68]), which are not needed in our approach.

2.3.2. Connected algebraic groups up to isogeny over number fields

It is convenient to reformulate Theorem 2.3 in terms of the category of algebraic

groups up to isogeny.

For any number field K, let Gr(K) be the category whose objects are the
connected algebraic groups over K and whose morphisms are the morphisms of
algebraic groups over K. We may consider the class of morphisms in Gr(K) formed by
the isogenies (5), and the localization Grisog(K) of Gr(K) by this class. It is easily checked
that the class of isogenies admits a calculus of right fractions, and that Grisog(K)
may also be described as the category with the same objects as Gr(K), in which
the morphisms from a connected algebraic K-group G1 to another one G2 are the
K-Lie algebra morphisms from Lie G1 to Lie G2, the graphs of which are algebraic Lie
subalgebras of G1 ×G2 (the composition of morphisms being the obvious one). When
G1 and G2 are commutative, this set of morphisms HomGrisog (K)(G1 , G2) is naturally
an abelian group (use the addition law on G2) and may be identified with the group
HomGr(K)(G1 , G2) ⊗Z Q (thus we recover the classical definition of “morphisms up to
isogeny” from G1 to G2). We shall denote by GrComisog(K) the full subcategory of
Grisog(K), the objects of which are the commutative connected algebraic groups over
K.

Let us introduce the category LieRestae(K) in which an object is a finite
dimensional K-Lie algebra, equipped, for almost every prime ideal p of K, of a
p-th power map on its reduction modulo p which makes it a restricted Lie algebra,
and morphisms are K-Lie algebra morphisms, almost all reductions of which are
morphisms of restricted Lie algebras. Finally let Frobae(K) be the full subcategory of
LieRestae(K) defined by the objects of this category with a commutative underlying
K-Lie algebra (6).

One defines a functor

(2.2) Lie : Grisog(K) −→ LieRestae(K),

by sending a connected commutative algebraic group G over K to its Lie algebra,
endowed with its natural p-th power maps on almost its reductions, and a morphism

(5) A morphism ϕ : G1 → G2 in Gr(K) is an isogeny if and only if it is étale, or equivalently, if and only if its
differential at the origin Lie ϕ : Lie G1 → Lie G2 is an isomorphism.

(6) In other words, Frobae(K) is the category of finite dimensional K-vector spaces, equipped, for almost every
prime ideal p of K, of a “Frobenius map”, i.e., of a p-linear endomorphism of its reduction modulo p; morphisms in
Frobae(K) are the K-linear maps, almost all reductions of which commute with the Frobenius maps. The category
Frobae(K) is clearly a Q-linear abelian category.
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of algebraic groups between two such groups to its differential at the origin. By
restriction, this functor defines a functor

(2.3) Lie : GrComisog(K) −→ Frobae(K).

Theorem 2.3 shows that any subobject of an object in the essential image of these functors

still belongs to this essential image. Moreover, applied to graphs of linear maps between Lie
algebras of algebraic groups over K, it leads to:

Corollary 2.6. — The functors (2.2) and (2.3) are fully faithful.

Finally, let us indicate that, restricted to abelian varieties and Jacobians, the
functor (2.3) is naturally isomorphic to functors having simple definitions in terms of
coherent cohomology.

Indeed, for any abelian variety A over K, the Lie algebra Lie A is canonically
isomorphic to the cohomology group H1(Â, O

Â
) of the dual abelian variety Â.

Moreover, if Â denotes a model of Â over a dense open subscheme of Spec OK,
then, for almost every prime ideal p of OK, the reduction modulo p of Lie A,

equipped with the p-th power map, may be identified with H1(ÂFp
, O

Â Fp

) equipped

with the p-linear map defined by the Frobenius morphism Frob : a 7→ a p on O
Â Fp

(see

[Mum70], Section 13, Corollary 3, and Section 15, Theorem 3).
In particular, if C is a smooth, projective, geometrically irreducible curve C

over K, the image of its Jacobian Jac(C) by the functor (2.3) may be identified with
H1(C, O C) equipped with the p-linear maps defined by the Frobenius morphisms
Frob : O CFp

7→ O CFp
of its reductions CFp

(use the canonical isomorphisms

Jac(C)̂ ' Jac(C) and H1( Jac(C), O Jac(C)) ' H1(C, O C) ).
More generally, for any effective divisor D on C, the image under the functor

(2.3) of the generalized Jacobian JacD(C), which parametrizes line bundles L of
degree 0 over C equipped with a trivialization of L|D, may be identified with
H1(C, O C(−D) ) equipped with the p-linear maps defined by the composition of
the Frobenius morphisms Frob : O C(−D)Fp

→ O C(−pD)Fp
and of the inclusions

O C(−pD)Fp
↪→ O C(−D)Fp

.

2.4. Principal G-bundles with flat connections

In this section, we freely use the basic definitions concerning principal G-bundles
and connections recalled in Appendix A.

2.4.1. The conjecture of Grothendieck-Katz

Recall that the algebraicity of leaves of the horizontal foliation attached to a flat
connection on a smooth principal bundle may be interpreted as a finiteness property
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of its monodromy. Indeed, if K is a subfield of C, G an algebraic group over K,
and X a principal G-bundle over a smooth connected algebraic variety B over K,
equipped with a flat connection H ⊂ TX/B, the following conditions are easily seen to
be equivalent:

1. There exists a finite étale morphism ν : B′ → B such that the pull-back by
ν of the G-bundle with connection (X, H) over B is isomorphic to the trivial
G-bundle with connection over B′.

2. After possibly replacing K by some finite extension, there exists a finite
algebraic subgroup H of G over K and a principal H-bundle X′ over B
(defined over K) such that, if ϕ : H→ G denotes the inclusion morphism, the
G-bundle ϕX′, equipped with the flat connection deduced from the (unique,
necessarily flat) connection on X′, is isomorphic to (X, H).

If moreover x0 is a point in X(K), these conditions are equivalent to the following one:

3. The leaf of H through x0 is algebraic.

Finally, when the base variety B is proper over K, or when the algebraic group G is
linear and the connection H has regular singular points, they are also equivalent to:

4. For some (or equivalently, for any) base point x0 ∈ X(C), with image
b0 := p(x0) ∈ B(C), the associated monodromy representation π1(B(C) , b0) →
G(C), defined by the complex analytic integrable connection HC on the
analytic principal G(C)-bundle X(C) over B(C), has a finite image.

When the above conditions hold, we shall say that the G-bundle with connection

(X, H) becomes trivial on some finite étale covering, or that the monodromy of (X, H) is algebraically

finite. This is clearly a geometric property (7). Moreover, when investigating criterions
for finite algebraic monodromy, we may restrict to the situation where the base B is
quasi-projective, or even is a curve. Indeed, standard techniques allow to prove the
following proposition, which we leave as an exercise:

Proposition 2.7. — Let us keep the notation above, and let U be a Zariski open dense

subscheme of B and XU its inverse image in X. The following conditions are equivalent:

1) The monodromy of the flat G-bundle with connection (X, H) is algebraically finite.

2) The monodromy of the flat G-bundle with connection (XU , HXU) over U is algebraically

finite.

3) For any smooth connected curve C over K, which is a subscheme of B, the monodromy of

the pull-back to C of (X, H) is algebraically finite.

(7) Namely, if K′ is an extension of K, equipped with an arbitrary embedding in C, the G-bundle with connection
(X, H), defined over K, has finite algebraic monodromy if and only if the GK′ -bundle with connection (XK′ , HK′ ),
deduced from (X, H) by the base change Spec K→ Spec K′, also has finite algebraic monodromy.
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The conjecture of Grothendieck-Katz asserts that, when K is a number field and

G is the linear group GLN , K (or equivalently any linear algebraic group over K), a flat

G-bundle with connection (X, H) becomes trivial on some finite étale covering iff, for almost every

non-zero prime ideal p of OK, of residue characteristic p, the p-curvature of the reduction modulo p
of (X, H) vanishes. (See [Kat72]; see also [Kat82] and [And99]. Actually, the conjecture
may be formulated over any field K of characteristic 0, but reduces to the case of
number fields by standard specialization techniques.) We will call generalized conjecture of

Grothendieck-Katz the same statement where G is an arbitrary algebraic group.
Thanks to the work of D. V. and G. V. Chudnovsky and André, the conjecture

of Grothendieck-Katz is known to hold when the differential Galois group of the flat
linear bundle (X, H) has a solvable neutral component, or equivalently, for flat G-
bundles, when G is a linear algebraic group over K whose neutral component G0 is
solvable (see [CC85a], Section 8, and [And89], Chapter VIII, Exercises 5) and 6),
when G = Gm and [And99], Section 3, when G = Ga and in general). In the next
section, we present a derivation of this result − indeed of the generalized conjecture
of Grothendieck-Katz for any algebraic group G such that G0 is solvable − as an
application of our algebraicity criterion Theorem 2.1 (8).

Let us finally observe that the interpretation of the algebraic finiteness of the
monodromy of a flat G-bundle in terms of the algebraicity of the leaves of its
horizontal foliation shows that the generalized conjecture of Grothendieck-Katz is a
special case of the conjecture F of Ekedahl and Shepherd-Barron (cf. Introduction and
[ESB99], Theorem 2.4). Together with Theorem 2.1, this interpretation also leads to
the following special case of the generalized conjecture of Grothendieck-Katz:

Corollary 2.8. — With the above notation, a flat G-bundle with connection (X, H) over

a smooth geometrically connected K-scheme B becomes trivial on some finite étale covering when the

following two conditions are satisfied:

i) For almost every non-zero prime ideal p of OK, of residue characteristic p, the p-curvature

of the reduction modulo p of (X, H) vanishes.

ii) There exists an imbedding σ0 : K ↪→ C such that the complex manifold Bσ0 (C) has a

universal covering which satisfies the Liouville property.

Observe that this last condition holds for instance when B is an algebraic group.

2.4.2. Flat principal bundles with solvable structural groups

The end of this section is devoted to the proof of the following statement:

(8) Besides technical differences in the proofs and the more general character of our theorem, it seems worthwhile
to include a self-contained derivation of the results of Chudnovsky-André, which are not so well documented in spite of
their importance.
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Theorem 2.9. — Let K be a number field, and G an algebraic group over K whose neutral

component G0 is solvable. For any principal G-bundle X over a smooth connected variety B over

K, equipped with a flat connection H, the following conditions are equivalent:

i) For almost every non-zero prime ideal p of OK, of residue characteristic p, the p-curvature

of the reduction modulo p of (X, H) vanishes.

ii) The G-bundle with connection (X, H) becomes trivial on some finite étale covering.

The special case of Theorem 2.9 where G is a linear algebraic group may be
rephrased as the equivalence of conditions i) and ii) when G is the group GLN and
when, for some embedding σ : K ↪→ C, the image of the monodromy of (Xσ , Hσ)
contains a solvable subgroup of finite index (observe that, according to [Kat70],
condition ii) implies that (X, H) has regular singular points, and that the Zariski
closure of a solvable group is solvable; compare [Kat82], Proposition 5.2).

Observe that, as a solvable covering of a smooth complex algebraic curve may
fail to satisfy the Liouville property (see for instance [Anc90] or [Gri99]), Theorem 2.9
is not an immediate consequence of Theorem 2.1. Besides the above Corollary 2.8 of
Theorem 2.1 and the constructions of principal bundles with connections recalled in
Appendix A.2, its proof will be based on the following analytic result, of independent
interest.

Proposition 2.10. — Let C be a smooth connected complex algebraic curve, and, for any

positive integer k, let SkC be its k-th symmetric power. Let us denote by g the genus of the smooth

projective completion C of C, by δ the cardinality of C \ C, and let (9) g′ := g + max(0 , δ − 1).
Then, for any k > max(2 , g′), “the” universal covering S̃kC of the manifold of complex points of

SkC satisfies the Liouville property.

Proof of Proposition 2.10. — Let D be an effective divisor on C, the support of
which is C \ C, and let JacD(C) be the generalized Jacobian of C associated to the
“modulus” D (see for instance [Ser59], Chapter V). It is the commutative connected
algebraic group over C which classifies line bundles L of degree 0 over C equipped
with an isomorphism ϕ : L|D → O |D. We have a canonical isomorphism

Lie JacD(C) ' H1(C, O (−D) ).

In particular

d = dim JacD(C) = rk H1(C, O (−D) )

= g + max(0, degD− 1).

(9) This number g′ is nothing else than the arithmetic genus of the curve obtained from C by identifying the points
in C \ C.



