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1. Introduction

This article presents a survey of the arithmetic algebraicity criteria and their ap-
plications that have been developed in [12], [13], and in the subsequent joint work
with Chambert-Loir [14].

The proofs of these criteria rely on what might be called the method of slopes,
that is inspired by the classical techniques of auxiliary polynomials in Diophantine
approximation, but is formulated in a geometric framework. In this approach,
when investigating a projective algebraic variety X equipped with some ample line
bundle L defined over a number field K, and some zero-dimensional subschemes
Σi of X, the basic objects of interest are the evaluation maps

ηD,i : Γ(X,L⊗D) −→ Γ(Σi, L⊗D),

which map global sections of L⊗D to their restrictions to Σi. Typically, when X is
the compactification of an algebraic group, the Σi’s may be some sets of multiples of
some rational points, or some thickenings of such subsets. In the situation we shall
deal with in this paper, the Σi’s will be the successive infinitesimal neighbourhoods
of some point P of X(K) in a formal subscheme V̂ of the formal completion X̂P .

The geometry of the Σi’s in X turns out to be reflected by the injectivity
properties of these evaluation maps — this is the contents of the so-called zero
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lemmas when X is some compactified algebraic groups, and, in the setting of this
paper, of the algebraicity criterion in Proposition 2.1 below. This geometry is
finally related to the arithmetic properties of the data X, L, and Σi through the
slopes inequalities satisfied by the K-linear maps ηD,i. Indeed, after the choice
of auxiliary data (such as integral models for X, L, and the Σi’s, and hermitian
metrics on X(C) and LC), the source and range of ηD,i appear as the underlying K-
vector spaces attached to some hermitian vector bundles over SpecOK . To them,
elementary Arakelov geometry attaches arithmetic invariants, such as the height
of ηD,i and the Arakelov degree and the slopes of these hermitian vector bundles.
The slope inequality for ηD,i asserts that, when for instance ηD,i is injective, the
maximal slope of its source is bounded from above by the sum of its height and of
the maximal slope of its range.

The approach to proving Diophantine statements by the consideration of evalu-
ation maps and of the associated slope estimates has been introduced in a Bourbaki
report [10], devoted to the work by Masser and Wüstholz on periods and minimal
abelian subvarieties of abelian varieties over number fields [35]. The flexibility of
this new geometric approach allows one to combine the original arguments in [35],
phrased in terms of classical theta functions, with the “modern” theory of abelian
schemes (notably various basic results due to Néron, Mumford, and Moret-Bailly),
and to establish variants of the original work of Masser and Wüstholz where con-
stants occuring in various estimates are explicitely bounded.

These effective versions of the “period theorem” of Masser and Wüstholz and
of the consequent “isogeny estimates” have been recently improved by Viada ([43],
[42]), by means of the same techniques. The combination of the method of slopes
and of the modern theory of abelian schemes has also been used by Gaudron ([26])
to derive effective estimates on linear forms in logarithms on abelian varieties.

The results in the present article have been inspired by the work of D. and G.
Chudnovsky [19], [18], and by the generalization of the results in [19] to abelian
varieties by Graftieaux in [27] and [28], who also used the above combination of
techniques. However, in the formulation and the proofs of the results discussed
below, the flexibility of the method of slopes has not been exploited to derive Dio-
phantine statements on abelian varieties involving explicit estimates, but instead
to establish results valid in some general geometric setting by means of relatively
non-technical arguments, at the expense of explicitness.

Another illustration of the flexibility of the method of slopes, in a spirit similar
to this paper, is provided by the recent work by Gasbarri [25], who used this
method to derive generalizations of transcendance theorems à la Schneider-Lang-
Bombieri in general geometric situations and to clarify their relations with higher
dimensional Nevanlinna theory.

In this article, we shall focus on these geometric aspects, instead of going into
the details of the arguments of Arakelov geometry involved in proofs. For those, we
refer to the original papers [12], [13], and [14] and to Chambert-Loir’s Bourbaki
report [16], which also discusses the link between slopes inequalities and more
traditional techniques, such as Siegel’s lemma and the interpolation determinants
of Laurent [33].
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To emphasize the geometric content of our approach, we shall first explain how
the methods of auxiliary polynomials, in the guise of the study of the maps ηD,i
above, provides a simple algebraicity criterion for formal germs in an arbitrary pro-
jective variety over a field K (section 2). Then, assuming that K is the function
field k(C) of some projective curve over some field k, we shall derive some geo-
metric analogues of the results presented in the later sections. The proofs of these
analogues will demonstrate how inequalities between slopes — of vector bundles
over the curve C in this geometric setting — may be used to establish that, under
suitable positivity conditions, the hypotheses of our previous algebraicity criterion
are fullfilled (section 3). Albeit technically simpler in the function field case, these
arguments will give some insight into the proof of the arithmetic algebraization
criteria stated in sections 6 and 7.

Besides, we shall illustrate these arithmetic criteria by applications to the al-
gebraicity of leaves of algebraic foliation. Here, by an algebraic foliation over some
base field K, we mean a smooth algebraic variety X over K, equipped with some
sub-vector bundle F of the tangent bundle TX , that is involutive (i.e., whose sheaf
of sections is closed under Lie bracket). When K is a field of characteristic p > 0,
the sheaf of sections of TX is equipped with the operation of p-th power, and it
makes sense to require the sheaf of section of F to be closed under this operation.
When K is a field of characteristic zero, for any point P in X(K), one may con-
sider the formal leaf of the foliation (X,F ) through P, namely the unique smooth
formal subscheme V̂ of dimension rkF in the completion X̂p whose formal tangent
bundle coincides with the restriction of F .

When K is a number field with ring of integers OK , we may introduce some
smooth model X of X over an open subscheme S of SpecOK such that F extends
to a sub-vector bundle F of TX/S , and consider the following condition, which we
shall call the Grothendieck-Katz condition:

For almost every maximal ideal p in SpecOK , of residue characteristic p, the
involutive subbundle FFp of TXFp

is stable under p-th power.
It is easily seen to be satisfied when the foliation (X,F ) is algebraically integrable1.
The generalized conjecture of Grothendieck-Katz asserts that the converse holds. It
was initially formulated for linear differential systems by Katz [31] who attributes
it to Grothendieck. The general formulation of the conjecture is due to Ekedahl,
Shepherd-Barron, and Taylor [24]. Its investigation has been one of the main mo-
tivations behind the algebraicity results presented in this survey (see in particular,
Section 6 and Theorems 6.1 and 6.2 below) which may also be considered as ex-
tensions of the earlier works of Chudnovsky ([18]) and André ([2], Chapter VIII,
and [4], Section 5) on the original conjecture of Grothendieck-Katz.

For lack of space, we do not attempt to give any complete historical account
of the origins of the algebraization techniques discussed below. Let us however
indicate that these techniques — based on the consideration of maps sending global
sections of ample line bundles to their restrictions to thickened points — goes back
at least to the paper of Poincaré [37], where he presented an overview of his main

1This means, by definition, that for any field extension Ω of K, the formal leaf through any
point of X(Ω) of the algebraic foliation (XΩ, FΩ) is itself algebraic.
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results concerning abelian functions (see especially its Section II). Besides, the
original proof of Chow’s theorem relies on a criterion somewhat in the spirit of
Proposition 2.1 below (see [17], Theorem IV). One might also refer to the article
of Siegel [40] for historical comments on the proofs of algebraization statements in
the framework of analytic geometry during the “pre-GAGA” era.

