Apéry-Fermi pencil of K3-surfaces and 2-isogenies

(to appear in J. of Math. Soc. of Japan) arXiv:1804.04394v1 [math. AG]

Marie José BERTIN (Joint work with Odile LECACHEUX)

Sorbonne Université Institut de Mathématiques de Jussieu-Paris Rive Gauche Case 247 4 Place Jussieu, 75252 PARIS Cedex 05, France marie-jose.bertin@imj-prg.fr

March 23, 2019

Background

History of the family of Laurent polynomials

$$P_k = X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} - k$$

defining the K3-surfaces Y_k .

- First studied by Peters and Stienstra (1989)

 "A pencil of K3-surfaces related to Apéry's recurrence for $\zeta(3)$ and Fermi surfaces for potential zero"

 (among all they gave its Picard-Fuchs differential equation),
- and used by Bertin to find explicit Mahler measures of the polynomials (2006, 2010, 2018).
- Bertin and Lecacheux found all the 30 elliptic fibrations of Y_2 (2010).

- Recently (April 2018), Bertin and Lecacheux found all the 27 elliptic fibrations with a Weierstrass equation of the generic member Y_k . Moreover when these fibrations are endowed with a 2-torsion section, they studied the corresponding 2-isogenies.
- Almost at the same time (October 2018), Festi and van Straten published
 - "Bhabha Scattering and a special pencil of K3-surfaces" relating this pencil to quantum field theory and Feynman diagrams.

Definitions and generalities about K3-surfaces

What's a K3-surface?

 A double covering branched along a plane sextic for example defines a K3- surface X.
 In our case

$$(2z + x + \frac{1}{x} + y + \frac{1}{y} - k)^2 = (x + \frac{1}{x} + y + \frac{1}{y} - k)^2 - 4$$

- ullet There is a unique holomorphic 2-form ω on X up to a scalar.
- $H_2(X,\mathbb{Z})$ is a free group of rank 22.

• With the intersection pairing, $H_2(X,\mathbb{Z})$ is a lattice and

$$H_2(X,\mathbb{Z})\simeq U_2^3\perp (-E_8)^2:=\mathcal{L}$$

 \mathcal{L} is the K3-lattice, U_2 the hyperbolic lattice of rank 2, E_8 the unique even positive definite unimodular lattice of rank 8.

$$Pic(X) \subset H_2(X,\mathbb{Z}) \simeq Hom(H^2(X,\mathbb{Z}),\mathbb{Z})$$

where Pic(X) is the group of divisors modulo linear equivalence, parametrized by the algebraic cycles.

$$Pic(X) \simeq \mathbb{Z}^{
ho(X)}$$
 $ho(X) := ext{Picard number of } X$
 $1 \leq
ho(X) \leq 20$

$$T(X) := (Pic(X))^{\perp}$$

is the transcendental lattice of dimension $22 - \rho(X)$

• If $\{\gamma_1, \cdots, \gamma_{22}\}$ is a \mathbb{Z} -basis of $H_2(X, \mathbb{Z})$ and ω the holomorphic 2-form,

$$\int_{\gamma_i} \omega$$

is called a period of X and

$$\int_{\gamma} \omega = 0 \text{ for } \gamma \in Pic(X).$$

• If $\{X_z\}$ is a family of K3 surfaces, $z \in \mathbb{P}^1$ with generic Picard number ρ and ω_z the corresponding holomorphic 2-form, then the periods of X_z satisfy a Picard-Fuchs differential equation of order $k=22-\rho$. For our family k=3.

 In fact, by Morrison, a M-polarized K3-surface, with Picard number 19 has a Shioda-Inose s tructure, that means

$$X$$
 $A = E \times E/C_N$ $Y = Kum(A/\pm 1)$

• If the Picard number $\rho = 20$, then the elliptic curve E is CM.