ALGEBRAIC LEAVES OF ALGEBRAIC FOLIATIONS OVER NUMBER FIELDS 179

Moreover, for any point P0 ∈ C(C), we may consider the “jacobian embedding”

jP0 : C −→ JacD(C),

which maps any point P ∈ C(C) to the class of the line bundle O C(P− P0) equipped
with the tautological isomorphism O C(P − P0)|D ' O |D. The embedding jP0 induces
an isomorphism of homology groups:

jP0 , ∗ : H1(C(C) , Z) −→ H1(JacD(C)(C) , Z) ,

which does not depend on P0 (cf. [Ser59], V.19, Proposition 11).
The morphism

Cd −→ JacD(C)

(x1, ..., xd) 7−→
∑d

i=1 jP0 (xi)

is invariant under the permutation action of the symmetric group Sd on Cd, and
therefore factorizes through a morphism

j
d

P0
: SdC −→ JacD(C),

which is birational (cf. [Ser59], V.9, Théorème 1).
Besides, the morphism

π1(C(C) , P0)d ' π1(Cd(C) , (P0, ..., P0) ) −→ π1(SdC(C) , [ (P0, ..., P0) ] )

induced by the quotient map Cd(C) → Sd(C) is surjective, since the latter is totally
ramified at (P0, ..., P0). Therefore, if

iP0 : C −→ SdC

denotes the morphism defined by

iP0 (x) := [ (x , P0, ..., P0) ] ,

the induced morphism between fundamental groups

iP0 , ∗ : π1(C(C) , P0) −→ π1(SdC(C) , [ (P0, ..., P0) ] )

is surjective.
Let us now assume that d > 2. Then, according to the preceding discussion, the

fundamental group π1(SdC(C) , [ (P0, ..., P0)]) is commutative, and, since j
d

P0
◦ iP0 = jP0 , we
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get a commutative diagram,

H1(C(C) , Z)
iP0∗−−→ H1(SdC(C) , Z) ' π1(SdC(C) , [ (P0, ..., P0) ] )
jP0∗

↘
y j

d

P0∗

H1(JacD(C)(C) , Z) ' π1(JacD(C)(C) , 0) ,

in which all arrows are isomorphisms.
Moreover, the exponential

expJacD(C)(C) : Lie JacD(C) −→ JacD(C)(C)

of the connected commutative complex Lie group JacD(C)(C) is a universal covering.
Since

j
d

P0∗ : π1(SdC(C) , [ (P0, ..., P0) ] ) −→ π1(JacD(C)(C) , 0)

is an isomorphism, if we form the following cartesian diagram of analytic spaces:

S̃dC
j̃
d

P0−−→ Lie JacD(C)

ν

y y exp
JacD(C)(C)

SdC(C)
j
d

P0−−→ JacD(C)(C)

− in other words, S̃dC is the complex manifold defined as the fibered product of
SdC(C) and Lie JacD(C) over JacD(C)(C) − then

ν : S̃dC −→ SdC(C)

is also a universal covering. Let U (resp. V) be a Zariski open dense subvariety of
SdC (resp. of JacD(C) ) such that j

d

P0
induces an isomorphism from U to V. Then

j̃
d

P0
maps ν−1(U(C) ) biholomorphically onto exp−1

JacD(C)(C)
(V(C) ), and S̃dC \ ν−1(U(C) )

(resp. Lie JacD(C) \ exp−1
JacD(C)(C)

(V(C) ) ) is a closed strict analytic − hence pluripolar

and Lebesgue null − subset of S̃dC (resp. of Lie JacD(C)). Since the complex vector
space Lie JacD(C) satisfies the Liouville property, this shows that the complex manifolds

exp−1
JacD(C)(C)

(V(C) ), ν−1(U(C) ), and therefore S̃dC satisfy it also.

When C |= C, any integer k > max(2, g′) may be realized as the integer d for a
suitable choice of the divisor D; therefore, Proposition 2.10 is established in that case.

When C = C, we may apply the previous case to the curve C′ := C \ {Q0},
where Q0 is any point in C(C). Observe that C′ has the same invariants g and g′ as C.
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Therefore, if k > max(2, g′), the universal covering S̃dC′ satisfies the Liouville property,
and so does the image of a lifting S̃dC′ → S̃dC of the inclusion map SdC′ ↪→ SdC to
universal coverings. Since this image is the inverse image in S̃dC of the Zariski open
subvariety SdC′ ⊂ SdC, hence open in SdC with Lebesgue null complement, this shows
that S̃dC also satisfies the Liouville property. ¤

Proof of Theorem 2.9. — The implication ii) ⇒ i) holds for any structural group G:
this is a straightforward consequence of the functoriality properties of the p-curvatures
with respect to inverse images.

To prove the direct implication i) ⇒ ii), observe that, if ϕ : G → G′ is a
morphism of algebraic K-groups with kernel G′′, and if the generalized conjecture
of Grothendieck-Katz holds for G′-bundles, then, to prove it for G-bundles, we only
need to prove it for G′′-bundles. This shows that, to prove Theorem 2.9, we may
assume that G is connected (consider the morphism G → G/G0), and then that G is
commutative (use induction on the length of a composition series with commutative
subquotients of G0).

Moreover, according to Proposition 2.7, we may assume that the base B is a
curve. After possibly replacing K by a finite extension K′ and BK′ by a component,
we may also suppose that there exists some rational point x0 ∈ X(K).

Finally, to prove the implication i) ⇒ ii) in Theorem 2.9, we may − and will −
assume that the structural group G is connected and commutative, that the base of the bundle X
is a smooth geometrically connected curve C over K, and that there exists rational points x0 ∈ X(K)
and b0 := p(x0) ∈ C(K).

Consider now, for any positive integer k, the principal Gk-bundle

pk : Xk −→ Ck

(x1, ..., xk) 7−→ (p(x1), ..., p(xk) ) ,

and let us use the constructions of principal bundles and connections recalled in
Appendix A.2. Since the “sum morphism”

Σk : Gk −→ G

(g1, ..., gk) 7−→ g1 + ... + gk

is a morphism of K-algebraic groups, we may form the principal G-bundle Σk
(Xk) over

Ck. The permutation action of the symmetric group Sk on Xk descends to a left-action
of Sk on Σk

(Xk), which commutes with the right-action of G. Moreover, if Ck also is
equipped with the permutation action of Sk, the structural morphism

Σk

(pk) : Σk

(Xk) −→ Ck

is Sk-equivariant and − locally for the étale topology − admits Sk-invariant sections
(constructed from local − in the étale topology − sections of p : X → C). Therefore,
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by quotienting through Sk, we get a principal G-bundle

pk : Xk := Sk \ Σk

(Xk) −→ SkC := Sk \ Ck.

The subbundle H¢k of the tangent bundle TXk ' T¢k

X is a connection on the

principal Gk-bundle pk : Xk → Ck. The associated connection Σk
H¢k on Σk

(Xk) is Sk-
invariant, and therefore descends to a connection Hk on Xk. Moreover, the connection
H¢k, and consequently the connections Σk

H¢k and Hk, are flat, and almost all their
reductions modulo a prime ideal p of OK have vanishing p-curvatures.

According to Corollary 2.8 and Proposition 2.10, if k is large enough, then the
G-bundle with connection (Xk , Hk) becomes trivial on some finite étale covering. Since
the G-bundle with connection (X, H) over C is isomorphic to the inverse image of
(Xk , Hk) by the embedding

ib0 : C −→ SkC

t 7−→ [ (t , b0, ..., b0) ] ,

this proves that (X, H) also becomes trivial on some finite étale covering. ¤

3. Algebraization of formal germs of subvarieties in algebraic varieties over
number fields

3.1. Size of smooth formal subschemes

3.1.1. Local theory

Notation and definitions. — Let k be a field equipped with a complete non-
archimedean absolute value | | : k→ R+ and let O := {t ∈ k | |t| 6 1} be its valuation
ring.

If g :=
∑

I∈Nd aIXI is a formal power series in k[ [X1, ..., Xd] ] and if r ∈ R∗+, we
define

‖g‖r := sup
I
|aI|r|I| ∈ R+ ∪ {+∞}.

The “norm” ‖g‖r is finite if and only if the series g is convergent and bounded on the

open d-dimensional ball of radius r in k
d
.

The group Aut Âd

k of automorphisms of Âd

k, the formal completion at the
origin of the d-dimensional affine space over k, may be identified with the space of
d-tuples f = ( fi)16i6d of formal series fi ∈ k[ [x1, ..., xd] ] such that f (0) = 0 and

D f (0) :=

(
∂ fi

∂xj

(0)

)
16i , j6d

belongs to GLn(k). We may introduce its following subgroups:
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• the subgroup Gfor formed by the formal automorphisms f such that Df (0) belongs
to GLn(O );
• the subgroup Gω formed by the elements f := ( fi)16i6d of Gfor such that the series

fi have positive radii of convergence;
• for any r ∈ R∗+, the subgroup Gω(r) of Gω formed by the elements f := ( fi)16i6d of

Gfor such that the series ( fi)16i6d satisfy the bounds ‖ fi‖r 6 r. This group may be
seen as the group of analytic automorphisms, preserving the origin, of the open
d-dimensional ball of radius r. Moreover,

r′ > r > 0⇒ Gω(r′) ⊂ Gω(r) and
⋃
r>0

Gω(r) = Gω.

Size of a smooth formal subscheme in an affine space. — Let V̂ be a formal subscheme
of Âd

k. For any ϕ in Aut Âd

k, we may consider its inverse image ϕ∗(V̂), which is again a

formal subscheme of Âd

k. Moreover, the following conditions are equivalent:

1. V̂ is a smooth formal scheme of dimension v.

2. There exists ϕ in Aut Âd

k such that ϕ∗(V̂) is the formal subscheme Âv

k × {0}
of Âd

k.

3. There exists ϕ in Gfor such that ϕ∗(V̂) is the formal subscheme Âv

k×{0} of Âd

k.
Similarly, the following two conditions are equivalent:

1. V̂ is the formal scheme attached to some germ at 0 of smooth analytic
subspace of dimension v of the d-dimensional affine space over k.

2. There exists ϕ in Gω such that ϕ∗(V̂) is the formal subscheme Âv

k×{0} of Âd

k.

When they are satisfied, we shall say that the formal germ V̂ is analytic and smooth.

These observations lead to define the size of a smooth formal subscheme V̂ of
dimension v of Âd

k as the supremum R(V̂) in [0, 1] of the real numbers r ∈]0, 1]

for which there exists ϕ in Gω(r) such that ϕ∗(V̂) is the formal subscheme Âv

k × {0}
of Âd

k. It is positive if and only if V̂ is analytic. Moreover, it satisfies the following
invariance properties, the proof of which is a simple exercise:

Lemma 3.1. — Let V̂ be a smooth formal subscheme of Âd

k.

1) For any f ∈ Aut Âd

O
:= Gω(1), the sizes of V̂ and f ∗(V̂) coincide.

2) For any integer d′ > d, the sizes of the formal subschemes V̂ in Âd

k and V̂× {0}d′−d in

Âd′

k coincide.

Size of a smooth formal subscheme of a general k-scheme. — More generally, if X

is an O -scheme equipped with a section P ∈ X (O ) and if V̂ is a smooth formal
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subscheme of the formal completion X̂P of X := X k at P := P k, then the size RX (V̂) of

V̂ with respect to the model X of X may be defined as the size of i(V̂), where i : U ↪→ Ad
O

is an embedding of some open neighbourhood U in X of the section P into an
affine space of large enough dimension d, which moreover maps P to the origin
0 ∈ Ad

O (O ). Lemma 3.1 shows that this definition is independent of the choices of U,
d, and i, and extends the previous one.

For instance, if V is a subscheme of X containing the section P such that
the structural morphism V → Spec O is smooth along P and if V̂ is the formal
completion at Pk of V k, then RX (V̂) = 1. Similarly, when X is smooth, local étale
coordinates may be used to evaluate the size of a smooth formal subscheme of X, as
shown by the following straightforward consequence of Lemma 3.1:

Lemma 3.2. — With the notation above, if X is smooth along P and if (x1, ..., xd) are

regular functions on some open neighbourhood Ω of the image of P such that

x := (x1, ..., xd) : Ω→ Ad

O

is étale and maps P to 0 ∈ Ad
O (O ), then for any smooth formal subscheme V̂ of X̂P, the

size RX (V̂) coincides with the size of the image x̂(V̂) of V̂ in Âd

k by the formal isomorphism

x̂ : X̂P → Âd

k defined by x.

Size and norms of evaluation maps. — Let us keep the notation of the preceding
paragraphs. The tangent space TPV̂ of V̂ at P and its dual ŤPV̂ are endowed with
natural O -structures, dual of each other: the O -structure on ŤPV may be defined by
the O -submodule image of the composite map

P
∗Ω1

X /R → (P ∗Ω1
X /R)k ' Ω1

X/k , P → ŤPV̂;

equivalently, the differential of the embedding ik : Uk ↪→ Ad

k defines an injective map

Dik : TPV̂ ↪→ T0Ad

k ' kd ,

which maps the O -integral elements of TPV̂ onto O d ∩ ik(TPV̂). For any i ∈ N, we

shall denote by ‖ ‖
SiŤPV̂

the norm on SiŤPV̂ associated to i-th symmetric power of this

O -structure.
In the sequel, sizes of smooth formal subschemes will be used to bound norms

of evaluation maps, by means of the following lemma which directly follows from the
preceding definitions.
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Lemma 3.3. — Let us keep the above notation, and let Ω be an open subscheme of X

containing the section P . For any non-negative integer i and any regular function s on Ω such that

s
K|V̂ vanishes at order i− 1 at P, the jet j is of order i of s on V̂ − seen as an element of SiŤPV
− satisfies the following bound:

‖j is‖
SiŤPV̂

6 RX (V̂)−i.

3.1.2. Global theory

Let K be a number field and OK its ring of integers. If X is an OK-scheme

equipped with an integral point P ∈X (OK) and if V̂ is a smooth formal subscheme

of the formal completion X̂PK of X := XK at P := P K, we may apply the previous
constructions at every finite place p ∈ Vf (K). Namely, if p is any non-zero prime
ideal of OK, we may consider the p-adic completion Kp (resp. Op) of K (resp. of OK),
which is equipped with the p-adic absolute value | |p, and therefore define the size

RX , p(V̂) := RX Op
(V̂) by means of the previous construction with k = Kp and | | = | |p.