Algebraicity criteria in a geometric setting involving positivity conditions in
the spirit of Theorem 3.1 below may also be deduced from classical results by An-
dreotti and Grauert on fields of meromorphic functions ([6], [5]) and by Hironaka,
Matsumura, and Hartshorne on fields of formal meromorphic functions ([30], [29]);
see [12], Section 3.3, and [9].

We refer to the monograph [7] for additional references concerning these tech-
niques of formal geometry and their applications to extension and connectedness
problems in projective geometry over a field. Many of these applications may be
expected to have arithmetic counterparts which would extend the results in this
article.

Conventions. The following notation and terminology are used throughout the
article.

By an algebraic scheme over some field k, we mean a separated scheme of finite
type over k. Integral subschemes of such an algebraic scheme X over k will be
called algebraic subvarieties of X.

Let G be an algebraic group over a field K of characteristic 0. Its Lie algebra
LieG is the fiber at the unit element e ∈ G(K) of the tangent bundle TG, and
may be identified with the K-vector space of the left-invariant regular sections of
TG over G. The Lie bracket on LieG is, by definition, the restriction of the Lie
bracket on vector fields in Γ(G,TG). A Lie subalgebra h, defined over K, of LieG
is called an algebraic Lie subalgebra when it is the Lie algebra of some algebraic
subgroup H in G. When this holds, the subgroup H may be supposed connected,
and then is unique and defined over any field of definition of G and h.

If K is a number field, its ring of integers will be denoted OK . For any non-zero
prime ideal p of OK , we let Np := |OK/p| its norm, Kp (resp. Op) the p-adic
completion ofK (resp. ofOK), and | |p the p-adic absolute value onKp normalized
in such a way that, for any uniformizing element $ of Op, |$|p = Np−1. We shall
also denote Kv the completion of K at some place v (possibly archimedean).

2. Algebraic formal germs and auxiliary polynomi-
als

Let X be an algebraic scheme over a field K, P a point of X(K), X̂P the formal
completion of X at P , and V̂ ↪→ X̂P a smooth formal subscheme. Such a V̂ will
also be called a smooth formal germ of subvariety through P in X. For any non-
negative integer i, we shall denote Vi the i-th infinitesimal neighborhood of P in
V̂ . Thus,

V0 = {P} ⊂ V1 ⊂ V2 ⊂ · · ·
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and
V̂ = lim

→
Vi.

We may consider the Zariski closure of V̂ in X, namely, the smallest closed
subscheme Z of X such that ẐP contain V̂ . Observe that it is a subvariety of
X containing P : the ideal in OX,P defining its germ at P is the intersection of
OX,P and of the ideal in its completion ÔX,P = OX̂P that defines V̂ , hence is
prime. Moreover, since ẐP contains V̂ , the dimension of Z is at least equal to the
dimension of V̂ .

The formal germ V̂ is called algebraic when these two dimensions are equal.
Indeed, using the basic properties of dimension and normalization, one easily checks
that this condition is equivalent to each of the following ones, which we could have
been used as alternative definitions:

(i) There exists a closed subvariety Z of X such that P belongs to Z(K) and
V̂ is a branch of Z through P (i.e., a component of the completion ẐP ).

(ii) There exist an integral algebraic scheme Y over K, a point 0 of Y (K) and
a K-morphism f : Y → X which maps 0 to P, such that the induced morphism
on formal completions

f̂0 : Ŷ0 −→ X̂P

factorizes through V̂ ↪→ X̂P and defines a formal isomorphism from Ŷ0 to V̂ .
Let us moreover assume that X is projective over K. We may choose an ample

line bundle L on X, and introduce the following K-vector spaces and K-linear
maps, for any non-negative integers D and i:

ED := Γ(X,L⊗D),

ηD : ED −→ Γ(V̂ , L⊗D)
s 7−→ s|V̂ ,

ηiD : ED −→ Γ(Vi, L⊗D)
s 7−→ s|Vi ,

and2

EiD := {s ∈ ED | sVi−1 = 0} = ker ηi−1
D .

Observe that there is a canonical isomorphism Γ(V̂ , L⊗D) ' lim←
i

Γ(Vi, L⊗D), by
means of which the map ηD gets identified with lim←

i
ηiD.

The subspaces EiD define a decreasing filtration of ED:

ED = E0
D ⊃ E1

D ⊃ . . . ⊃ EiD ⊃ Ei+1
D ⊃ . . .

Since the K-vector space ED is finite dimensional, this filtration is stationary, and
the very definition of Z as the Zariski closure of V̂ shows that, if IZ denotes its
ideal sheaf in OX , we have⋂

i≥0

EiD = ker ηD = Γ(X, IZ .L⊗D). (2.1)

2In this definition, when i = 0, we let V−1 = ∅ and η−1
D = 0.
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Finally, if TV̂ denotes the tangent space of V̂ , then, for any non-negative inte-
ger i, the kernel of the restriction map from Γ(Vi, L⊗D) to Γ(Vi−1, L

⊗D) may be
identified with SiŤV̂ ⊗ LDP , and the restriction of the evaluation map ηiD to EiD
defines a K-linear map:

γiD : EiD −→ SiŤV̂ ⊗ L
⊗D
P .

Roughly speaking, it is the map which sends a section of L⊗D vanishing up to
order i at P along V̂ to the (i + 1)-th “Taylor coefficient” of its restriction to V̂ .
By construction,

ker γiD = Ei+1
D . (2.2)

The following proposition shows how the algebraicity of V̂ and the asymptotic
behaviour of the ranks of the subquotients EiD/E

i+1
D are related. It may be con-

sidered as a geometric version of the techniques of “auxiliary polynomials” used in
the theory of Diophantine approximation: in our setting, the elements of the space
ED := Γ(X,L⊗D) play the role of auxiliary polynomials of degree D.

Proposition 2.1. The following three conditions are equivalent:
(i) the formal germ V̂ is algebraic;
(ii) there exists c > 0 such that, for any (D, i) ∈ N2 satisfying i > cD, the map

γiD vanishes;
(iii) the ratio ∑

i≥0(i/D)rk (EiD/E
i+1
D )∑

i≥0 rk (EiD/E
i+1
D )

(2.3)

does not admit the limit +∞ when D goes to infinity.

Condition (ii) may be also expressed by saying that, for every positive integer
D the filtration (EiD)i≥0 becomes stationary — or equivalently that ηD vanishes
on EiD — when i > cD.

The implication (i)⇒ (ii) is a straightforward consequence of the basic theory
of ample line bundles and their Seshadri constants (see for instance [34], Chapter
5, notably Proposition 5.1.9). The implication (ii) ⇒ (iii) is clear. We sketch
the proof of (ii) ⇒ (i) below. The one of the implication (iii) ⇒ (i) — which
constitutes the algebraicity criterion we shall use in the sequel — is similar, but
slightly more elaborate; see [13], Section 2.2, for more details.

Let us assume that condition (ii) holds, and let d denote the dimension of
V̂ , which we may assume positive Then, for any non-negative integers D and i,
the quotient vector space EiD/E

i+1
D = EiD/ ker γiD ' im γiD has rank at most

rk (SiŤV̂ ⊗ LDP ) =
(
d+i−1
i

)
and vanishes if i > cD. This implies that

rk (ED/
⋂
i≥0

EiD) =
∑
i≥0

rk (EiD/E
i+1
D ) ≤

[cD]∑
i=0

(
d+ i− 1

i

)
.

Moreover the last sum is equivalent to cd

d!D
d when D goes to infinity.
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Besides, according to (2.1),

ED/
⋂
i≥0

EiD = Γ(X,L⊗D)/Γ(X, IZ .L⊗D).

For D large enough, this space may be identified with Γ(Z,L⊗D) and its rank is
equivalent to deg LZ

(dimZ)!D
dimZ when D goes to infinity.