Properties of the Apéry-Fermi pencil

Affine equations:

$$X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} = k, \quad k \in \mathbb{C}$$

Let $k = s + \frac{1}{s}$, the fibers of the Fermi fibration

$$\pi_s:\mathcal{Z} o\mathbb{P}^1(s)$$

give elliptic K3-surfaces Y_k except $s \notin \{0, \infty, \pm 1, 3 \pm 2\sqrt{2}, -3 \pm 2\sqrt{2}\}.$

$$NS(Y_k) = E_8(-1) \oplus E_8(-1) \oplus U \oplus \langle -12 \rangle$$
 $T(Y_k) = U \oplus \langle 12 \rangle$

(U is the hyperbolic lattice and E_8 the unique positive definite even unimodular lattice of rank 8)

Hence this family appears as a family of M_6 -polarized K3-surfaces Y_k with period $t \in \mathcal{H}$. And we deduce from a result of Dolgachev the following property. Let $E_t = \mathbb{C}/\left(\mathbb{Z} + t\mathbb{Z}\right)$ and $E_t' = \mathbb{C}/\left(\mathbb{Z} + (-\frac{1}{6t})\mathbb{Z}\right)$ be the corresponding pair of isogenous elliptic curves. Then there exists a canonical involution τ on Y_k such that $Y_k/(\tau)$ is birationally isomorphic to the Kummer surface $E_t \times E_t'/(\pm 1)$.

This result is linked to the Shioda-Inose structure of K3-surfaces with Picard number 19 and 20 described first by Shioda and Inose and extended by Morrison.

Since the Picard rank of the generic Y_k is 19 and of its singular members is 20, all these K3-surfaces are concerned by the following results.

A Shioda's result

Shioda considers an elliptic K3-surface S (with a section) with two II*-fibres and proved that every Shioda-Inose structure can be extended to a sandwich, that is, given a K3 surface S, if there exists a unique Kummer surface $K = Km(C_1 \times C_2)$ with two rational maps of degree 2, $S \to K$ and $K \to S$ where C_1 and C_2 are elliptic curves.

Then van Geemen-Sarti, Comparin-Garbagnati, Koike and Schütt, realized sandwich Shioda-Inose structures via elliptic fibrations with 2-torsion sections.

Some observations

- The shioda's "Kummer sandwiching" between a K3-surface S and its Kummer K is in fact a 2-isogeny between two elliptic fibrations.
- Bertin and Lecacheux have determined all the elliptic fibrations of Y_2 and found many 2-torsion sections.

So our goal was the following:

- Find all the elliptic fibrations of Y_k
- Select those with a 2-torsion section T: they define an involution ι on Y_k called van Geemen-Sarti involution
- Take the minimal resolution of the quotient Y_k/ι and give its caracterization.

The results

Theorem

(B.-Lecacheux (2018))

- Either Y_k/ι is the Kummer surface K_k associated to Y_k and given by its Shioda-Inose structure (in that case ι is called "Morrison-Nikulin" involution)
- Or $Y_k/\iota = S_k$ where S_k is a K3-surface with transcendental lattice

$$T(S_k) = \langle -2 \rangle \oplus \langle 2 \rangle \oplus \langle 6 \rangle$$

• There exist some genus 1 fibrations of K_k without section whose Jacobian variety is S_k .

Remark: S_k is not a Kummer surface but is the Hessian K3-surface of a general cubic surface with 3 nodes studied by Dardanelli and van Geemen.

13 / 17

Some ingredients in the proof

- The Kneser-Nishiyama technique: in our case all the elliptic fibrations come from all the primitive embeddings of $A_2 \oplus D_5$ into the Niemeier lattices.
- Elkies's 2-neighbor method to derive Weierstrass equations from one of them.

How it specializes to the singular K3-surface Y_2

There are more elliptic fibrations with 2-torsion sections on Y_2 than on the generic Y_k .

Theorem

• The "Morrison-Nikulin" involutions on Y_k remain "Morrison-Nikulin" involutions on Y_2 sending Y_2 to its Kummer surface K_2 .

•

$$S_2 = Y_2$$

That means that the van Geemen-Sarti involutions on Y_2 which are not Morrison-Nikulin, are symplectic automorphisms of order 2 (self-involutions) or exchange two elliptic fibrations of Y_2 .

Remark 1

The specialization of the genus 1 fibrations on K_2 provides an example of a Kummer surface K_2 defined by the product of two isogenous elliptic curves (actually the same elliptic curve of j-invariant equal to 8000), having many fibrations of genus one whose Jacobian Y_2 is not a Kummer surface (see a Keum's similar result but with a Kummer surface defined by non isogenous curves).

Remark 2

The specializations to other singular K3-surfaces do not provide in general "self-isogenies", thanks to a result of Boissière, Sarti and Veniani. In fact we get the following result.

Theorem

Among the singular K3-surfaces of the Apéry-Fermi family defined for k rational integer, only Y_2 and Y_{10} possess symplectic automorphisms of order 2 that are "self-isogenies".