Finally, if X is a scheme over K, say quasi-projective, equipped with a rational
point P, we may find an OK-scheme X which is a model of X such that P extends

to an integral point P in X (OK), and, for any smooth formal subscheme V̂ of the

formal completion X̂P, we may consider the family (RX , p(V̂) )p∈Vf (K) in [0, 1]Vf (K). If

X ′ is another such model of X, then RX , p(V̂) and RX ′, p(V̂) coincide for almost

every p in Vf (K); moreover, for every p in Vf (K), RX , p(V̂) is positive if and only if

V̂Kp
is analytic, and therefore if and only if RX ′, p(V̂) is positive.
By replacing X by an affine open neighbourhood of P, these definitions extend

to the situation where X is an arbitrary K-scheme of finite type.

I would like to end this section with a word of caution: when V̂ is the graph
in Âd

K of some formal series f ∈ K[ [X1, ..., Xd−1] ] vanishing at 0, the sizes of V̂ are
in general strictly smaller than the respective p-adic radii of convergence (consider for
instance log(1 + X) ∈ Q[ [X] ]).

3.2. Main Theorem

Theorem 3.4. — Let X be an algebraic variety over a number field K, P a point in X(K),
and V̂ a smooth formal subscheme (over K) of the completion X̂P of X at P.

Let us denote (Rp)p∈Vf (K) the family of sizes of V̂ with respect to some integral model of X
over OK, and suppose that the following conditions are satisfied:
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i) For any p ∈ Vf (K), Rp is positive and

(3.1)
∑

p∈Vf (K)

log R−1
p <∞.

ii) For any imbedding σ : K ↪→ C, the smooth formal subscheme V̂σ of X̂σ , Pσ is the formal

subscheme associated to some germ Van
σ of analytic submanifold of Xσ(C) at Pσ.

iii) There exists an embedding σ0 : K ↪→ C, a complex manifold M satisfying the Liouville

property, a point O of M, and a holomorphic map f : M → Xσ0 (C), which sends O to Pσ0 and

maps the germ of M at O biholomorphically onto the germ Van
σ0

.

Then there exists an algebraic subvariety Y of X of the same dimension as V̂ such that

P ∈ Y(K) and V̂ ⊂ ŶP (equivalently, V̂ is a branch of Y at P).

This algebraization statement is in the same spirit as results of D. V. and
G. V. Chudnovsky ([CC85a], [CC85b]), and André ([And89], Chapter VIII, and
[And99]). However, these authors prove algebraicity of functions only. Moreover, in loc.

cit., the p-adic conditions which play the role of condition i) above take a stronger
or more complicated form, and condition iii) is replaced by conditions involving
uniformization by large enough polydisks or by an affine space, possibly satisfying
growth conditions.

Observe that condition i) in Theorem 3.4 does not depend on the choice of the
model used to define (Rp)p∈Vf (K), and may be rephrased as∏

p∈Vf (K)

Rp > 0.

Similar conditions on radii of convergence arise naturally in the theory of G-functions
and are called Bombieri conditions (see [Bom81] and [DGS94]).

Also observe that the condition on the germ of analytic manifold Van
σ0

in the
complex algebraic variety Xσ0 expressed by iii) is local in the Zariski topology of Xσ0 .
Namely, if U is any Zariski open neighbourhood of Pσ0 in Xσ0 , this condition holds if
and only if the analogous condition where U is substituted to Xσ0 holds. This follows
from the simple facts concerning the Liouville property recalled in 2.1.2.

Finally, the conclusion of Theorem 3.4 is equivalent to the existence of a smooth
algebraic variety Y′ over K, of a point P′ ∈ Y′(K) and of a morphism of K-varieties
ν : Y′ → X which sends P′ to P and induces a formal isomorphism from Ŷ′P′

onto V̂ (consider the normalization of Y and use the compatibility of normalization
and completion). This shows that conditions i), ii), and iii) in Theorem 3.4 are not
only sufficient, but also necessary for the validity of its conclusion. Actually, when this
conclusion holds, almost all the sizes Rp are equal to 1, and M and f may be chosen
algebraic.
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3.3. A geometric analogue

After the submission of the first version of this paper, the author realized that a
greatly simplified version of the arguments used to establish the arithmetic algebraicity
criterion in Theorem 3.4 leads to the following geometric counterpart:

Theorem 3.5. — Let X be a quasiprojective variety over a field k, let V0 be a smooth

connected projective subvariety of X, of dimension > 1, and let V̂ be a smooth formal subscheme of

dimension d of the formal completion X̂V0 of X along V0, admitting V0 as scheme of definition.

If the normal bundle NV0V̂ of V0 in V̂ is big (e.g., if it is ample), then V̂ is algebraic, namely

there exists a closed algebraic subvariety Y of dimension d in X, such that V0 ⊂ Y and V̂ ⊂ ŶV0

(equivalently, V̂ is a branch of Y along V0).

This statement immediately implies the following function field version of
Theorem 3.4:

Theorem 3.6. — Let C be a smooth, projective, geometrically connected curve over a field k,

and let K := k(C) be its field of rational functions. Let X be a quasiprojective algebraic variety over

K, P a point in X(K), and V̂ a smooth formal subscheme (over K) of the completion X̂P of X
at P.

Let us consider a model f : X → C of X over C such that X is quasiprojective over k

and P extends to a section P of f over C, and suppose that the following conditions are satisfied:

i) The smooth formal subscheme of X̂P extends to a smooth formal subscheme V̂ of the

completion of X along P .

ii) The normal bundle NP V̂ of V̂ along P is ample.

Then V̂ is a branch of some algebraic subvariety of X containing P.

In the arithmetic Theorem 3.4, conditions i) and ii) may be seen as smoothness
conditions, analogous to condition i) in Theorem 3.6, while the Liouville condition iii)
entails a strong form of arithmetic positivity for the normal bundle of P in V̂.

Apparently, Theorem 3.5 does not appear explicitly in the published literature,
in spite of the simplicity of its proof and the striking applications it admits. It has
also been recently noticed by Bogomolov and McQuillan, who use it in their study of
rational curves along algebraic foliations, to simplify and extend the work of Miyaoka
on algebraic foliations already alluded to above (cf. [BMQ01] and [Miy87]).

Actually, Theorem 3.5 is a simple consequence of some results in [Har68], used
by Hartshorne to prove that, if Y is a complete l.c.i. subvariety of a smooth variety X over

a field k, and if the normal bundle NYX of Y in X is ample, then Y is G2 in X (in other
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words, the field k(X̂Y) of meromorphic (10) functions on the formal completion X̂Y of
X along Y is a finite degree extension of the field k(X) of rational functions on X; see
also [Hir68] and [HM68] for related results).

A key point in the derivation of Hartshorne’s G2 Theorem is the following fact:

Theorem 3.7 ([Har68], Theorem 6.7). — Let be a smooth and proper formal scheme of

dimension d over a field k and let V0 be a subscheme of definition of V̂. Assume that V0 is connected,

of dimension > 1, and locally a complete intersection in V̂. If the normal bundle NV0V̂ of V0 in

V̂ is ample, then the transcendence degree of the field K(V̂) of meromorphic functions on V̂ is at

most d.

This statement implies the following variant of Theorem 3.5:

Corollary 3.8. — Let X be a scheme of finite type over a field k, let V0 be a subscheme

of X, proper over k, connected and of dimension > 1, and let V̂ be a smooth formal subscheme of

dimension d of the formal completion X̂V0 of X along V0, admitting V0 as scheme of definition. If

V0 is locally a complete intersection and if the normal bundle NV0V̂ of V0 in V̂ is ample, then V̂
is algebraic.

Indeed, we may consider the Zariski closure Y of V̂ in X, namely the smallest
closed subscheme of X containing V̂. It is an integral subscheme of X such that
V0 ⊂ Y and V̂ ⊂ ŶV0. Moreover, the field K(Y) of rational functions on Y may be

identified with a subfield of K(V̂), and therefore Hartshorne’s Theorem 3.7 shows that
the dimensions of V̂ and Y coincide.

The proof of Theorem 3.7 relies on the following estimate, where L denotes a
line bundle over V̂ and D an integer which goes to +∞:

(3.2) rk H0(V̂, L⊗D) = O(Ddim V̂)

(see [Har68], §6). Such an upper bound also directly implies Theorem 3.5. Indeed, to
prove it, we may assume that X is projective and apply (3.2) with L an ample line
bundle on X. If Y denotes the Zariski closure of V̂ in X, then H0(V̂, L⊗D) injects into
H0(Y, L⊗D) and the characterization of the dimension of Y as the degree of its Hilbert
polynomial shows that dim Y is not greater than (hence equal to) dim V̂.

To prove (3.2) and Theorem 3.5, one filters H0(V̂, L⊗D) by the order of vanishing
along V0; this leads to the estimate, where N := NV0V̂:

rk H0(V̂, L⊗D) 6
∑
i>0

rk H0(V0 , SiŇ⊗ L⊗D).

(10) Also called formal-rational; cf. [HM68].
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Finally, rk H0(V0 , SiŇ⊗ L⊗D) grows at most like (i + D)dim V0+rk F−1, and vanishes when

i/D is large enough since NV0V̂ is big. Since

dim V̂ = dim V0 + rk F,

this entails (3.2) (see also [Har68] §6, [BMQ01], 2.1.1, and [CB01], 4.7).

3.4. Vanishing of p-curvatures and p-adic sizes of formal leaves

In this section, we derive the algebraicity criterion for leaves of foliations stated
in Theorem 2.1 from the algebraicity criterion for formal germs in Theorem 3.4. To
achieve this, we apply the latter to the formal germ V̂ of leaf through P defined by
the involutive bundle F (see 3.4.1, infra). This formal germ V̂ is smooth; moreover, for
any p ∈ Vf (K), the formal subscheme V̂Kp

of X̂P , Kp
is Kp-analytic − in other words,

its size Rp with respect to any model is positive − and for any embedding σ : K ↪→ C,

the formal subscheme V̂σ of X̂σ , Pσ is C-analytic. The Liouville condition (Theorem
3.4, iii)) holds by hypothesis, and the Bombieri condition (3.1) will follow from the
assumption of p-integrability for almost every reduction. Indeed, it yields the following
upper bound for almost every p, of residual characteristic p:

(3.3) log R−1
p 6 3[Kp : Qp]

log p

p2
.

That type of estimate is well known for the radii of convergence of solutions of linear
differential systems (see for instance [DGS94], pp. 95-96); the foliation case we consider
here is similar (see Proposition 3.9, infra).

Observe that, with no integrability condition, the sizes Rp are “much smaller”:
one gets that, for almost every p,

(3.4) log R−1
p 6 [Kp : Qp]

log p

p− 1

(see Proposition 3.9, infra, and its proof), and basically this bound is optimal, as
examplified, for instance, by the graph of the usual exponential. These estimates
also show that, in Theorem 2.1 and its consequences Theorems 2.3 and 2.9, the
p-integrability conditions for almost every p could be weakened to the p-integrability
for all p ∈ Vf (K) not dividing the elements in a set S of rational primes which has
“density zero” in the sense that∑

p∈S

log p

p
<∞.
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3.4.1. Formal flows and formal leaves

With the notation of Theorem 2.1, let us choose regular functions x1, ..., xd on
some open Zariski neighbourhood U of P in X such that (x1, ..., xd) : U→ Ad

K is étale
and sends P to 0. Then the coherent sheaf of regular sections of TX is free on U with
basis (∂ /∂x1, ..., ∂ /∂xn). Moreover, after possibly permuting the xi’s and shrinking U,
we may assume that, for any integer i such that 1 6 i 6 f := rk F, there exists a unique
regular section vi of F over U which may be written

vi =
∂

∂xi

+
d∑

k=f+1

a
i

k

∂

∂xk

,

for some a
i

k ∈ O (U). Then (v1, ..., v f ) is a basis of the sheaf of regular sections of F
over U, and the involutivity of F shows that the Lie brackets [v i , v j] vanish over U.
The p-integrability hypothesis on F also shows that, for almost every p ∈ Vf (K), the
reductions v

i

Fp
of these sections have vanishing p-th powers, if p denotes, as usual, the

characteristic of Fp.
Consider now the formal flow

ψ : Âf

K×̂X̂P → X̂P

attached to the commuting vector fields v1, ..., v f on X̂P. Let us briefly recall how it is
defined.

By means of the local coordinates x1, ..., xd, we may identify X̂P with the formal
spectrum of K[ [x1, ..., xd] ], the vector fields v1, ..., v f with elements of K[ [x1, ..., xd] ]d,
and ψ with an element of K[ [t1, ..., tf , x1, ..., xd] ]d. Then ψ is characterized by the
following two properties: firstly,

(3.5) ψ(0, ..., 0, x1, ..., xd) = X :=


x1

...
xd

 ;

secondly, for any i ∈ {1, ..., f },

(3.6)
∂ψ
∂ ti

(t1, ..., tf , x1, ..., xd) = vi(ψ(t1, ..., tf , x1, ..., xd) ).