This shows that dimZ is at most d, and therefore is equal to d. This establishes
condition (i), and completes the proof of (ii)⇒ (i).

3. An algebraicity criterion for smooth formal germs
in varieties over function fields

Let C be a smooth projective, geometrically connected curve over some field k and
let K := k(C) be the associated function field.

Let X be a quasi-projective K-scheme, P a point in X(K), and V̂ ⊂ X̂P a
smooth formal germ of subvariety through P in X.

After possibly shrinking X, we may assume that it is quasi-projective and
choose a quasi-projective model3 π : X −→ C such that P extends to a section P
of π.

Recall that, if E is a vector bundle of positive rank on C, its slope is defined
as the quotient of its degree by its rank

µ(E) :=
degE
rkE

,

and its maximal slope µmax(E) is the maximum of the slopes µ(F ) of sub-vector
bundles of positive rank in E. Observe that, if L is any line bundle on C,

µmax(E ⊗ L) = µmax(E) + degL.

Moreover, if E1 and E2 are vector bundles over C with E2 of positive rank, and if
there exists some (generically) injective morphism of vector bundles ϕ : E1 → E2,
then the following slope inequality holds:

degE1 ≤ rkE1.µmax(E2). (3.1)

Finally, recall that a vector bundle E over C is ample iff it has positive rank and
there exists c > 0 such that, for any non-negative integer i,

µmax(SiĚ) ≤ −c.i.

3namely, a quasi-projective k-variety X , equipped with a flat k-morphism π : X → C and an
isomorphism of its generic fiber XK with X.
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Theorem 3.1 ([13], Theorem 2.5). With the above notation, assume that the
following two conditions are satisfied:
(i) the formal subscheme V̂ in X̂P extends to a formal subscheme V̂ of X̂P that is
smooth over C;
(ii) the normal bundle NP V̂ of V̂ along P is ample.
Then V̂ is algebraic.

This algebraicity criterion may be seen as a “geometric model”, concerning
functions fields, of the arithmetic algebraicity criterion in Theorem 6.1 below,
devoted to formal germs in varieties over number fields.

Our proof of Theorem 3.1 will rely on the implication (iii) ⇒ (i) in Propo-
sition 2.1. Indeed there exists a projective compactification of X to which the
morphism π extends. Therefore we may assume that X is projective, and choose
some ample line bundle L on X . Let L := LK be its restriction to X, and let ED,
EiD, η

i
D, and γiD be as in the previous section. We are going to show that, when

conditions (i) and (ii) in Theorem 3.1 are satisfied, the ratio (2.3) stays bounded
when D goes to infinity.

To achieve this, let us consider the direct images ED := π∗L⊗D and π|Vi ∗L⊗D,
where Vi denotes the i-th infinitesimal neighbourhood of P in V. These are torsion
free coherent sheaves — or equivalently vector bundles — on C, which at the
generic point SpecK of C coincide with the K-vector spaces ED and Γ(Vi, L⊗D).
Moreover, every restriction map ηiD : ED −→ Γ(Vi, L⊗D) extends to a morphism
of vector bundles:

ηiD : ED −→ π|Vi ∗L⊗D
s 7−→ s|Vi .

The filtration (EiD)i≥0 of ED also extends to the filtration of ED by the sub-vector
bundles E iD := ker ηi−1

D . Finally, the kernel of the restriction map from π|Vi ∗L⊗D

to π|Vi−1 ∗L⊗D may be identified with Si(ŇP V̂) ⊗ P∗L⊗D and the restriction of
the evaluation map ηiD to E iD defines a morphism of vector bundles γiD : E iD →
Si(ŇP V̂)⊗P∗L⊗D, which coincides with γiD at the generic point of C. The kernel
of γiD is E i+1

D and therefore γiD factorizes through a (generically) injective morphism
of vector bundles γ̃iD : E iD/E

i+1
D → Si(ŇP V̂)⊗ P∗L⊗D.

The ampleness of NP V̂ and the slope inequality (3.1) applied to the morphisms
γ̃iD now show that, for some c > 0 independent of i and D, we have:

deg (E iD/E i+1
D ) ≤ rk (EiD/E

i+1
D )(−c.i+D.degP∗L).

Besides, since L is ample, the sheaf ED is generated by its global sections for D
large enough, and consequently:

deg (ED/
⋂
i≥0

E iD) ≥ 0.

Moreover we may write:

deg (ED/
⋂
i≥0

E iD) =
∑
i≥0

deg (E iD/E i+1
D ).
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When D is large enough, the above three inequalities establish that

c.
∑
i≥0

(i/D) rk (EiD/E
i+1
D ) ≤ degP∗L.

∑
i≥0

rk (EiD/E
i+1
D ),

and finally that the ratio (2.3) is at most (degP∗L)/c.

The following application of Theorem 3.1 illustrates how the algebrization cri-
teria contained in Proposition 2.1 and Theorem 3.1 lead to non-trivial geometric
consequences in spite of the elementary nature of its proof (see also [9], [20], and
[32] for applications of similar techniques to algebraic and rationally connected
leaves of algebraic foliations).

Theorem 3.2 ([13], Theorem 2.6). Let C be a smooth projective, geometrically
connected curve over a field k of characteristic zero, K := k(C) its function field,
and π : G → C a smooth group scheme over C. Let G := GK be its generic fiber,
and LieG its Lie algebra4.

If the sub-vector bundle of LieG defined by some Lie subalgebra (over K) h of
LieG is ample, then it is an algebraic Lie subalgebra. More specifically, there exists
a unipotent linear K-algebraic subgroup H in G such that h = LieH.

In the classical analogy between function fields and number fields, this state-
ment may be considered as a counterpart of Diophantine results concerning alge-
braic groups over number fields such as Theorem 6.3 below.

Observe also that, if G is a semi-abelian variety over K (hence does not ad-
mit any non-trivial unipotent algebraic subgroup), Theorem 3.2 asserts the semi-
negativity of LieG. When G is an abelian scheme over C, this also follows from a
classical curvature argument due to Griffiths.

Under the hypotheses of Theorem 3.2, to establish the existence of an algebraic
subgroup H of G such that h = LieH, one applies Theorem 3.1 in the situation
where X is G, P is the unit element e of G(K), and V̂ is the “formal exponential”
of the Lie subalgebra h, namely, the formal subgroup of Ĝe such that TP V̂ = h.
Its Zariski closure provides the sought for algebraic subgroup.

When the Lie bracket vanishes on h, one may consider the vector group Vect(h)
defined by h and the product G′ := Vect(h) × G. The graph of the injection
h ↪→ LieG is an algebraic Lie subalgebra of LieG′, and is the Lie algebra of the
graph of an isomorphism Vect(h) ' H ↪→ G.

In general, one establishes that H is linear and unipotent by a similar argument,
after having deduced that h is nilpotent from analyzing the compatibility of the Lie
bracket on h with the Harder-Narasimhan filtration of the associated sub-vector
bundle in LieG.

4It is defined as the restriction along the zero section of π of the relative tangent bundle Tπ . It
is a vector bundle over C, equipped with a OC -bilinear Lie bracket, which coincides at the generic
point SpecK of C with the Lie bracket of the Lie algebra LieG ' (LieG)K of the K-algebraic
group G.
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4. Sizes of formal subschemes over p-adic and global
fields

This section and the next one are devoted to preliminaries needed for stating our
arithmetic algebraization criteria in Sections 6 and 7.

We first describe some constructions introduced in [12], Section 3, and further
developed in [13], Section 4.1, and [14], Section 2. We refer to these papers for
details and proofs.