For any i ∈ {1, ..., f}, let us denote by Di the derivation defined by vi on
K[ [x1, ..., xd] ] and on K[ [x1, ..., xd] ]d (acting component-wise). Then the expansion of
ψ in powers of t1, ..., td is given by the following “Taylor formula”, which could have



ALGEBRAIC LEAVES OF ALGEBRAIC FOLIATIONS OVER NUMBER FIELDS 191

been used as definition of ψ:

(3.7) ψ(t1, ..., tf , x1, ..., xd) = e

∑f

i=1 tiDiX :=
∑
I∈Nf

tI

I!
DIX,

where, for any I = (i1, ..., if ) ∈ Nf, DI := D
i1
1 ... D

if
f , tI := t

i1
1 ... t

if
f , and I! := i1! ... if!.

Observe that the formal series ψ indeed defines a “formal action” of Ĝ f

a , K ' Âf

K

on X̂P ' Specf K[ [x1, ..., xd] ], since it satisfies ψ(0, x) = X and ψ(t + t′ , x) = ψ(t′ , ψ(t , x) ).

The formal leaf V̂ of F through P is the formal subscheme of X̂P defined as

the image of the formal embedding ψ(: , P) : Âf

K → X̂P. Expressed in terms of the
local coordinates (x1, ..., xd) on X, this formal embedding is given by the formal series
ψ(t1, ..., tf , 0, ..., 0) in K[ [t1, ..., tf ] ]d. Consider the formal isomorphism

ϕ : Âd

K → X̂P ,

which, in terms of the local coordinates (x1, ..., xd), is given by the series

(3.8) ϕ(t1, ..., td) := ψ(t1, ..., tf , 0, ..., 0) + t(0, ... , 0, tf +1 , ... , td)

in K[ [t1, ..., td] ]d. By construction, the restriction of ϕ to Âf

K × {0} is a formal

isomorphism onto V̂, and its differential defines an isomorphism between the subbundle
of the formal tangent bundle of Âd

K generated by (∂/∂ t1, ..., ∂/∂ tf ) and the subbundle

of the formal tangent bundle of X̂P defined by F. In particular, V̂ is the unique smooth

formal subscheme of dimension f of X̂P which is a formal integral variety of F.
Moreover, since the series defining v1, ..., vf have positive p-adic and archimedean

radii of convergence, the same holds for the series (3.7) defining ψ (this is well known
in the archimedean case, and in the p-adic one, follows for instance from Proposition
3.9, 1), infra), hence for ϕ. This shows that, for any p in Vf (K) (resp. any embedding

σ : K ↪→ C), the formal germ V̂Kp
(resp. V̂σ) is analytic.

Finally, the leaf of F through P is algebraic if and only if the formal leaf V̂ is
a branch of a subvariety of X containing P. Thanks to the algebraicity criterion in
Theorem 3.4, to complete the proof of Theorem 2.1, it is enough to show that almost
all the p-adic sizes of V̂ satisfy the estimates (3.3). This will follow from Proposition
3.9 in the next subsection, together with Lemma 3.2.

3.4.2. p-adic estimates on formal flows

Let p be any element in Vf (K), p the characteristic of Fp, and $ a uniformizing
element in O p.
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Proposition 3.9. — Let v1, ..., v f be commuting formal vector fields in O p[ [x1, ..., xd] ]d, let

D1, ..., Df be the corresponding derivations in
⊕d

i=1 O p[ [x1, ..., xd] ]∂/∂xi, and let

ψ(t1, ..., tf , x1, ..., xd) ∈ Kp[ [t1, ..., tf , x1, ..., xd] ]d

be their formal flow, defined by the properties (3.5) and (3.6), or by the expansion (3.7).

1) The series ψ(t1, ..., tf , x1, ..., xd) converges on the polydisk defined by

|tj|p < |p|
1

p−1
p = p−[Kp:Qp]/(p−1) , 1 6 j 6 f ,

and

|xk|p < 1 , 1 6 k 6 d.

2) Suppose moreover that the reductions modulo $ of the vector fields v1, ..., vf have vanishing

p-th powers, and that Kp is absolutely unramified. Then, for any I = (i1, ..., if ) in N f\{ (0, ..., 0) },

(3.9)

∣∣∣∣∣ 1I!DI(X)(0)

∣∣∣∣∣
p

6 |p|
−
∑f

j=1(
ij−S(ij )

p−1 −[
ij
p

] )

p

(3.10) 6 p

3[Kp :Qp]

p2 (|I|−1)
,

where S(ij) denotes the sum of the digits of the expansion of ij in the base p, and |I| :=
∑f

j=1 ij. In

particular, the element ϕ of Gfor defined by (3.8) belongs to Gω(r) for any positive r such that

r 6 p
−

3[Kp :Qp]

p2 ,

and the size Rp of the formal subscheme V̂ of Âd

Kp
defined as the image of the formal embedding

ψ(t1, ..., tf , 0, ..., 0) : Âf

Kp
−→ Âd

Kp

satisfies

log R−1
p 6 3[Kp : Qp]

log p

p2
.

Proof. — To prove 1), observe that, for any I = (i1, ..., if ) ∈ N f,

DI(X) ∈ O p[ [x1, ..., xd] ]d.

Assertion 1) then follows from the fact that, for any integer i, the p-adic valuation of
i! is at most i/(p− 1).
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To prove 2), observe that, when the reductions modulo $ of v1, ..., vf have vanish-
ing p-th powers, then the differential operators Dp

i , i ∈ {1, ..., f }, map O p[ [x1, ..., xd] ]d

to $Op[ [x1, ..., xd] ]d. This shows that, for any I = (i1, ..., if) ∈ Nf,

DI(X) ∈ $
∑f

j=1[
ij
p

]
Op[ [x1, ..., xd] ]d.

Using that the p-adic valuation of ij! is (ij − S(ij) )/(p − 1), we get (3.9). The estimate
(3.10) and the other assertions immediately follow. ¤

3.4.3. Proof of Theorem 2.2

Let us briefly explain how to derive the sufficiency of conditions i) and ii) in
Theorem 2.2 from Theorem 3.4 and the above p-adic estimates on formal flows.

Clearly, we may replace the field K by an arbitrary finite extension and therefore
we may assume that X(K) is not empty. Let us choose some point P in X(K),
and consider the completion V̂ of Gfor(X, F) at (P, P). The formal schemes V̂ and
G for(X, F) have the same Zariski closure in X×K X. Therefore, we only need to check

that the formal germ V̂ in X ×K X satisfies the conditions i)-iii) in Theorem 3.4.
Now, the Liouville condition iii) immediately follows from the Liouville condition ii) in
Theorem 2.2 and the analyticity condition ii) is clear. Finally, Proposition 3.9 shows
that the sizes Rp of V̂ are positive and again satisfy the upper bound (3.3) when the
p-curvature vanishes. Indeed, with the notation of paragraph 3.4.1, the map (ϕ , ϕ)
defines a formal isomorphism from Â2d

K onto ̂X×X(P , P), the inverse of which maps

V̂ onto the formal germ in Â2d

K defined by the equations tf+1 = uf+1, ..., td = ud in the
formal coordinates (t1, ..., td , u1, ..., ud).

4. Proof of the main theorem

This section presents a proof of Theorem 3.4, along the lines discussed in the
introduction.

We would like to emphasize that the main technical difficulty in establishing
our algebraicity criteria comes from factorials arising with differentiations. Similar problems
related to factorials and divided power algebras associated to involutive bundles over
the integers are classical in the theory of G-functions (see for instance [Sie29], Erster
Teil, §4, VII, and [Bom81], §1) and also occur in Miyaoka’s work ([Miy87]). Similar
issues have already been addressed in section 3.4 when we estimated the sizes of formal
germs of leaves.

In the proof of Theorem 3.4, these difficulties with factorials are hidden behind
the arithmetic estimates in Lemma 4.8 infra: a key point is that the “i-th jet map” ϕi

D

introduced in section 4.2.2 below − which could be expressed as a i-tuple derivation
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divided by a factor i! − satisfies the local estimates in Lemma 4.9, 4.10, and 4.11,

while the maximal slope of the hermitian vector bundle Si ť ⊗ P ∗L
⊗D

satisfies the
bound (4.21), which is linear in i. In this respect, it is crucial that the estimates (4.7)
and (4.29) concerning symmetric powers are linear in the exponent k and i. As a
matter of fact, crude arguments in their proof would introduce a disastrous additional
factor of the form log i! (equivalent to i log i).

4.1. Hermitian vector bundles, slopes, and heights of linear maps

We now discuss a few concepts and results from Arakelov geometry which will
be used in the proof of Theorem 3.4. These are quite elementary, although several of
them are not explicitly established in the literature, and we have tried to make this
section self-contained. We refer the reader to [Szp85], [Bos96] Appendix, and [Sou97]
for more extensive discussions and references concerning hermitian vector bundles in
Arakelov geometry.

We will denote by K a number field and by OK its ring of integers.

4.1.1. Basic definitions

Let X be a separated scheme of finite type over Spec Z such that its generic fiber
X Q (or equivalently, the complex analytic space X (C)) is smooth. In this paper, an
hermitian vector bundle E over X will be a pair (E, ‖.‖), where E is a locally free coherent
sheaf on X and ‖.‖ is a continuous hermitian metric on the associated analytic vector
bundle EC over X (C), invariant under complex conjugation. An hermitian vector
bundle of rank 1 will be called an hermitian line bundle.

If f : X ′ →X is a morphism of separated schemes of finite type over Spec Z,
the pull-back by f of an hermitian vector bundle E := (E, ‖.‖) over X is the hermitian
vector bundle f ∗E defined by the locally free sheaf f ∗E on X ′ and the pull-back by
fC : X ′(C)→X (C) of the metric ‖.‖, which indeed is a continuous hermitian metric
on ( f ∗E)C ' f ∗C EC. Similarly, various tensorial operations are defined on hermitian

vector bundles in an obvious way: from hermitian vector bundles E, E
′

on X, one
may form new hermitian vector bundles, such as, for instance, the dual Ě, the direct
sum E ⊕ E

′
, the tensor product E ⊗ E

′
, and the exterior and symmetric powers (11)

ΛkE and SkE.
When K is a number field, an hermitian vector bundle over Spec OK is nothing

else than a pair E = (E, (‖.‖σ)σ:K ↪→ C), where E is a finitely generated projective OK-
module E, and (‖.‖σ)σ:K ↪→ C a family, invariant under complex conjugation, indexed

(11) Whereas there exists a unique sensible definition of hermitian structures on tensor products and on exterior powers
of complex vector spaces equipped with hermitian structures, there are several competing conventions currently used in the
literature for symmetric powers. We use the following one: if V is a complex vector space, equipped with an hermitian metric h,
then, for any integer d, the symmetric power SdV is defined as the quotient of the tensor power V⊗d and the hermitian
metric deduced from h on SdV is defined as the quotient metric of the metric h⊗d on V⊗d.
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by the field embeddings of K in C, of hermitian metrics on the complex vector spaces
Eσ := E⊗σ:O K→C C.

When rk E = 1, the Arakelov degree d̂eg E of such an hermitian vector bundle over
Spec OK is defined by the following equality, valid for any element s of E \ {0}:

d̂eg E := log |E/OKs| −
∑

σ:K ↪→ C

log ‖s‖σ.

If, for any p in Vf (K), ‖ ‖p denotes the p-adic norm on EKp
attached to the lattice

EO p
, then we also have, for any s ∈ EK \ {0}:

(4.1) d̂eg E := −
∑

p∈Vf (K)

log ‖s‖p −
∑

σ:K ↪→ C

log ‖s‖σ;

this does not depend on the choice of s by the product formula.
When rk E is arbitrary, the Arakelov degree is defined as

d̂eg E := d̂eg Λrk EE.

We shall also use the normalized Arakelov degree of E:

d̂egn E :=
1

[K : Q]
d̂eg E.

When moreover the rank of E is positive, the slope µ̂(E) of E is defined as

µ̂(E) :=
d̂egn E

rk E
,

and its maximal slope µ̂max(E) (resp., its minimal slope µ̂min(E)) as the maximum (resp. the
minimum) of the slopes µ̂(F), where F is the hermitian vector bundle defined by a OK-
submodule (resp. a torsion-free quotient) of positive rank F of E, equipped with the
restrictions to Fσ ⊂ Eσ of the hermitian metrics (‖.‖σ)σ:K ↪→ C) (resp. with the quotient
metrics on the vector spaces Fσ of these metrics). One easily checks that

(4.2) µ̂max(E) = −µ̂min(Ě).

The very definition of the Arakelov degree shows that, for any basis (v1 , ..., vrk E)
of EK, whose elements belong to E, we have:

d̂eg E > −
∑

σ:K ↪→ C

log ‖v1 ∧ ... ∧ vrk E‖σ > −
∑

σ:K ↪→ C
16i6rk E

log ‖vi‖σ.

From this inequality, we immediately derive the following lower bound for minimal
slopes:
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Lemma 4.1. — For any hermitian vector bundle E = (E , (‖.‖σ)σ:K ↪→ C) over Spec OK and

any finite subset F of E which spans the K-vector space EK, we have:

µ̂min(E) > − max
v∈F , σ:K ↪→ C

log ‖v‖σ.

From (4.1), it follows that, for any two hermitian line bundles L1 and L2 on
Spec OK, we have:

(4.3) d̂eg Ľ1 = −d̂eg L1 and d̂eg L1 ⊗ L2 = d̂eg L1 + d̂eg L2.

This entails the following properties of the Arakelov degree and slopes:

Lemma 4.2. — (i) Let E = (E , (‖.‖E , σ)σ:K ↪→ C) be a hermitian vector bundle over

Spec OK, and

{0} = EN+1 ⊂ EN ⊂ ... ⊂ E1 ⊂ E0 = E

a filtration of E by saturated OK-submodules. If, for any i ∈ {0, ..., N}, F
i

denotes the subquotient

Fi := Ei/Ei+1 equipped with the hermitian metrics quotient of the metrics on Ei
σ defined by the

restrictions of the hermitian metrics ‖.‖E , σ, then we have:

(4.4) d̂eg E =
N∑

i=0

d̂eg F
i
.

(ii) For any hermitian vector bundle E and any hermitian line bundle L over Spec OK, we

have:

(4.5) µ̂(E⊗ L) = µ̂(E) + d̂egn L and µ̂max(E⊗ L) = µ̂max(E) + d̂egn L.

4.1.2. The maximal slope of a symmetric power

In the sequel, we will need some control on the maximal slopes of the successive
symmetric powers SkE of some hermitian vector bundle E over Spec OK. It is possible
to prove that, for any such E and any positive integer k, the following upper bound
holds:

(4.6) µ̂max(SkE) 6 k
[
µ̂max(E) + 2(rk E) log(rk E)

]
.

(See [Bos98]; see also [Gr01a], Appendix). In this article, the following weak form of
(4.6) will be sufficient:

Lemma 4.3. — For any hermitian vector bundle E over Spec OK, there exists c ∈ R such

that, for any positive integer k,

(4.7) µ̂max(SkE) 6 c k.
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This statement is significantly easier to prove than the more precise estimate (4.6).
Indeed, for any positive integer k, consider the hermitian vector bundle ΓkĚ := (SkE)ˇ ;
the underlying OK-module ΓkĚ may be identified with the module of invariants under

the permutation action of the symmetric group Sk on the k-th tensor power Ě
⊗k

,

and the hermitian metrics on ΓkĚ coincide with the restrictions of the ones on Ě
⊗k

.
Therefore, if (v1 , ..., ve) is a basis of ĚK, the elements of which belong to Ě, we get a
basis

B k
:= (vi1 , ..., iN) (i1 , ..., iN)∈NN

i1+...+iN=k

of ΓkĚK, formed by elements in ΓkĚ, by defining vi1 , ..., iN as the sum of the elements

in the orbit of v
⊗i1
1 ⊗ ...⊗ v

⊗iN
N under the symmetric group Sk. The cardinality of this

orbit is k!/i1!...iN! and therefore not larger than Nk. This shows that

max
w∈B k , σ:K ↪→ C

‖w‖σ 6 Nk( max
16i6N , σ:K ↪→ C

‖vi‖σ)k.

The upper bound (4.7) now follows from (4.2) and Lemma 4.1.

4.1.3. Tensor powers of hermitian line bundles and associated hermitian vector bundles of sections

By a positive Lebesgue measure on a reduced complex analytic space X, of pure
dimension d, we mean a Radon measure µ on X which satisfies the following property:
if i : U→ CN is a holomorphic embedding of an open subset U of X and if µ0 denotes
the Hausdorff 2d-dimensional measure on its image i(U) in CN (or equivalently, the

measure defined by the current ωdδi(U), where ω :=
i

2
∑N

k=1 dzk ∧ d z k), there exists a

Borel function λ : i(U)→ R∗+ such that i∗µ = λµ0 and λ and λ−1 are locally bounded.
Consider now a compact reduced analytic space X, of pure dimension d,

equipped with a positive Lebesgue measure µ, and M a holomorphic line bundle
over X, endowed with a continuous hermitian metric ‖.‖M. For any positive integer D,
we may consider the hermitian metric ‖.‖M⊗D on M⊗D deduced from ‖.‖M by tensor
power, and the associated Lp norms ‖.‖D , Lp on the (finite dimensional) complex vector
space Γ(X, M⊗D): for any s ∈ Γ(X, M⊗D), we let

‖s‖D , L∞ := max
x∈X
‖s(x)‖M⊗D

and, for any p ∈ [1, +∞[,

‖s‖D , Lp :=

(∫
X
‖s(x)‖p

M⊗Ddµ(x)

)1/p

.
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These norms are easily compared. On one hand, we have, as a special case of
general estimates relating Lp-norms of measurable functions on a measured space, for
any integer D, any s ∈ Γ(X, M⊗D), and any p ∈ [1, +∞[:

(4.8) µ(X)−1‖s‖D , L1 6 µ(X)−1/p‖s‖D , Lp 6 ‖s‖D , L∞ .

On the other hand, from the elementary local properties of analytic spaces and
holomorphic functions and the compactness of X, one easily derives the existence
of some constant C ∈ [1, + ∞[ such that, for any positive integer D and any
s ∈ Γ(X, M⊗D), the following estimate holds:

(4.9) ‖s‖D , L∞ 6 CD‖s‖D , L1 .

Let now X be an integral separated proper flat scheme of finite type over
Spec Z, endowed with a hermitian line bundle L and with a positive Lebesgue
measure ν, invariant under complex conjugation, over X (C) =

∐
σ:K ↪→ C X σ(C). For

any positive integer D, let ED be the hermitian vector bundle over Spec OK defined by
the OK-module ED := Γ(X , L ⊗D) equipped with the hermitian structure (‖.‖σ)σ:K ↪→ C,
where ‖.‖σ denotes the L2-norm on ED , σ ' Γ(X σ , L ⊗D

σ ) defined by the construction
above, applied to X = X σ, M = L σ, µ = ν|X σ and p = 2. Various authors
have studied in depth and given important consequences of the behaviour when D
goes to infinity of the Arakelov degree (or equivalently, of the Arakelov slope) of
such hermitian vector bundles of sections of powers of an hermitian line bundle L ,
provided additional conditions are satisfied, such as suitable positivity properties of L ,
or the smoothness of X K (see for instance [GS92] and [Zha98] for discussions and
references). In this article, we shall be content with a crude, but very general, estimate:

Proposition 4.4. — With the notation above, if the line bundle LK on XK is ample, then

there exists c ∈ R∗+ such that, for any positive integer D,

µ̂(ED) > −cD.

Proof. — Since LK is ample, the graded K-algebra⊕
D∈N

ED , K =
⊕
D∈N

Γ(X K , L
⊗D
K )

is finitely generated. Therefore, we can find a finite family (si)i∈I, where si is an element
of Γ(X , L

⊗Di ) for some positive integer Di, such that, for any positive integer D,
the monomials of weight D in the si’s (si being attributed the weight Di) span ED , K.
The estimates (4.8) and (4.9) relating L2 and L∞ norms on the complex vectors spaces
ED , σ show that, if C ∈ [1, +∞[ is large enough, then, for any such monomial s

and any embedding σ : K ↪→ C, we have ‖s‖σ 6 CD. Then Lemma 4.1 shows that
µ̂(ED) > −(log C)D. ¤
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Observe that the preceding proof actually establishes a stronger and more general
result: if the graded algebra

⊕
D∈N Γ(X K , L

⊗D
K ) is finitely generated, then there exists c ∈ R∗+

such that, for any positive integer D, µ̂min(ED) > −cD.

4.1.4. Heights of linear maps and slope inequalities

A simple slope inequality. — Let E = (E, (‖.‖E , σ)σ:K ↪→ C) and F = (F, (‖.‖F , σ)σ:K ↪→ C)
be two hermitian vector bundles over Spec OK. For any p in Vf (K), let ‖ ‖p be the
p-adic norm on HomKp

(EKp
, FKp

) ' ĚKp
⊗ FKp

attached to its O p-lattice ĚO p
⊗ FO p

,
and for any embedding σ : K ↪→ C, let ‖.‖σ be the operator norm on HomC(Eσ , Fσ)
defined from the hermitian norms ‖.‖E , σ and ‖.‖F , σ

(12).
For any non-zero K-linear map ϕ : EK 7→ FK, we define the height of ϕ with respect

to E and F as the real number:

(4.10) h(E, F, ϕ) :=
1

[K : Q]

 ∑
p∈Vf (K)

log ‖ϕ‖p +
∑

σ:K ↪→ C

log ‖ϕ‖σ

 .

In the proof below, the following inequalities will play the role of Siegel’s Lemma.

Proposition 4.5. — With the notation above, if moreover ϕ is injective, then

(4.11) d̂egn E 6 rk E[µ̂max(F) + h(E, F, ϕ) ].

Proof. — Let F′ be the saturated OK-submodule of F such that F′K = ϕ(EK).
Equipped with the restrictions of the hermitian metrics ‖.‖F , σ, it defines an hermitian

vector bundle F
′

on Spec OK, of positive rank r := rk E. The map ϕ : EK → F′K is
bijective, and therefore Λrϕ : ΛrEK → ΛrF′K defines a non-zero element of LK, the

one dimensional K-vector space underlying the hermitian line bundle L := ΛrĚ ⊗ ΛrF.
Therefore, according to (4.3) and (4.1), we have:

d̂eg F
′ − d̂eg E = d̂eg L

= −
∑

p∈Vf (K)

log ‖Λrϕ‖p −
∑

σ:K ↪→ C

log ‖Λrϕ‖σ ,

where ‖ ‖p and ‖ ‖σ denote the p-adic and hermitian norms on LKp
and Lσ attached

(12) In other words, for any T ∈ HomC(Eσ , Fσ), ‖T‖σ = maxx∈Eσ\{0}
‖Tx‖

F , σ
‖x‖

E , σ
. Observe that the norms ‖ ‖p

could be similarly defined as the operator norms on HomKp
(EKp

, FKp
) defined from the p-adic norms on EKp

and FKp

attached to the lattices EOp and FOp .
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to the hermitian line bundle L. Together with the inequalities ‖Λrϕ‖p 6 ‖ϕ‖r

p and
‖Λrϕ‖σ 6 ‖ϕ‖r

σ, this shows that

(4.12) d̂egn E− d̂egn F
′ 6 rh(E, F, ϕ).

Besides, the definition of µ̂max(F) shows that

(4.13) d̂egn F
′ 6 r µ̂max(F).

The inequality (4.11) follows from (4.12) and (4.13). ¤

It is convenient to define the maximal slope µ̂max(F) of an hermitian vector bundle
F of rank 0 and the height h(E, F, ϕ) of the linear map ϕ = 0 to be −∞. Then (4.11)
holds for any injective linear map ϕ, even if ϕ vanishes, provided we follow the usual
convention 0.(−∞) = 0 to define its right-hand side in that case.

Filtered vector bundles. — We now state a variant of the slope inequality (4.11) for
injective maps which involves filtered vector bundles over S := Spec OK and is particularly
convenient for applications.

Let FK be a finite dimensional K-vector space equipped with a filtration

{0} = FN+1
K ⊂ FN

K ⊂ ... ⊂ F1
K ⊂ F0

K = FK

by K-vector subspaces. Assume moreover that, for every i ∈ {0, ..., N}, the subquotients
Gi

K := Fi

K/Fi+1
K are the underlying K-vector spaces of some hermitian vector bundles

G
i
:= (Gi , (‖ · ‖σ)σ:K ↪→ C) over S := Spec OK. If E = (E, (‖.‖E , σ)σ:K ↪→ C) is another

hermitian vector bundle over S and ϕ : EK → FK an injective K-linear map, then,
for any i ∈ {0, ..., N + 1}, we may define Ei

K := ϕ−1(Fi

K) and Ei := Ei

K ∩ E. Then the
OK-submodules Ei define a filtration

{0} = EN+1 ⊂ EN ⊂ ... ⊂ E1 ⊂ E0 = E

and, equipped with the restrictions of the hermitian structures on E, become hermitian
vector bundles over S. Finally, for any i ∈ {0, ..., N}, let us consider the linear map
ϕi : Ei

K → Gi

K defined by composing the restriction ϕ|Ei

K
: Ei

K → Fi

K and the quotient

map pi : Fi

K → Gi

K.

Proposition 4.6. — With the above notation, we have:

(4.14) d̂egn E 6
N∑

i=0

rk(Ei/Ei+1)
[
µ̂max(G

i
) + h(E

i
, G

i
, ϕi)

]
.

Proof. — For any i ∈ {0, ..., N}, let Ei/Ei+1 be the subquotient Ei/Ei+1 equipped
with the hermitian metrics quotient of the metrics on Ei

σ defined by the restrictions of
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the hermitian metrics ‖.‖E , σ. Then, according to (4.4), we have:

(4.15) d̂egn E =
N∑

i=0

d̂egn Ei/Ei+1.

Moreover, for any i ∈ {0, ... , N}, the map ϕi vanishes on Ei+1
K and may

be written as the the composition of the quotient map Ei

K → Ei

K/Ei+1
K and of

some (unique) map ~ϕi : Ei

K/Ei+1
K → Gi

K. The very definition of the filtration
{0} = EN+1

K ⊂ EN
K ⊂ ... ⊂ E1

K ⊂ E0
K = EK shows that the maps ~ϕi are injective.

Therefore, by Proposition 4.5,

(4.16) d̂egn Ei/Ei+1 6 rk (Ei

K/Ei+1
K )
[
µ̂max(G

i
) + h(Ei/Ei+1 , G

i
, ~ϕi)

]
.

Finally, for any i ∈ {0, ... , N}, we have

(4.17) h(Ei/Ei+1 , G
i
, ~ϕi) = h(E

i
, G

i
, ϕi).

Indeed, the local norms of ~ϕi and ϕi coincide.
Inequality (4.6) follows from (4.15), (4.16), and (4.17). ¤

4.2. Diophantine approximation using slopes and heights of evaluation maps

We now return to the notation of Theorem 3.4, which will be proved in this
subsection and the following one.