Let k be a p-adic field (i.e., a finite extension of Qp), O its subring of integers
(i.e., the integral closure of Zp in k), | | : k → R+ its absolute value, and F its
residue field5.

4.1. Groups of formal and analytic automorphisms. If g :=∑
I∈Nd aIX

I is a formal power series in k[[X1, · · · , Xd]] and if r ∈ R∗+, we de-
fine

‖g‖r := sup
I
|aI |r|I| ∈ R+ ∪ {+∞}.

The “norm” ‖g‖r is finite iff the series g is convergent and bounded on the open
ball of radius r in k

d
.

Let Âdk be the formal completion at the origin of the d-dimensional affine space
over k. Its group Aut Âdk of automorphisms may be identified with the space of
d-tuples f = (fi)1≤i≤d of formal series fi ∈ k[[x1, · · · , xd]] such that f(0) = 0 and

Df(0) :=
(
∂fi
∂xj

(0)
)

1≤i,j≤d
belongs to GLn(k).

We shall consider the following subgroups of Aut Âdk:

• the subgroup Gfor formed by the formal automorphisms f such that Df(0)
belongs to GLn(O);

• the subgroup Gω formed by the elements f := (fi)1≤i≤d of Gfor such that
the series fi have positive radii of convergence;

• for any r ∈ R∗+, the subgroup Gω(r) of Gω formed by the elements f :=
(fi)1≤i≤d of Gfor such that the series fi satisfy the bounds ‖fi‖r ≤ r.

The group Gω(r) may be seen as the group of analytic automorphisms, de-
fined over k and preserving the origin, of the open d-dimensional ball of radius r.
Moreover we have:

r′ > r > 0 =⇒ Gω(r′) ⊂ Gω(r) and
⋃
r>0

Gω(r) = Gω.

5Actually we might assume more generally that k is any field equipped with a complete non-
Archimedean absolute value | | : k → R+ and let O := {t ∈ k | |t| ≤ 1} be its valuation ring.
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4.2. The size SX (V̂ ) of a formal germ V̂ . The filtration (Gω(r))r>0

of the group Gω may be used to attach a number SX (V̂ ) in [0, 1] to any smooth
formal germ V̂ in an algebraic variety X over k, depending on the choice of some
model X of X over O. This number shall provide some quantitative measure of
the analyticity of V̂ .

Let V̂ be a formal subscheme of Âdk. For any ϕ in Aut Âdk, we may consider
its inverse image ϕ∗(V̂ ), which also is a formal subscheme of Âdk. Observe that V̂
is a smooth formal scheme of dimension v iff there exists ϕ in Aut Âdk such that
ϕ∗(V̂ ) is the formal subscheme Âvk ×{0} of Âdk. Moreover, when this holds, ϕ may
be chosen in Gfor.

Similarly, the formal germ V̂ is analytic and smooth — namely, it is the formal
scheme attached to some germ at 0 of smooth analytic subspace of dimension v of
the d-dimensional affine space over k — iff there exists ϕ in Gω such that ϕ∗(V̂ )
is the formal subscheme Âvk × {0} of Âdk.

These observations lead us to introduce the size of a smooth formal subscheme
V̂ of dimension v of Âdk, defined as the supremum S(V̂ ) in [0, 1] of the real numbers
r ∈]0, 1] for which there exists ϕ in Gω(r) such that ϕ∗(V̂ ) is the formal subscheme
Âvk × {0} of Âdk.

More generally, if X is an O-scheme of finite type equipped with a section
P ∈ X (O) and if V̂ is a smooth formal subscheme of the formal completion X̂P

of X := Xk at P := Pk, then the size SX (V̂ ) of V̂ with respect to the model X of
X will be defined as the size of i(V̂ ), where i : U ↪→ AdO is an embedding of some
open neighbourhood U in X of the section P into an affine space of large enough
dimension d, which additionally maps P to the origin 0 ∈ AdO(O).

This definition is independent of the choices of U , d, and i, and extends the
previous one. Actually it satisfies the following invariance properties:
I1. If X is a subscheme of a scheme X ′ over O, then SX ′(V̂ ) = SX (V̂ ).
I2. If X , X, P, V̂ and X ′, X ′, P ′, V̂ ′ are as above, and if there exists an O-
morphism φ : X → X ′ mapping P to P ′, étale along P, such that the formal
isomorphism φ̂k : X̂P

∼→ X̂ ′P ′ maps isomorphically V̂ onto V̂ ′, then SX ′(V̂ ′) =
SX (V̂ ).

Besides, the size SX (V̂ ) is invariant by extension of the p-adic base field k (cf.
[14]).

Finally observe that, with the same notation as above, the size SX (V̂ ) is positive
iff V̂ is analytic. Moreover, if V̂ extends to a formal subscheme V̂ of the formal
completion of X along P which is smooth along P, then SX (V̂ ) = 1.

4.3. Size of formal leaves of algebraic foliations. It is possible
to establish lower bounds on the sizes of formal germs of solutions of algebraic
ordinary differential equations. These bounds will allow us to apply our arithmetic
algebraization criteria below to the solutions of algebraic differential equations —
or more generally, to leaves of algebraic foliations — defined over number fields.

Proposition 4.1. Let X be a smooth scheme over SpecO, P a section in X (O),
and F a sub-vector bundle of rank f in TX/O. Let us assume that the subbundle
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F := Fk of the tangent bundle TX of the smooth k-variety X := Xk is involutive,
and let V̂ be the formal germ of leave of this involutive bundle through P := Pk.

1) The size of V̂ with respect to X satisfies the lower bound:

SX (V̂ ) ≥ |π| := |p|
1
p−1 . (4.1)

2) If moreover k is absolutely unramified and if the reduction FF ↪→ TXF of F
to the closed fiber XF of X is closed under p-th power, then

SX (V̂ ) ≥ |p|
1

p(p−1) . (4.2)

This is proved in [12], Proposition 3.9, and [13], Proposition 4.1, by first re-
ducing the construction of V̂ to the one of the formal flow ψ(t1,...,tf ) of suitably
chosen commuting sections v1, . . . , vf of F. Then one studies the analyticity prop-
erties of this flow by expanding the map ψ∗(t1,...,tf ) (defined by ψ(t1,...,tf ) acting on
functions) à la Cauchy:

ψ∗(t1,...,tf ) = exp(
∑

1≤i≤f

ti.vi) :=
∑

(i1,...,if )∈Nf

ti11 . . . t
if
f

i1! . . . if !
Di1

1 ◦ . . . ◦D
if
f ,

where D1, . . . , Df denote the derivations of the sheaf of regular functions on X
defined by v1, . . . , vf .

4.4. A-germs. Consider an algebraic variety X over some number field K, P
a point in X(K), and V̂ a smooth formal subscheme in X̂P .

Let N be a positive integer and (X ,P) a model of (X,P ) over OK [1/N ]. For
any maximal ideal p in OK not dividing N, by base change we get a smooth formal
germ V̂Kp through PKp in the algebraic variety XKp over the p-adic field Kp, and
a model (XOp ,POp) over Op of the pair (XKp , PKp). Consequently, for any such
p, the size SXOp

(V̂Kp) is a well-defined element in [0, 1].
We shall say that the formal germ V̂ in X is A-analytic, or is an A-germ, when

the following two conditions are satisfied:

1. for any place v of K, the formal germ V̂Kv is Kv-analytic6;

2. the infinite product
∏

p-N SXOp
(V̂Kp) is positive, or equivalently,∑

p-N

logSXOp
(V̂Kp)−1 < +∞.

This pair of conditions does not depend on the choices of the integer N and
the model (X ,P). Moreover, it is invariant under extension of the base field7.