4.2.1. Notation and preliminary reductions

We already observed that, if U is any open subvariety of X containing P, the
statement of Theorem 3.4 is equivalent to the same statement where X has been
replaced by U. This shows that we may assume that X is projective over K.

For any n ∈ N, let Vn be the n-th infinitesimal neighbourhood of P in V̂. Thus
we have:

V0 = {P} ⊂ V1 ⊂ ... ⊂ Vn ⊂ Vn+1 ⊂ ...

and

V̂ = lim
→
n

Vn.

It will also be convenient to let V−1 := ∅.
Clearly, we may assume that the the dimension v of V̂ is positive.
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Let us introduce the Zariski closure Y of V̂ in X, namely the smallest closed
subscheme Y of X containing all the Vn, or, equivalently, its smallest closed subscheme

containing P such that ŶP contains V̂. It is an integral subscheme of X, and the

conclusion of Theorem 3.4 precisely asserts that V̂ is a branch of this subscheme at P.
By replacing X by Y, we may assume that V̂ is Zariski dense in X, and then we have
to show that, under the above hypotheses, the dimension v of V̂ coincides with the dimension

d of X.

To achieve this, let us choose a projective model X for X over Spec OK (i.e., a
projective integral scheme over Spec OK whose generic fiber X K coincides with X),
and an hermitian line bundle L over X , whose restriction L := L K to X is ample.
Let us also choose a positive Lebesgue measure µ on X(C), invariant under complex
conjugation, and a family (‖.‖σ)σ:K ↪→ C, invariant by complex conjugation, of hermitian

metrics on the complex vector spaces (TPV̂σ)σ:K ↪→ C.
For any D ∈ N, we let

ED := Γ(X , L
⊗D).

It is a finitely generated projective OK-module. For any field embedding σ : K ↪→ C
and any integer D, the holomorphic line bundle L⊗D

σ on Xσ(C) is endowed with the
D-th tensorial power of the hermitian metric defining L. We shall denote by ‖ ‖L∞ , σ

(resp. by ‖ ‖L2 , σ) the associated L∞-norm on ED , σ ' Γ(Xσ , L⊗D
σ ) (resp. the associated

L2-norm on ED , σ defined by means of the Lebesgue measure µ|Xσ ).
Since the structural morphism π : X → Spec OK is proper, the rational point

P ∈ X(K) = X (K) extends to a section P of π. Let ť be the image of the OK-module
P ∗Ω1

X /O K
by the composite map

P
∗Ω1

X /O K
→ (P ∗Ω1

X /O K
)K ' Ω1

X/K , P → ŤPV̂.

It is a finitely generated projective OK-module, and ť K may be identified with ŤPV̂.
Equipped with the dual metrics of the metrics ‖.‖σ on the complex vector spaces

TPV̂σ, it defines an hermitian vector bundle ť on Spec OK.
As hinted in the introduction, the proof of Theorem 3.4 is based on the

consideration of the restriction maps

ϕD , n : ED , K := Γ(X, L⊗D) −→ L⊗D
|Vn

,

for “large values” of (D, n) ∈ N×N.
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4.2.2. Slope inequalities

Observe that, for any D and for n large enough (say, n > n0(D)), ϕD , n is injective.

This directly follows from (indeed, is equivalent to) the Zariski density of V̂ in X.
Moreover, O Vn

has a natural filtration, by the order of vanishing at P. The successive

subquotients ker(L⊗D
|Vi
→ L⊗D

|Vi−1
) associated to this filtration may be identified with the

tensor products Si ť K⊗L⊗D
P . The inverse image of this filtration by ϕD , n is the filtration

Ei

D :=
{

s ∈ ED | s|Vi−1 = 0
}

of ED. Moreover, for any i ∈ {0, ... , n}, the map

ϕi

D : Ei

D , K −→ ker(L⊗D
|Vi
→ L⊗D

|Vi−1
) ' Si ť K ⊗ L⊗D

P

deduced from ϕD , n is the map which maps a section of L⊗D on X which vanishes on

Vi−1 to its jet of order i along V̂, identified with an element of Si ť K ⊗ L⊗D
P .

We may apply the slope inequality for filtered vector bundles in Proposition 4.6
to ϕD , n : ED , K → O Vn

, for n > n0(D), the K-vector space O Vn
being filtered by the

order of vanishing. Since the associated subquotients may be identified to Si ť K ⊗ L⊗D
P ,

which is the underlying K-vector space of the hermitian vector bundle Si ť ⊗P ∗L
⊗D

,
we get:

(4.18) d̂egn ED 6
∑
i>0

rk (Ei

D/Ei+1
D )
[
µ̂max(Si ť ⊗P

∗
L
⊗D

) + h(E
i

D , Si ť ⊗P
∗
L
⊗D

, ϕi

D)
]

.

Since Ei

D = {0} for i > n0(D), the sum is indeed finite and coincides with the sum
over i in the finite interval {0, ... , n}, for any n > n0(D).

The proof of Theorem 3.4 will easily follow from the inequality (4.18), together
with the estimates on the quantities which occur in it given in the next two lemma.

Lemma 4.7. — 1) For any (D , i) ∈ N×N,

rk ED/Ei

D 6 rk L|Vi−1 = rk O |Vi−1
=

(i + v− 1)...(i + 1)i
v!

6 iv.

2) If deg X denotes the degree of X with respect to L, then, when D goes to infinity,

(4.19) rk ED ∼
1
d!

deg X Dd.

These geometric estimates are elementary: assertion 1) follows from the very
definition of Ei

D , K as the kernel of ϕD , i−1 : ED , K → L|Vi−1 ; assertion 2) is basically the
definition of deg X by means of the Hilbert-Samuel polynomial.
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Lemma 4.8. — 1) There exists c1 > 0 such that, for any D ∈ N \ {0},

(4.20) µ̂(ED) > −c1D.

2) There exists c2 > 0 such that, for any (d , i ) ∈ (N \ {0})×N,

(4.21) µ̂max(Si ť ⊗P
∗
L
⊗D

) 6 c2(i + D).

3) There exists a function τ : R+ → R, bounded from below, which satisfies

(4.22) lim
x→+∞

τ(x)
x

= +∞ ,

and, for any (D , i) ∈ (N \ {0})×N,

(4.23) h(E
i

D , Si ť ⊗P
∗
L
⊗D

, ϕi

D) 6 −Dτ(i/D).

The first two of these arithmetic estimates, (4.20) and (4.21), have been proven
in Section 4.1 ((4.20) follows from Proposition 4.4, and (4.21) from (4.3), (4.5), and
Lemma 4.3). We defer the proof of (4.22) to the next subsection.

To complete the proof of Theorem 3.4 taking Lemma 4.8 for granted, first
observe that (4.21) and (4.23) imply that, for any (D, i) ∈ (N \ {0})×N,

µ̂max(Si ť ⊗P
∗
L
⊗D

)+h(E
i

D , Si ť ⊗P
∗
L
⊗D

, ϕi

D) 6 D

[
c2

i

D
+ c2 − τ

(
i

D

)]
.

Together with (4.18) and (4.20), this shows that, for any D ∈ N \ {0},

(4.24) (rk ED)−1
∑
i>0

rk (Ei

D/Ei+1
D )

[
−c2

i

D
− c2 + τ

(
i

D

)]
6 c1.

Suppose now that v < d. To derive a contradiction, let us choose a positive real
number λ, and let dλDe be the smallest integer > λD. By splitting the sum in (4.24)
in two parts corresponding to i < dλDe and to i > dλDe, we get:

(rk ED)−1

rk (ED/EdλDe
D ) inf

x∈R+

(τ(x)− c2x− c2) + rk EdλDe
D inf

x>λ
(τ(x)− c2x− c2)

 6 c1.

(Observe that the two inf ’s are finite by Lemma 4.8, 3).) According to Lemma 4.7,
our assumption implies that, when D goes to infinity,

rk (ED , EdλDe
D ) = o(Dd) = o(rk ED)

and

rk EdλDe
D ∼ rk ED.
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Therefore,

inf
x>λ

(τ(x)− c2x− c2) 6 c1.

Since λ is arbitrary in R∗+, this contradicts (4.22) and completes the proof.

4.3. Upper bounds on the heights of evaluation maps

4.3.1. Local bounds

The last assertion in Lemma 4.8 will be a consequence of the following local
estimates concerning the norms of the evaluation maps ϕi

D.

Lemma 4.9. — For every p in Vf (K) and every (D , i) ∈ (N \ {0})×N, the p-adic norm

of ϕi

D satisfies the following estimate:

(4.25) ‖ϕi

D‖p 6 R−i

p .

Lemma 4.10 — For every embedding σ : K ↪→ C, there exist Cσ ∈ [1 , + ∞[ and

Rσ ∈]0 , 1] such that, for every (D , i) ∈ (N \ {0}) × N, the operator norm of ϕi

D , σ : Ei

D , σ →
Si ť σ ⊗ L⊗D

P , σ satisfies the following estimate:

(4.26) ‖ϕi

D , σ‖ 6 CD
σ R−i

σ .

Lemma 4.11. — There exists a function τ0 : R+ → R, bounded from below, which satisfies

lim
x→+∞

τ0(x)
x

= +∞ ,

and, for any (D , i) ∈ (N \ {0})×N,

log ‖ϕi

D , σ0
‖ 6 −Dτ0(i/D).

Indeed, these three lemma imply the estimate (4.23), with τ the function defined
by

[K : Q]τ(x) := τ0(x)− αx− β ,

where α :=
∑

p∈Vf (K) log R−1
p +

∑
σ |= σ0

log R−1
σ and β :=

∑
σ |= σ0

log Cσ.
Lemma 4.9 is a consequence of Lemma 3.3.
The norm comparison estimates (4.8) and (4.9) show that, to prove Lemma

4.10 and 4.11, we may as well define ‖ϕi

D , σ‖ as the operator norm of ϕi

D , σ : Ei

D , σ →
Si ť σ⊗L⊗D

P , σ defined by using L∞ norms, instead of L2 hermitian metrics, on the complex



206 JEAN-BENOÎT BOST

vector spaces Ei

D , σ. Then these lemma appear as special cases of Proposition 4.12 infra,
of a purely analytic nature, to which the next two subsections are devoted.

4.3.2. Archimedean bounds

In this section, we consider a complex projective variety X, a line bundle L over
X, a point P in X, and a germ V of complex analytic submanifold of X(C) at P of
dimension d > 0. For any (D, i) ∈ (N \ {0})×N, let Ei

D be the subspace of Γ(X, L⊗D)
formed by the regular sections of L⊗D whose restriction to V vanish at order at least
i at P, and let

ϕi

D : Ei

D → SiŤPV⊗ L⊗D
P

be the map which sends such a section to the jet of order i of its restriction to V.
Let us choose a continuous hermitian metric ‖ ‖L on L and a hermitian metric

‖ ‖T on the tangent space TPV of V at P. By taking tensor and symmetric powers, these
metrics defines an hermitian norm ‖ ‖i , D on SiŤPV⊗L⊗D

P , an hermitian metric ‖ ‖L⊗D

on L⊗D, and therefore an L∞ norm ‖ ‖L∞ : s 7→ maxx∈X(C) ‖s(x)‖L⊗D on Γ(X, L⊗D) and

its subspaces Ei

D. We shall denote by ‖ϕi

D‖ the operator norm of ϕi

D defined by means
of these norms.

Proposition 4.12. — 1) There exist C ∈ [1 , +∞[ and R ∈]0 , 1] such that

‖ϕi

D‖ 6 CDR−i.

2) If moreover there exists a complex manifold M satisfying the Liouville property, a point O
of M, and a holomorphic map f : M → X(C), which sends O to P and maps the germ of M
at O biholomorphically onto V, then

(4.27) lim
x→+∞

sup
i

D>x

1
i

log ‖ϕi

D‖ = −∞.

The validity of these two assertions is clearly independent of the choice of
hermitian structures ‖ ‖L and ‖ ‖T on L and TPV.

The proof of Proposition 4.12 will use the following lemma, of independent
interest.

Let λ denote the Lebesgue measure on Cd.

Lemma 4.13. — Let f =
∑

I∈Nd aIz
I be a holomorphic function on the open ball B(0 , R)

of center 0 and radius R > 0 in Cd. Assume that f vanishes at order exactly i at 0, and let

j if :=
∑
|I|=i aIz

I be the jet of order i of f at the origin. Then, if ‖j if ‖Si(Čd) denotes the hermitian
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norm of j if in the i-th symmetric power of the dual of Cd equipped with the standard hermitian

metric, we have:

(4.28)
1

λ(B(0 , R) )

∫
B(0 , R)

log | f |dλ >
1

λ(B(0 , R) )

∫
B(0 , R)

log | j i f |dλ

(4.29) > log ‖ j if ‖Si(Čd) − (log R−1)i− α(d)i ,

where α(d) denotes a constant in R+ depending only on d.

Observe that these inequalities implies the following variant of Cauchy’s estimates:

(4.30) log ‖ j if ‖Si(Čd) 6 log sup
x∈B(0 , R)

| f (x)| + (log R−1)i + α(d)i.