6or equivalently, if for any maximal ideal p of OK , the formal germ V̂Kp is Kp-analytic in

XKp , and for any complex embedding σ : K ↪→ C, V̂σ is C-analytic in Xσ .
7Namely, with the above notation, for any finite degree extension L of K, the formal germ V̂L

through PL in the algebraic variety XL over the number field L is A-analytic iff V̂ is.
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Recall that, if X is a variety over a number field K and P is some smooth
point in X(K), then the G-functions at the point P of X are the elements f in the
completion OX̂P of OX,P defined by similar conditions: the analyticity at every
place of K, and the positivity of the infinite product as in Condition 2 above,
where SXOp

(V̂Kp) is replaced by min(1, Rp), Rp denoting the p-adic radius of
convergence of f expressed in some fixed system of local coordinates on X at P
(see for instance [2] and [22] for details and references).

It is straightforward that, if the graph Grf of some f in OX̂P — which a smooth
formal germ through P ′ := (P, f(P )) in X ′ := X × A1 — is A-analytic, then f is
a G-function. Let us emphasize that the converse does not hold8.

Observe also that an algebraic smooth formal germ is always A-analytic. Even
more, if V̂ is an algebraic smooth formal germ in X̂P , where as above X denotes an
algebraic variety over some number field K and P a point in X(K), and if N is a
positive integer and (X ,P) some model of (X,P ) over SpecOK [1/N ], then almost
all the sizes SXOp

(V̂Kp) are equal to one. Indeed, after “shrinking” SpecOK [1/N ]
to SpecOK [1/N ′], with N ′ a suitable multiple of N, the formal scheme V̂ extends
to a formal subscheme V̂ of the formal completion of X along P which is smooth
along P. (In substance, this observation goes back to the last memoir of Eisenstein
[23], which may be considered as the starting point of the arithmetic theory of
differential equations.)

Finally, observe that Proposition 4.1 admits the following straightforward con-
sequence:

Corollary 4.2. If X is a smooth algebraic variety over some number field K and
if F is an involutive subbundle of TX that satisfies the Grothendieck-Katz condi-
tion (see Introduction), then the formal germ of leave of the so-defined algebraic
foliation through any point P in X(K) is A-analytic.

5. Condition L and canonical semi-norms

5.1. Consistent sequences of norms. Let k be a local field, X a pro-
jective scheme over k, and L a line bundle over X.

We may consider the following natural constructions of sequences of norms on
the spaces of sections Γ(X,L⊗n):
1. When k is a p-adic field, with ring of integer O, we may choose a pair (X ,L),
where X is a projective flat model of X over O, and L a line bundle over X
extending L. Then, for any integer n, the O-module Γ(X ,L⊗n) is (torsion-)free of
finite rank and may be identified with an O-lattice in the k-vector space Γ(X,L⊗n),
and consequently defines a norm on the latter — namely, the norm ‖.‖n such that
a section s ∈ Γ(X,L⊗n) satisfies ‖s‖n ≤ 1 iff s extends to a section of L⊗n over X .

8For instance, the series log(1 + x) :=
P+∞
n=1 x

n/n ∈ Q[[x]] defines a G-function at the point
0 in A1

Q. However, its graph coincides with the transpose of the graph of the series exp y − 1 :=P+∞
n=1 y

n/n!, which is not a G-function, and consequently is not an A-germ.
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2. When k = C and X is reduced, we may consider any continuous norm ‖.‖L on
the C-analytic line bundle Lan defined by L on the compact and reduced complex
analytic space X(C). Then, for any integer n, the space of algebraic regular sections
Γ(X,L⊗n) may be identified with a subspace of the space of continuous sections of
L⊗nan over X(C). THus it is endowed with the restriction of the L∞-norm, defined
by:

‖s‖L∞,n := sup
x∈X(C)

‖s(x)‖L⊗n for any s ∈ Γ(X,L⊗n), (5.1)

where ‖.‖L⊗n denotes the continuous norm on L⊗nan deduced from ‖.‖L by taking
the n-th tensor power.

This construction admits a variant where, instead of the sup-norms (5.1), we
may consider the Lp-norms defined by using some “Lebesgue measure” (cf. [12],
4.1.3, and [38], Théorème 3.10).
3. When k = R and X is reduced, the previous constructions define complex norms
on the complex vector spaces

Γ(X,L⊗n)⊗R C ' Γ(XC, L
⊗n
C )

and, by restriction, real norms on the real vector spaces Γ(X,L⊗n).

For any given k, X, and L as above, we shall say that two sequences (‖.‖n)n∈N
and (‖.‖′n)n∈N of norms on the finite k-dimensional vector spaces (Γ(X,L⊗n))n∈N
are equivalent when, for some positive constant C and any positive integer n,

C−n ‖.‖′n ≤ ‖.‖n ≤ C
n ‖.‖′n .

One easily checks that the previous constructions provide sequences of norms
(‖.‖n)n∈N on the spaces (Γ(X,L⊗n))n∈N which are all equivalent. A sequence of
norms on these spaces equivalent to one (or, equivalently, to any) of the sequences
thus constructed will be called consistent. This notion immediately extends to
sequences (‖.‖n)n≥n0 of norms on the spaces Γ(X,L⊗n) defined for n large enough.

When the line bundle L is ample, consistent sequences of norms are provided
by additional constructions. Indeed we have:

Proposition 5.1. Let k be a local field, X a projective scheme over k, and L
an ample line bundle over X. Let moreover Y be a closed subscheme of X, and
assume X and Y reduced when k is archimedean.

For any consistent sequence of norms (‖.‖n)n∈N on (Γ(X,L⊗n))n∈N, the quo-
tient norms (‖.‖′n)n∈N on the spaces (Γ(Y,L⊗n|Y ))n≥n0 , deduced from the norms ‖.‖n
by means of the restriction maps Γ(X,L⊗n) −→ Γ(Y,L⊗n|Y ) — which are surjective
for n ≥ n0 large enough since L is ample — constitute a consistent sequence.

When k is archimedean, this is proved in [13], Appendix, by introducing a
positive metric on L, as a consequence of Grauert’s finiteness theorem for pseudo-
convex domains applied to the unit disk bundle of Ľ (see also [38]). When k is a
p-adic field with ring of integersO, Proposition 5.1 follows from the basic properties
of ample line bundles over projective O-schemes.
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Let E be a finite dimensional vector space over the local field k, equipped
with some norm, supposed to be euclidean or hermitian in the archimedean case.
This norm induces similar norms on the tensor powers E⊗n, n ∈ N, hence — by
taking the quotient norms — on the symmetric powers SnE. If X is the projective
space P(E) := Proj Sym.(E) and L the line bundle O(1), then the canonical
isomorphisms SnE ' Γ(X,L⊗n) allow one to see these norms as a sequence of
norms on (Γ(X,L⊗n))n∈N. One easily checks that this sequence is consistent9.

For any closed subvariety Y in P(E) and any n ∈ N, we may consider the
commutative diagram of k-linear maps:

SnE
∼−→ SnΓ(P(E),O(1)) ∼−→ Γ(P(E),O(n))y yαn

SnΓ(Y,O(1))
βn−→ Γ(Y,O(n))

where the vertical maps are the obvious restriction morphisms. The maps αn, and
consequently βn, are surjective if n is large enough.

Together with Proposition 5.1, these observations yield the following corollary:

Corollary 5.2. Let k, E and Y a closed subscheme10 of P(E) be as above. Let us
choose a norm on E (resp. on Γ(Y,O(1))) and let us equip SnE (resp. SnΓ(Y,O(1)))
with the induced norm, for any n ∈ N.

Then the sequence of quotient norms on Γ(Y,O(n)) defined for n large enough
by means of the surjective morphisms αn : SnE −→ Γ(Y,O(n)) (resp. βn :
SnΓ(Y,O(1)) −→ Γ(Y,O(n))) is consistent.

5.2. Conditions L and Lv. Let k be a local field, and X a projective
integral scheme over k, equipped with an ample line bundle L. Moreover let m
V̂ ↪→ X̂P be a smooth formal germ in X through a point P ∈ X(k), and consider
its tangent space TP V̂ , the fiber LP of L at P, and the evaluation maps

γiD : Γ(X, IVi−1 ⊗ L⊗D) −→ SiŤV̂ ⊗ L
⊗D
P (5.2)

introduced in Section 2.
Let us choose a consistent sequence of norms (‖.‖n)n∈N on the k-vector spaces

(Γ(X,L⊗n))n∈N, and arbitrary norms ‖.‖TP V̂ on TP V̂ and ‖.‖LP on LP . Then we
may consider the operator norms

∥∥γiD∥∥ of the maps (5.2) and their logarithms
log
∥∥γiD∥∥ in [−∞,+∞[.
We shall say that V̂ satisfies condition L when

lim
i/D→+∞

1
i

log
∥∥γiD∥∥ = −∞. (5.3)

Clearly this condition does not depend on the above choices of norms. It is also
invariant by extension of the local field k, and is easily seen not to depend on the

9This is straightforward in the p-adic case. When k is archimedean, this follows for instance
from [15], Lemma 4.3.6.

10reduced if k is archimedean.
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choice of the ample line bundle L. Proposition 5.1 also implies that it is invariant
under “reembedding” of X into some larger projective variety.

Moreover condition L is birationally invariant in the following sense: if X ′ · · · →
X is a birational map between projective varieties over k that define an isomor-
phism f : U ′ ∼−→ U between non-empty open subvarieties in X ′ and X, and if P
belongs to U(k), then a smooth formal germ V̂ through P in X satisfies L iff the
smooth formal germ f∗V̂ through P ′ := f−1

|U ′(P ) in X ′ does. (See [13], 3.2, when

k is archimedean and dim V̂ = 1; the general case is similar.)
As a consequence, condition L makes sense for a smooth formal germ V̂ ↪→ X̂P

through a k-rational point in a general algebraic variety X over k — namely, if
U is any quasi-projective open neighbourhood of P in X and if X̃ is a projective
completion of U, we shall say that V̂ satisfies L when V̂ seen as a formal sub-
scheme of X̃ satisfies it. Again, this condition is invariant under extension of k
and reembedding of X.

Finally, if K is a number field and v a place of K, we shall say that a smooth
formal subscheme V̂ ↪→ X̂P through a rational point P in a variety X over K
satisfies condition Lv when the formal subscheme V̂Kv through P in XKv , deduced
from V̂ by extension of scalars from K to the completion Kv of K at v satisfies
condition L over the local field Kv.

5.3. Condition L over C and Liouville complex manifolds. A
connected complex manifold M is said to satisfy the Liouville property, or to be a
Liouville complex manifold, when every bounded plurisubharmonic function on M
is constant. In particular, the connected Riemann surfaces satisfying the Liouville
property are precisely the ones which are “parabolic” in the sense of Myrberg, or
equivalently, have “null-boundary” in the sense of R. Nevanlinna.

The following observations are straightforward consequences of the basic prop-
erties of plurisubharmonic functions and algebraic varieties:

1. Let π : M −→ N be a surjective analytic map between connected complex
manifolds. If M is a Liouville, then N is Liouville. Conversely, when π has
smooth connected fibers, if N and the fibers of π are Liouville, then M also
is Liouville.

2. The complement of any closed pluri-polar subset (for instance, a lower di-
mensional analytic subset) in a Liouville complex manifold is again Liouville.

3. Any compact connected complex manifold is Liouville.

4. The manifold of complex points of any smooth connected complex algebraic
variety is Liouville.

5. Any connected complex Lie group is a Liouville complex manifold.

Over archimedean local fields, the property L may be checked in various signif-
icant cases by means of the following criterion:
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Proposition 5.3 ([12], Proposition 4.12)). Let X be a complex algebraic variety,
P a point in X(C), and V̂ ↪→ X̂P a smooth formal germ through P.

Let us assume that there exist a connected complex manifold M, a point O
in M, and a C-analytic map ϕ : M −→ X(C) sending O to P that induces an
isomorphism of formal germs

ϕ̂O : M̂O
∼−→ V̂ . (5.4)

If furthermore M is Liouville, then V̂ satisfies L.

5.4. Germs of analytic curves in algebraic varieties over local
fields and canonical semi-norms. In this paragraph, we return to the
notation of the beginning of 5.2, and we assume that the smooth formal germ V̂ is
one-dimensional and k-analytic. Then, by means of the evaluation maps γiD (see
(5.2)) and their operator norms, as in the definition of condition L by (5.3), we
may define some canonical semi-norm ‖.‖can

P,V̂ on the k-line TP V̂ as follows. We
consider

ρ := lim sup
i/D→+∞

1
i

log
∥∥γiD∥∥ .

A straightforward application of Cauchy’s inequalities shows that it belongs to
[−∞,+∞[, and therefore by setting

‖.‖can
P,V̂ := eρ ‖.‖TP V̂ ,

we define a semi-norm on TP V̂ .
For a given projective variety X containing V̂ , one easily checks that it depends

neither on the auxiliary choices of norms, nor on the ample line bundle L. Actually,
like condition L, the canonical semi-norm ‖.‖can

P,V̂ is invariant under “reembedding”
of X in some larger projective variety, and by birational isomorphisms which are
isomorphisms in some neighbourhood of P ([13], 3.2-3, and [14]). Consequently,
the canonical semi-norm on TP V̂ may be defined for any smooth analytic germ of
curve V̂ ↪→ X̂P through a rational point in a algebraic scheme over k.

In the p-adic case, Cauchy’s inequalities lead actually to the following upper
bound on the canonical semi-norm in terms of the size relative to some model:

Lemma 5.4. Let k be a p-adic field, O its ring of integers, and X a separated
scheme of finite type over O equipped with a section P . Let V̂ be a smooth formal
subscheme of the formal completion X̂Pk of X := Xk at Pk. If V̂ is one-dimensional
and analytic, and if ‖.‖XTP V̂ denote the p-adic norm on the k-line TP V̂ defined by
the integral model X 11, then we have:

‖.‖can
P,V̂ ≤ SX (V̂ )−1. ‖.‖XTP V̂ .

Finally observe that the construction of ‖.‖can
P,V̂ is compatible with (finite degree)

extensions of the local field k.
11By definition, the unit disk in ŤP V̂ equipped with the norm dual to ‖.‖X

TP V̂
is the O-lattice

image of the composite map P ∗Ω1
X/O → Ω1

X/k|Pk
� ŤP V̂ .
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5.5. Canonical semi-norms and capacity. Recall that, if M is a Rie-
mann surface, O a point of M, and Ω an open neighbourhood of O that is rel-
atively compact in M and has a non-empty sufficiently regular boundary12, we
may consider the Green function of O in Ω, namely the continuous function
gO,Ω : Ω \ {O} → R+ which vanishes on the boundary of Ω, is harmonic on
Ω \ {O}, and possesses a logarithmic singularity at O. In other words, if z denotes
some holomorphic coordinates on some open neighbourhood U of O, we have

gO,Ω = log |z − z(O)|−1 + h on U \ {O},

where h is a harmonic function on U . From the value of h at O, one defines the
capacitary norm ‖.‖cap

O,Ω on the complex line TOM = C ∂
∂z |O by

‖ ∂
∂z |O

‖cap
O,Ω := e−h(O) = lim

Q→O

e−gOΩ(Q)

|z(Q)− z(O)|
. (5.5)

Proposition 5.5 ([13], Proposition 3.6). With the above notation, if f : Ω → X
is a holomorphic map with value in some complex algebraic variety X, and if C
denotes some germ of smooth analytic curve through P := f(O) in X such that f
maps the germ of Ω at O to C, then, for any v in TOM,

‖Df(O)v‖can
P,C ≤ ‖v‖

cap
O,Ω.