Proof of Lemma 4.13. — If, for any t ∈ C such that |t| 6 1, we let

ft(z) :=
∑
I∈Nd

aIt
|I|−izI ,

then the integral∫
B(0 , R)

log | ft|dλ

− which is also equal to

|t|−d

∫
B(0 , |t|R)

log | f |dλ− iλ(B(0, R) ) log |t|

when t |= 0 − depends only on |t| and is subharmonic on the open disk {t ∈ C | |t| < 1}.
As f0 = j if and f1 = f, this yields (4.28).

To prove (4.29), we use some computations in [BGS94]. With the notation of
loc. cit. 1.4.3, with V = Cd equipped with the standard hermitian metric, we get:

1
λ(B(0, R))

∫
B(0 , R)

log | j if |dλ = log ‖ j if ‖0 +

(∫ R

0
r2d−1dr

)−1 ∫ R

0
(log ri) r2d−1dr

= log ‖ j if ‖0 + i(log R− 1/2d).

Moreover, according to loc. cit., Corollary 1.4.3, (1.4.10), and Lemma 4.3.6, we have:

log ‖ j if ‖0 > log ‖ j if ‖∞ −
i

2

d−1∑
m=1

1
m

> log ‖ j if ‖2 −
i

2

d−1∑
m=1

1
m

> log ‖ j if ‖Si(Čd) −
1
2

log
(

d− 1 + i

i

)
− i

2

d−1∑
m=1

1
m

.

These estimates imply (4.29) with α(d) = 1 + log d. ¤
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Proof of Proposition 4.12. — Assertion 1) follows from the variant (4.30) of Cauchy
estimates, applied to the holomorphic functions defined by expressing holomorphic
sections of L⊗D on V in terms of some holomorphic trivialization of L on some
holomorphic coordinate chart centered at P.

To prove assertion 2), we assume that there exists a sequence (Dn , in , sn) of triples,

where Dn ∈ N \ {0}, in ∈ N, and sn ∈ E
Dn

in
, and a constant c ∈ R satisfying

lim
n→+∞

in

Dn

= +∞

and, for any n,
in

Dn

> 1, ‖sn‖L∞ 6 1 and

(4.31) log
1
in
‖ϕin

Dn
(sn)‖i , D > −c.

We are going to derive a contradiction, which will prove (4.27).
For any n, we let

ρn :=
1
in

log f ∗‖sn‖2

L
⊗Dn

.

It is a continuous locally integrable function from M to [−∞ , 0]. Let us assume
− which is allowed − that the hermitian metric ‖ ‖L on L is C∞, and let us denote
by α the first Chern form of the holomorphic line bundle f ∗L equipped with the
pull-back of this metric; it is a C∞ closed (1,1)-form on M. For any n, according to
the Poincaré-Lelong equation, we have the equality of currents on M:

dd c log f ∗‖sn‖2

L
⊗Dn

= δdiv f ∗sn
−Dnα.

Therefore,

(4.32) dd cρn > −
Dn

in
α.

Let Ω be the maximal open subset of M such that the sequence (ρn) is bounded
in L1

loc(Ω). In other words, if µ denotes a C∞ positive volume form on M, a point x of
M belongs to Ω if and only if there exists an open neighbourhood U of x and c′ ∈ R+

such that, for every n,∫
U

ρnµ > −c′.

Locally on M, there exists a C∞ real-valued function ψ such that α = ddcψ. Therefore,
the functions ρn + ψ are plurisubharmonic (hence subharmonic when expressed in
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any holomorphic coordinate chart) and bounded from above by ψ. This shows that
Ω is a closed subset of M. Moreover, Ω is not empty; indeed, it contains the point
O, as follows from condition (4.31) and Lemma 4.13 applied to the holomorphic
functions defined by expressing the holomorphic sections f ∗sn of f ∗L⊗Dn in terms of
some holomorphic trivialization of f ∗L on some holomorphic coordinate chart centered
at O. As M is connected, this proves that Ω = M, i.e., that the sequence (ρn) is bounded
in L1

loc(M).
After possibly replacing the sequence (ρn) by a subsequence, we may assume that

it converges weakly to some current ρ of order 0 on M. From (4.32), we get:

dd cρ > 0,

and the current ρ is therefore defined by a plurisubharmonic function on M. Moreover,
as the functions ρn are non-positive, the plurisubharmonic function ρ is non-positive
too, hence constant, since M satisfies the Liouville property.

On the other hand, we may consider the blow-up ν : ~M → M of O in M. Let
E := ν−1(O) be its exceptional divisor, and define

~ρn := ν∗ρn =
1
in

log( f ◦ ν)∗‖sn‖2.

From (4.32), we get:

dd c~ρn > −
Dn

in
ν∗α.

The same reasoning as above, applied to the sequence (~ρn) instead of (ρn), shows

that the maximal open subset ~Ω of ~M such that (~ρn) is bounded in L1
loc(

~Ω) is closed.

Moreover, it is non-empty (it contains ~M \E, which is mapped biholomorphically onto

M \ {O} by ν), hence coincides with the connected manifold ~M. Finally, we obtain

that the sequence (~ρn) is bounded in L1
loc(

~M), and we may assume that it converges

weakly to some current ~ρ, defined by some plurisubharmonic function on ~M.
Since ( f ◦ ν)∗sn vanishes at order in along E, we also have

dd c~ρn > δE −
Dn

in
ν∗α.

Therefore,

dd c~ρ > δE.
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In particular, the locally integrable function ~ρ is not constant on ~M, hence not constant
on ~M \ E. This contradicts the fact that, on this open subset, it coincides with ν∗ρ,
which is constant. ¤

It should be observed that the projectivity assumption on X plays basically no
role in the proof of Proposition 4.12: indeed, this proposition still holds, with the same
proof, when X is any complex reduced analytic space, equipped with a holomorphic
line bundle endowed with a continuous hermitian metric, provided we now define Ei

D

as the subspace of bounded holomorphic sections of L⊗D whose restriction to V vanish at
order at least i at P. (To prove assertion 2) of this generalization of Proposition 4.12,
one immediately reduces by pull-back to the case where X = M, which basically has
been handled in the proof above.)

4.3.3. A variation on the First Main Theorem of value distribution theory

In this final section, we want to discuss another proof of Proposition 4.12,
in the special case where M is an affine space Cn and L is ample. (This special case
of Proposition 4.12 would be enough to complete the proof of Theorem 3.4 when
M = Cn and X is quasiprojective, and therefore to establish Theorem 2.3.)

Observe first that Proposition 4.12 could be rephrased as the existence, for every
ρ ∈ R∗+, of some constant c(ρ) ∈ R such that, for any (D, i) ∈ (N \ {0})×N,

log ‖ϕi

D‖ 6 −ρi + Dc(ρ).

In the special case where M = Cn, this easily follows from the Schwarz Lemma for
holomorphic functions on Cn vanishing with order i at the origin, applied on the ball
of radius R = e ρ (see for instance [CB01], 4.7.6).

When moreover L is ample, it is possible to give a more elaborated version
of this argument, which has the advantage of relating the function τ controlling the
norms ‖ϕi

D‖ (as in Lemma 4.11) to the growth of the map f : M→ X(C). It relies on
a refined variant of the First Main Theorem of higher dimensional Nevanlinna theory,
and, hopefully, should clarify the origin of the “smallness” of the evaluation map
asserted by Proposition 4.12, 2). We refer the reader to [GK73], [Sto77], or [Sha85]
for expositions and references concerning higher dimensional Nevanlinna theory.

Let us consider a complex projective variety X, an ample line bundle L over X, a C∞

hermitian metric ‖ ‖L on L, whose first Chern form η is positive, an integer n > 1, and a holomorphic

map f : Cn → X(C).
Let ω denote the positive (1,1)-form on Cn\{0} defined by ω := dd c log ‖z‖2, where

‖ ‖ denotes the standard hermitian norm on Cn, defined by ‖(zi)16i6n‖2 =
∑n

i=1 |zi|2.
This form may also be defined as the pull-back by the projection Cn \ {0} → Pn−1(C)
of the standard Fubini-Study (1,1)-form on Pn−1(C). For any r ∈ R∗+, we also let
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B(r) := {z ∈ CN | ‖z‖ < r} and we define µr as the unique probability measure on the
sphere ∂B(r) of radius r in Cn, invariant under the unitary group U(n).

The growth of the holomorphic map f, relative to the hermitian line bundle
L := (L, ‖ ‖L) on X(C), is measured by the so-called order or characteristic function

Tf , L : R∗+ → R+, defined by

Tf , L(r) :=
∫

Cn\{0}
log+ r

‖z‖ ωn−1 ∧ f ∗η =
∫ r

0

(∫
B(t)

ωn−1 ∧ f ∗η

)
dt

t
.

The order function is a non-decreasing convex function of log r. It is unbounded as
soon as f is non-constant; moreover, it is O(log r) when r goes to infinity if and only if
the map f is algebraic (see [GK73], Proposition 5.9, or [Sha85], Chapter II, Theorem
5).

Let D be a positive integer and let s be a regular section of L⊗D over X, such
that f (Cn) is not included in |div s|(C). Then f ∗div s = div f ∗s is a well defined analytic
divisor in Cn. Its growth is measured by the so-called counting function of r ∈ R∗+:

Nf (div s , r) :=
∫

Cn\{0}
log+ r

‖z‖ ωn−1δf ∗div s =
∫ r

0

(∫
B(t)

ωn−1δf ∗div s

)
dt

t
.

Let i be the order of vanishing of f ∗s at 0 ∈ Cn, and let j if ∗s be its jet of
order i at 0. This jet may be seen as an element of SiČn ⊗ L⊗D

P , and, as such, has a
well defined hermitian norm ‖ j i f ∗s‖i , D defined by taking dual, tensor and symmetric
powers from the standard hermitian norm on Cn and the given norm ‖ ‖L on LP. The
jet j i f ∗s may also be seen as a homogeneous map of degree D from Cn to L⊗D

P , and,
as such, has a “quasi-norm” ‖ j if ∗s‖0 defined by

log ‖ j if ∗s‖0 :=
∫
∂B(1)

log ‖ j if ∗s(z)‖
L⊗D

P
dµ1(z).

The norms ‖ j if ∗s‖i , D and ‖ j if ∗s‖0 are related by the following inequalities (cf.
[BGS94], Corollary 1.4.3, (1.4.10), and Lemma 4.3.6):

log ‖ j if ∗s‖0 6 log ‖ j if ∗s‖i , D−
1
2

log
(

n− 1 + i

i

)
6 log ‖ j if ∗s‖0+

i

2

n−1∑
m=1

1
m

.

As a consequence, we get the following estimate:

(4.33) log ‖ j if ∗s‖i , D 6 log ‖ j if ∗s‖0 + cni ,

where cn := 1
2 + log n.

We are now in position to state our refined version of the First Main Theorem
of Nevanlinna theory − usually, it is stated as an equality only up to a bounded term,
valid when i = 0 (i.e., for sections s which do not vanish at f (0) ).
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Proposition 4.14. — With the above notation, for every r ∈ R∗+, we have

(4.34) log ‖ j if ∗s‖0 =
∫
∂B(r)

log f ∗‖s‖
L
⊗Ddµr − i log r−Nf (div s , r) + DTf , L(r).

Seen as a function of r, the integral∫
∂B(r)

log f ∗‖s‖−1

L
⊗Ddµr

is classically called the proximity function, relative to f, associated to the divisor div s,
and denoted mf (div s , r). The traditional formulation of the First Main Theorem is the
following consequence of (4.34) specialized to D = 1 and i = 0:

Nf (div s , r) + mf (div s , r) = Tf , L(r) + O(1).

Sketch of proof of Proposition 4.14. — Let us introduce the blow-up ν : ~Cn → Cn of
0 ∈ Cn and let E := ν−1(0) be its exceptional divisor. We shall freely identify Cn \ {0}
and ~Cn\E. The projection Cn\{0} → Pn−1(C) composed with ν extends to a morphism

p : ~Cn → Pn−1(C), and p|E : E→ Pn−1(C) is an isomorphism. In consequence, the form

ω on Cn \ {0} ' ~Cn \ E extends to a C∞ form on ~Cn, which we shall still denote ω;
it is the pull-back by p of the Fubini-Study form on Pn−1(C), and satisfies:

(4.35) ωn = 0

and

(4.36)
∫

E
ωn−1 = 1.

The equality (4.34) will follow by integration from the following local identities

relating currents on ~Cn:

Lemma 4.15. — Let r be a positive real number.

1) There exists a current Cr of bidegree (1 , 1), of order 0, supported by ∂B(r) and U(n)-

invariant, such that the following identity of currents on
~Cn holds:

(4.37) dd cν∗ log+ r 2

‖z‖2
= ω1ν−1B(r) − δE + Cr.

2) Moreover, we have the following equality of currents of bidegree (n, n) on
~Cn:

(4.38) dd c

(
ωn−1ν∗ log+ r 2

‖z‖2

)
= −ωn−1δE + µr.
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Proof. — To prove (4.37), we write

ν∗ log+ r 2

‖z‖2
= 1ν−1B(r)ν

∗ log
r 2

‖z‖2

and we observe that ν∗ log
r2

‖z‖2
satisfies the Poincaré-Lelong equation

dd cν∗ log
r 2

‖z‖2
= ω− δE

and vanishes on ∂B(r). This entails (4.37) with

Cr = dν∗ log
r 2

‖z‖2
∧ d c1ν−1B(r).

From (4.37), we get:

dd c

(
ωn−1ν∗ log+ r 2

‖z‖2

)
= ωn−1dd cν∗ log+ r 2

‖z‖2

= ωn1ν−1B(r) − ωn−1δE + ωn−1Cr.

Using (4.35), this leads to (4.38) with ωn−1Cr instead of µr. Finally ωn−1Cr is a current
of degree 0 and type (n , n) supported by ∂B(r) − in other words a measure on ∂B(r) −
which is U(n)-invariant, and has the same class in H2n

c ( ~Cn , R) as ωn−1δE, and therefore
has total mass 1, by (4.36). Since these properties characterize µr, this completes the
proof of (4.38). ¤

Consider now a section s of L⊗D over X, as in the statement of Proposition 4.14.

Its pull-back ( f ◦ ν)∗s on ~Cn defines a holomorphic section of ( f ◦ ν)∗L⊗D(−iE), which
is not identically 0 on E. Therefore, the divisor of singularities of

ϕ := log( f ◦ ν)∗‖s‖2 − i log ‖z‖2

does not contain E. Moreover, the restriction of ϕ to E, identified with Pn−1(C),
coincides with the map

(z1 : ... : zn) 7−→ log
‖ j if ∗s(z1, ..., zn)‖2

L⊗D
P

‖(z1, ..., zn)‖2i
.

Therefore,

(4.39)
∫

~
Cn

ϕ ωn−1δE = log ‖ j if ∗s‖0.
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Moreover, from the Poincaré-Lelong equation, we also get:

(4.40) dd cϕ = δ( f ∗div s)~−D( f ◦ ν)∗η + iω ,

where ( f ∗div s)~:= ( f ◦ ν)∗div s− i E denotes the proper transform of f ∗div s under ν.
The identity (4.34) finally follows from Stokes formula (13)

∫
~

Cn
ϕ dd c

(
ωn−1ν∗ log+ r 2

‖z‖2

)
=
∫

~
Cn

(dd cϕ)ωn−1ν∗ log+ r2

‖z‖2
,

combined with (4.38), (4.39), and (4.40). ¤

From Proposition 4.14, we immediately derive, taking into account the non-
negativity of the counting function and the estimate (4.33):

Corollary 4.16. — With the above notation, we have:

(4.41) log ‖ j if ∗s‖i , D 6 log ‖s‖L∞ − i log r + DTf , L(r) + cni ,

where

‖s‖L∞ := max
x∈X(C)

‖s(x)‖
L
⊗D .

The estimate (4.41) means that the operator norm ‖ϕi

D‖ of the map ϕi

D which
sends an element s of the space

Ei

D :=
{

s ∈ Γ(X, L⊗D) | f ∗s vanishes at order at least i at 0
}

,

equipped with the norm ‖ ‖L∞ , to the jet j i f ∗s in the space SiČn⊗L⊗D
P equipped with

the norm ‖ ‖i , D, satisfies the following upper bound:

1
D

log ‖ϕi

D‖ 6 −
i

D
log r + Tf , L(r) + cn

i

D
.

Therefore, if ~Tf , L : R+ → R ∪ {+∞} denotes the Legendre transform of the convex
function Tf , L(r) of log r, defined by

~Tf , L(ξ) := sup
r∈R∗+

(ξ log r− Tf , L(r) ) ,

(13) Standard techniques allow to apply Stokes formula to the currents ϕ and ωn−1ν∗ log+ r 2

‖z‖2 , which are not

of class C2, but have “gentle enough” singularities. See for instance [GK73], 1(a), or [BGS94], 1.3 5).
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then we have:

1
D

log ‖ϕi

D‖ 6 −~Tf , L(i/D) + cn i/D.

Since the function ~Tf , L − like the Legendre transform of any convex function
on R − is bounded below and satisfies

lim
ξ→+∞

~Tf , L(ξ)/ξ = +∞ ,

this estimate, applied to the situation where f is an immersion at the origin, provides
another proof of Proposition 4.12 when M is an affine space Cn and L is ample.

Actually, we may distinguish two cases:
1. The holomorphic map f is algebraic, or equivalently, C := limr→+∞(log r)−1Tf , L(r) is

finite. Then, for any ξ > C, ~Tf , L(ξ) = +∞. This shows that ‖ϕi

D‖, and therefore Ei

D,
vanishes for i/D > C.

2. The holomorphic map f is not algebraic, or equivalently, limr→+∞(log r)−1Tf , L(r) =

+∞. Then ~Tf , L is a real valued convex function on R+.
Finally, let us indicate that standard techniques (see for instance [Shi75]) allow

to extend this proof to the situation where f is only assumed to be meromorphic from
Cn to M, and holomorphic on a neighbourhood of 0. This generalization would be
sufficient to prove Theorem 3.4 when M is the complement of some closed analytic
subset in Cn and f : Cn Xσ0 (C) is meromorphic.

Appendix: smooth principal bundles and connections

In this appendix, we recall a few elementary facts concerning principal bundles
and connections in the algebraic setting. Although these facts are clearly well-known,
it appears difficult to point out a source presenting them systematically.

Concerning the definition and basic operations on principal G-bundles, the
famous paper [Ser58] by Serre − where étale localization is introduced in algebraic
geometry − probably remains the best reference; see also [Gro71], Section XI.4.
Observe also that definitions of G-bundles of various degrees of generality occur in the
literature; the one we recall below − which involves only smooth data − is a rather
restrictive one.

Concerning connections and their curvatures, the algebraic theory is a paraphrase
of the classical C∞ theory, as presented for instance in [KN63], Chapter II. In
characteristic p > 0, the construction and properties of the p-curvature of a flat
connection described below are straightforward consequences of definitions and of
basic properties of the p-curvature of involutive subbundles of the tangent bundle of a
smooth variety (cf. [Kat70] and [Eke87]).
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A.1. Basic definitions

Let G be a smooth algebraic group over some field K. By definition, a principal

G-bundle over a smooth K-scheme B is a smooth K-scheme X equipped with a right-
action of G, α : X ×K G → X and a K-morphism q : X → B which is G-invariant
(that is, q ◦ α = pr1) and satisfies the following equivalent conditions (14):

1. The morphism q is surjective and smooth and (pr1 , α) : X×K G→ X×B X is
an isomorphism.

2. There exists a surjective étale morphism of schemes B′ → B such that the
G-space X′ := B′×B X is isomorphic to the trivial right G-space B′×K G over
B′.

For any such principal G-bundle, we may consider the canonical short exact
sequence of G-equivariant vector bundles over X:

(A.1) O→ Tq → TX → q∗TB → 0.

Moreover, the G-equivariant bundle Tq over X is canonically isomorphic to the trivial
vector bundle of fiber Lie G, endowed with the adjoint action of G, and G-invariant
regular sections of Tq define a locally free coherent sheaf on B, and may be identified
with the sheaf of regular sections of a vector bundle Ad(X) on B (which indeed is the
vector bundle deduced from the G-bundle X by means of the adjoint representation
G→ GL(Lie G) ).

By definition, a connection on the G-bundle q : X → B is a G-equivariant
splitting of (A.1) or, equivalently, a G-equivariant subvector bundle H of TX such
that TX = Tq ⊕H. The associated connection form θH is the section of Ω1

X ⊗ Tq defined
by the projection from TX onto Tq with kernel H.

For any such connection H, we may consider the morphism of vector bundles
over X

Λ2H −→ TX/H,

which, for any two local sections v1 and v2 of H, maps v1 ∧ v2 to the class of their Lie
bracket [v1 , v2]. It is G-equivariant; therefore, as we have canonical isomorphisms of
G-equivariant vector bundles

(Λ2H)ˇ ' q∗Ω2
B

and

TX/H ' Tq ,

(14) These conditions mean that the G-torsor X over B is locally trivial in the étale topology; we would get an
equivalent definition by working with the flat topology.
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it may be identified with a regular section on B of the vector bundle Ω2
B ⊗ Ad(X), the

curvature of the G-bundle with connection (X, H). When this curvature vanishes − or,
equivalently, when H is involutive − the connection H is said to be flat.

Similarly, when the connection H is flat and K is a field of characteristic p > 0,
then the p-curvature of the involutive bundle H (cf. section 2.1.1), which is a G-invariant
regular section of Frob∗Ȟ ⊗ TX/H over X, gets identified with a regular section of
Frob∗Ω1

B ⊗ Ad(X), the so-called p-curvature of the flat connection H on the G-bundle X.
When the base field K is a number field, for any algebraic group G over K

and any principal G-bundle X over a smooth base B endowed with a flat connection
H as above, we may consider smooth models G, X, B, H , ... of G, X, B, H, ...
over Spec OK[1/N], for N a sufficiently divisible integer. Then, for any prime ideal p
of OK not dividing N, by reducing modulo p, we get a principal G Fp

-bundle X Fp

over B Fp
, equipped with the flat connection H Fp

. Moreover, the vanishing of the
p-curvature of these flat principal bundles for almost every p does not depend on the
choice of these models.

A.2. Constructions of smooth principal G-bundles and connections

As in the preceding section, we denote by X a smooth principal G-bundle over
some smooth base B over a field K, and by p : X→ B the structural morphism of this
bundle.

Inverse image. — If B′ is another smooth K-scheme and f : B′ → B is a K
morphism, then we can form the following cartesian diagram of K-schemes

X′ := B′ ×B X
F−−→ Xy p′

y p

B′
f−−→ B .

Then X′ is naturally equipped with a right-action of G, the K-morphism p′ : X′ → B′

is smooth and defines a principal G-bundle X′ with base B′. Moreover, the differential
of F defines an isomorphism

(A.2) Tp′ ' F∗Tp

of G-equivariant vector bundles over X′, and therefore a canonical isomorphism

(A.3) Ad(X′) ' f ∗Ad(X)

of vector bundles over B′. Any connection H on X defines by pull-back a connection
on X′, namely the unique connection H′ whose connection form θH′ is the pull-back
by F of θH, i.e., the image of the section F∗θH of F∗(Ω1

X⊗Tp) ' F∗(Ω1
X)⊗F∗(Tp) by the

tensor product of the differential of F, seen as a morphism F∗(Ω1
X) → Ω1

X′ and of the
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isomorphism (A.2). The curvature of H′ is the pull-back by f of the curvature of H.
(This pull-back is again well-defined, thanks to the isomorphism (A.3).) In particular,
if H is flat, then H′ is flat. In this case, when moreover K is a field of characteristic
p > 0, the p-curvature of H′ is the pull-back by f of the p-curvature of H (compare
with [Kat82], Appendix).

Change of structural group. — If G′ is another smooth algebraic group over K and
if ϕ : G → G′ is a morphism of algebraic groups over K, then we may associate
a principal G′-bundle over B to any principal G-bundle X over B by forming the
quotient ϕX := G \ (X×K G′) of X×K G′ by the left-action of G defined by:

g.(x , g′) := (x.g−1 , ϕ(g)g′).

This quotient is a well-defined smooth K-scheme by an elementary argument of étale
descent (see for instance [Ser58], 3.2 3)). The right-action of G′ on X×K G′ and the
morphism p ◦ pr1 : X ×K G′ → B induce a right-action of G′ on ϕX and a smooth
morphism ϕp : ϕX→ B, which make ϕX a principal G′-bundle over B. There exists a
unique morphism Φ : X→ ϕX of B-schemes which map a geometric point x of X to
the class [ (x , e) ] in ϕX. It is equivariant − namely, it satisfies Φ(x.g) = Φ(x).ϕ(g) − and,
for any connection H on the principal G-bundle X, there exists a unique connection
ϕH on the principal G′-bundle ϕX such that the differential of Φ maps H onto ϕH.
Moreover, the curvature of ϕH is the image of the one of H by the morphism

Ω2
B ⊗ Ad(X) −→ Ω2

B ⊗ Ad(X′)

deduced from the morphism of vector bundles over B

(A.4) Ad(X) −→ Ad(X′)

defined by the linear map

Lie ϕ : Lie G −→ Lie G′.

In particular, if H is flat, then ϕH is flat. In this case, when moreover K is a field of
characteristic p > 0, the p-curvature of ϕH is the image of the p-curvature of H by the
morphism

Frob∗Ω1
B ⊗ Ad(X) −→ Frob∗Ω1

B ⊗ Ad(X′)

deduced from (A.4).

Quotient by a finite group. — Suppose now that X and B are equipped with left-
actions of some finite group G, that the morphism p : X → B is G-equivariant,
and that the actions of G and G on X commute (namely, for any γ ∈ G and any
geometric points x in X and g in G, γ.(x.g) = (γ.x).g). Suppose also that X and B are



ALGEBRAIC LEAVES OF ALGEBRAIC FOLIATIONS OVER NUMBER FIELDS 219

quasi-projective K-schemes − the quotients G \X and G \B are therefore well-defined

(quasi-projective) K-schemes − and that the quotient ~B := G \ B is smooth (15) over K.

Let ~X be the quotient G \ X, and consider the morphism ~p : ~X → ~B and the right-

action of G on ~X induced by p and the right-action of G on X. Then ~X is a principal
G-bundle over ~B provided the following condition is satisfied: every geometric point of B
possesses a G-invariant étale neighbourhood on which the G-bundle X admits a G-invariant section.

When this holds, the G-bundle X over B is canonically isomorphic to the inverse
image of the G-bundle ~X over ~B by the quotient map f : X → ~X. If moreover K
is a field of characteristic 0, any G-invariant connection H on X “descends” to a
connection ~H on ~X. (In other words, there exists a unique connection ~H on ~X whose
inverse image by f coincides with H.)
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