The construction of the Green function gP,Ω admits analogues over p-adic
curves, developed in particular by Rumely [39] and Thuillier [41] (see also [14]
for a more “algebraic” approach relying on formal geometry). This Green function
makes sense for instance when M is a smooth projective geometrically connected
algebraic curve over some p-adic field k, O is some point in M(k), and Ω is defined
as the complement of some non-empty affinoid subspace of X that does not contain
P . It has a logarithmic singularity at O and the equation (5.5) still makes sense
and defines the capacitary norm as a p-adic norm on the k-line TOM . Moreover
Proposition 5.5 still holds with k instead of C as a base field, and “rigid analytic”
instead of “holomorphic” (cf. [14], Sections 6 and 7).

6. An algebraicity criterion for smooth formal germs
in varieties over number fields

6.1. An algebraization theorem. The following theorem provides suffi-
cient conditions of algebraicity for a formal subscheme of the formal completion X̂P

of some algebraic variety X over a number field K at a rational point P ∈ X(K).

12say, a domain with differentiable non-empty boundary, or in other terms, the interior of some
connected 2-dimensional submanifold with non-empty boundary. See also [11], especially A.8, for
weaker conditions.
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Theorem 6.1. Let X be an algebraic variety over a number field K, P a point in
X(K), and V̂ a smooth formal subscheme of the completion X̂P of X at P .

If V̂ is A-analytic and satisfies condition Lv for some place v of K, then V̂ is
algebraic.

This theorem is proved by using the algebraicity criterion (iii)⇒ (i) in Propo-
sition 2.1. Validity of condition (iii) is derived by means of slope inequalities,
involving now heights of K-linear maps and arithmetic slopes attached to hermi-
tian vector bundles over SpecOK , in the spirit of the proof of Theorem 3.1. See
[12], Section 4 when the place v is archimedean; the general case is similar.

6.2. Algebraic leaves of algebraic foliations over number fields.
Combined with Corollary 4.2 and Proposition 5.3, Theorem 6.1 admits the follow-
ing consequence:

Theorem 6.2 ([12], Theorem 2.1). Let X be a smooth algebraic variety of a num-
ber field K equipped with an involutive subbundle F, and let P be point in X(K).
If (i) the algebraic foliation (X,F ) satisfies the Grothendieck-Katz condition, and
(ii) for some field embedding σ0 : K ↪→ C, the analytic leaf through P of the com-
plex analytic foliation (X(C), FC) is Liouville, then the leaf of (X,F ) through P is
algebraic.

6.3. Algebraic Lie subalgebras of algebraic groups over num-
ber fields. Let G be an algebraic group over a number field K. For any suf-
ficiently divisible integer N , there exists a model G of G, i.e., a smooth quasi-
projective group scheme over S := SpecOK [1/N ] whose generic fiber GK coincides
with G. The restriction to the zero-section of G of the relative tangent bundle
TG/S defines the Lie algebra LieG of G: it is a finitely generated projective module
and a Lie algebra over OK [1/N ], and the K-Lie algebra (LieG)K is canonically
isomorphic to LieG.

Moreover, for every maximal ideal p of OK [1/N ] with residue field Fp and
characteristic p, the Fp-Lie algebra (LieG)Fp is canonically isomorphic to the Lie
algebra of the smooth algebraic group GFp over the finite field Fp, and is therefore
endowed with a p-th power map, given by the restriction of the p-th power map
on global sections of TGFp

to the left-invariant ones.
For translation invariant foliations on G, Theorem 6.2 takes the following form

which proves a conjecture of Ekedahl, Shepherd-Barron, and Taylor ([24]):

Theorem 6.3 ([12], Theorem 2.3). For any Lie subalgebra h of LieG (defined
over K), the following two conditions are equivalent:

(i) For almost every maximal ideal p of OK [1/N ], the Fp-Lie subalgebra (h ∩
LieG)Fp of LieGFp is closed under p-th powers.

(ii) h is an algebraic Lie subalgebra of LieG.

6.4. Ogus conjecture on absolute Tate cycles in abelian vari-
eties. Theorem 6.3 may be extended to the case where the field K is any exten-
sion of finite type of Q, in the spirit of the original formulation of the Grothendieck-
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Katz conjecture [31]. In this section, we discuss some consequence of this general-
ization.

Let K be a field of characteristic zero, extension of finite type of Q, and let X
be a proper and smooth scheme over K. We can find models of X and K which are
smooth over Spec Z — namely an integral affine scheme S = SpecR smooth over
Spec Z such that K is the function field κ(S) of S, and a proper and smooth scheme
X over S such that X = XK . After possibly shrinking S, we can also assume that
the Hodge cohomology groups Hq(X ,ΩpX/S) are flat R-modules. This implies that
the formation of the (relative) Hodge and de Rham cohomology groups of X is
compatible with any base change S′ → S and the degeneracy of the “Hodge to de
Rham” spectral sequence.

Let k be a perfect field of characteristic p > 0, W its ring of Witt vectors, σ
a point in S(k), and σ a lift of σ in S(W ). The crystalline cohomology groups
Hi

cris(Xσ/W ) are W -modules functorially attached to the k-scheme Xσ. In par-
ticular, the absolute Frobenius endomorphism of Xσ induces a Frobenius-linear
endomorphism Φ of the W -module Hi

cris(Xσ/W ). Besides, the comparison theo-
rem of Berthelot ([8]) provides a canonical isomorphism from this W -module onto
the de Rham cohomology Hi

dR(Xσ/W ) ' Hi
dR(X/R) ⊗σ W. Consequently, Φ de-

fines a semi-linear endomorphism Φσ of the W -module Hi
dR(X/R)⊗σ W.

Let r be an integer in {0, . . . ,dimX}. Following the terminology of Ogus in
[36], a class ξ in the algebraic de Rham cohomology group H2r

dR(X/S) over R is
said to be absolutely Tate iff, for any p, k, and σ as above13, the equality

Φσ(ξ) = prξ

holds in H2r
dR(X/S)⊗σW. More generally a class ξ in H2r

dR(X/K) is said to be abso-
lutely Tate if, after possibly replacing S by some non-empty affine open subscheme,
it is absolutely Tate in H2r

dR(X/S).
For instance, any algebraic class, namely any class in the image of the “cycle

class” map Zr(X)Q −→ H2r
dR(X/K), is absolutely Tate. Ogus ([36], Section 2)

conjectured that the converse holds, that is:
O(X, r): every absolutely Tate class in H2r

dR(X/K) is algebraic.
As a consequence of the aforementioned generalization14 of Theorem 6.3 to

algebraic groups over K, we can prove:

Theorem 6.4. For any field extension K of finite type of Q, the conjecture O(X, r)
holds when X is an abelian variety over K and r = 1.

See [3], Section 7.4, for a related result, which characterizes the K-linear maps
between the first de Rham cohomology groups of abelian varieties over a number

13Actually, one might consider only some “limited” classes of fields k and points σ in X (k) —
for instance, closed points, or geometric generic points of the fibres of S → Spec Z — which still
define the same condition.

14This generalization concerns an algebraic group G over K, and a smooth group scheme G
extending it over S; in condition (i) in Theorem 6.3, one now requires the p-closure condition to
hold for every closed point p in some non-empty open subscheme of S over which h extends as a
subvector bundle of LieG. Its proof relies on the fact that a complex manifold is Liouville when
it may be fibered over a complex algebraic variety with fibers some complex Lie groups.
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field K induced by morphisms of K-varieties as the ones compatible with (almost
all) the crystalline Frobenius maps15.

The derivation of Theorem 6.4 relies on the identification of the Lie algebra
of the universal vector extension of the dual abelian variety X̂ with the de Rham
cohomology group H1

dR(X/K), and on the fact that the p-th power map on the
reduction of this Lie algebra at some closed point p in S of residue characteristic
p coincides with the reduction modulo p of the crystalline Frobenius at p.

7. An algebraicity criterion for smooth formal curves
in varieties over number fields

7.1. Normed and semi-normed lines over number fields. We
define a normed line

L := (LK , (‖.‖p), (‖.‖σ))

over a number field K as the data of a rank one K-vector space LK , of a family
(‖.‖p) of p-adic norms on the Kp-lines LK ⊗K Kp indexed by the non-zero prime
ideals p of OK , and of a family (‖.‖σ) of hermitian norms on the complex lines
LK ⊗K,σ C, indexed by the fields embeddings σ : K ↪→ C. Moreover the family
(‖.‖σ) is required to be stable under complex conjugation16.

We shall say that a normed K-line is summable if for some (or equivalently, for
any) non-zero element l of LK , the family of real numbers (log ‖l‖p)p is summable.
Then we may define its Arakelov degree as the real number

d̂egL :=
∑
p

log ‖l‖−1
p +

∑
σ

log ‖l‖−1
σ . (7.1)

Indeed, by the product formula, the right-hand side of (7.1) does not depend on
the choice of l.

Observe that hermitian line bundles over SpecOK , as usually defined in Arakelov
geometry, provide examples of normed lines over K: if L = (L, (‖.‖σ)σ:K↪→C)) is
such an hermitian line bundle — so L is a projective OK-module of rank 1, and
(‖.‖σ)σ:K↪→C) is a family, invariant under complex conjugation, of norms on the
complex lines Lσ := L ⊗σ:OK→C C — the corresponding normed K-line is LK
equipped with the p-adic norms defined by the Op-lattices L⊗OK Op in L⊗OKKp

' L⊗KKp and with the hermitian norms (‖.‖σ). The so-defined normed lines are

15The author became aware of Ogus conjecture in the above formulation while reading a pre-
liminary version of Y. André’s beautiful survey on motives [3], and realized that, when K is a
number field, X an abelian variety, and r = 1, it would be a consequence of Theorem 6.3. Actu-
ally, in [36], Section 2, Ogus formulate more general conjectures, stated in terms of the conjugate
filtration on H∗dR(X/K) and its reductions, and asks explicitly about the validity of O(X, r) only
when K is a number field.

16The data of these families of norms is equivalent to the data of a family (‖.‖v)v , indexed by
the set of all places v of K, of v-adic norms on the rank one vector spaces Lv := LK ⊗K Kv over
the v-adic completions Kv of K.
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summable, and their Arakelov degree, as defined by (7.1), coincide with the usual
Arakelov degree of hermitian line bundles.

It is convenient to extend the definitions of normed lines and Arakelov degree
as follows: we shall define a semi-normed K-line L as a K-vector space LK of rank
one, equipped with families of semi-norms (‖.‖p) and (‖.‖σ), where the latter is
assumed to be stable under complex conjugation. In other words, we allow some
of the ‖.‖p or ‖.‖σ to vanish.

We shall say that the Arakelov degree of a semi-normed K-line L is well-defined
if, for some (or equivalently, for any), non-zero element l of LK , the family of real
numbers (log+ ‖l‖p)p is summable. Then we may again define its Arakelov degree
by means of (7.1), where we follow the usual convention log 0−1 = +∞. It is an
element of ]−∞,+∞].

7.2. Arithmetic positivity and algebraicity of A-germs of curves.
The following algebraicity criterion is a refined version of Theorem 6.1, concerning
formal germs of curves:

Theorem 7.1 ([14]). Let X be an algebraic variety over a number field K, P a
point in X(K), and V̂ a smooth formal subscheme of dimension 1 in the completion
X̂P of X at P .

Assume that the following two conditions are satisfied:
(i) V̂ is A-analytic;
(ii) the semi-normed K-line

TP V̂
can := (TP V̂ , (‖.‖can

P,V̂Kp
), (‖.‖can

P,V̂σ
)),

defined by endowing TP V̂ with its canonical semi-norm at every place of K, satisfies

d̂eg TP V̂ can > 0. (7.2)

Then V̂ is algebraic.

Observe that, as a consequence of Lemma 5.4, the Arakelov degree of TP V̂ can

is well defined in ]−∞,+∞] when Condition (i) is satisfied. Moreover it takes the
value +∞ if there exists some place v of K such that Condition Lv is satisfied.

7.3. A rationality criterion for formal germs of functions on
algebraic curves over number fields. Let K be a number field, C a
regular projective arithmetic surface over SpecOK whose generic fiber C := XK is
geometrically connected, P a point in X(K), and P in X (OK) extending P .

Let F be a finite set of closed points in SpecOK and, for any p in F , let Ωp

be the complement in the rigid curve XKp of some affinoid not containing PKp .
Moreover, for any embedding σ : K → C, let Ωσ be an open neighbourhood of
Pσ in the Riemann surface Cσ(C), which for simplicity we suppose to be domains
with differentiable non-empty boundaries. We shall assume that the data of the
Ωσ’s are compatible with complex conjugation, namely, that for any embedding σ,
Ωσ is the complex conjugate of Ωσ.
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Let finally T
cap

P C := (TPC, (‖.‖p), (‖.‖σ)) be the semi-normed line over K de-
fined by the tangent line TC of C at P, equipped with the p-adic norm ‖.‖p :=
‖.‖cap

PKp ,Ωp
if p belongs to F , and otherwise with the p-adic norm deduced from the

integral structure on NPX (through the isomorphism TPC ⊗K Kp ' NPX ⊗OK
Kp). Its Arakelov degree is clearly defined.

The following theorem extends the classical rationality criteria of Borel-Dwork
and Polya-Bertrandias (cf. [21] and [1], Chapter 5); one recovers them in the
special case C = P1

K .

Theorem 7.2 ([14]). With the above notation, let ϕ ∈ ÔC,P be a formal germ of
function on C at P , and assume that the following conditions are satisfied:
(i) for any p in F (resp. any embedding σ : k ↪→ C), after the base change
K ↪→ Kp (resp. σ), ϕ extends to a rigid meromorphic function on Ωp (resp. to a
meromorphic function on Ωσ);
(ii) the formal function ϕ extends to a formal rational function on the completion
X̂P over SpecOK \ F ;
(iii) d̂eg T

cap

P C > 0.
Then ϕ is rational, i.e., is an element of the local ring OX,P ⊂ ÔX,P .

To establish Theorem 7.2, we consider the graph of ϕ. It is a formal germ of
curve through the point (P,ϕ(P )) in the algebraic variety X := C × P1

K over K.
From Theorem 7.1, Proposition 5.5, and its p-adic analogue, we derive that this
graph is algebraic. Finally, we show that it is the germ of graph of some rational
function on C by applying a generalization of the connectedness theorems in [11],
Section 4.
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[15] J.-B. Bost, H. Gillet, and C. Soulé. Heights of projective varieties and positive Green
forms. J. Amer. Math. Soc., 7(4):903–1027, 1994.
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