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Abstract

We characterize number �elds without unit primitive element, and we ex-
hibit some families of such �elds, with low degree. Also, we prove that a non-
cyclotomic totally complex number �eld K; with degree 2d; where d is odd, and
having a unit primitive element, can be generated by a reciprocal integer, if and
only if K is non-CM, and the Galois group of the normal closure of K is
contained in the hyperoctahedral group Bd:
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1. Introduction

In its simplest form, the primitive element theorem asserts that any algebraic
number �eld (or simply, any number �eld) K may be generated, over Q; by a
single element, i. e., there is a complex number � such that the set f1; �; :::; �d�1g
is a base of the Q-vector space K: Then, the number � is called a primitive
element (or a generator) of K; and the �eld K is denoted Q(�): Multiplying
such an algebraic number � by a certain rational integer we easily obtain a
primitive element of K which is an algebraic integer. Five years ago, Miller [11]
asked, in a "Mathover�ow.net", the following question.

QUESTION 1.1. Does there exist a primitive element of K which is a
unit?

In response to 1.1, Brooks exhibited some families of bi-quadratic number
�elds K without unit generator, and Poonen signaled that there is a positive
(resp. a negative) answer to 1.1 when K is not a CM-�eld (resp. when K
belongs to a certain class of CM-�elds), without giving details. Recall that the
�eld K is said to be a CM-�eld (we also say that K is CM) if it is a totally
non-real quadratic extension of a totally real number �eld (which is unique),
say RK : These responses of Brooks and Poonen are, respectively, contained in
Corollary 1.6, and in Theorem 1.4, below. In fact Theorem 1.4 is a corollary
of the next result, which is, itself, a complete answer to the following question,
related to some special units generating a given number �eld.

� � � � � � � � � � � �
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QUESTION 1.2. Let K be a real (resp. a non-real) number �eld. Can
we �nd a primitive element of K which is a Pisot (resp. is a complex Pisot)
unit?

A Pisot number is a real algebraic integer greater than 1, whose other con-
jugates are of modulus less than one, and a complex Pisot number is a non-real
algebraic integer with modulus greater than 1 whose other conjugates, except
its complex conjugate, are of modulus less than one. Clearly, a positive answer
to 1.2 yields a positive response to 1.1, since a Pisot (resp. a complex Pisot)
unit is a Pisot (resp. a complex Pisot) number which is a unit.
Throughout, when we speak about conjugates and the degree of an algebraic

number or of a number �eld, without mentioning the basic �eld, this is meant
over Q: Similarly, if the extension Q � K is normal (resp. is cyclic), then we say
that K is normal (resp. K is cyclic). Also, we denote, respectively, by 
K ; GK ;
D and d the group of roots of unity in K; the Galois group of the normal closure
of K; i.e., the normal closure of the extension Q � K; a negative square-free
rational integer and a positive rational integer.
It is clear that we have a negative answer to 1.2 when K = Q; or when K

is a non-real quadratic �eld, since the units of K; in these two cases, belong to

K : The following theorem collects some known responses to 1.2; the �rst one is
due to Pisot (see for instance [2], [5], [12], and the other may easily be deduced
from the results of [3].

THEOREM 1.3. (i) A real number �eld, with degree greater than one, is
generated by a Pisot unit.
(ii) Let K be a non-real number �eld K satisfying K =2 fQ(i);Q(i

p
3)g:

Then, K is generated by a complex Pisot unit, if and only if K is not CM,
or 
K 6= f�1g; or K = Q(i

p
�) for some totally positive Pisot unit �; where

i2 = �1:

It is worth noting, when � is a totally positive number, that x2 + � is the
minimal polynomial of i

p
� over Q(�); the conjugates of i

p
� (over Q) are the

numbers �i
p
�0; where �0 runs through the set of conjugates of �; Q(i

p
�) is

CM and RQ(ip�) = Q(�): As mentioned above, the �rst consequence of Theorem
1.3 is a characterization of number �elds, without unit primitive element.

THEOREM 1.4. The number �eld K is generated by a unit, if and only if K
is not CM, or K is CM and 
K 6= f�1g; or 
K = f�1g and K is a CM-�eld
of the form Q(i

p
�); where � is a totally positive Pisot unit � (generating RK).

The following immediate consequence of Theorem 1.4 would clarify some
results presented below.

COROLLARY 1.5. Let K be CM-�eld satisfying 
K = f�1g: If all totally
positive units generating RK are squares in RK ; then K has no unit primitive
element.
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Recall when K is a quartic CM-�eld, that the real quadratic �eld RK con-
tains a unique (fundamental) unit greater than 1, say fK ; such that any unit in
RK is of the form "fnK ; where " = �1 and n 2 Z: In this case, we deduce from
Theorem 1.4 the following consequence.

COROLLARY 1.6. Let K be a quartic �eld. Then, K has no unit primitive
element, if and only if K is CM, fi; i

p
3; ei2�=5g \K = � and (fK has norm

�1; or fK has norm 1 and K 6= Q(i
p
fK)):

A simple calculation (see also the proof of Corollary 1.6) shows that the �eld
K = Q(

p
2;
p
D); where D < �3; is a quartic CM-�eld, K\fi; i

p
3; ei2�=5g = �

and fK = 1 +
p
2: It follows from Corollary 1.6, that K can not be generated

by a unit, since fK has norm �1: For the same reason (see for instance [14])
any quartic CM-�eld K satisfying the conditions K \ fi; i

p
3; ei2�=5g = � and

RK = Q(
p
a2 + 4); where a is a positive rational integer, has no unit generator.

Similarly, there is no totally complex quadratic extension K of Q(
p
6); which

is generated by a unit, since fK = 5 + 4
p
6 and (1 + i

p
3)=2 2 Q(i

p
5 + 4

p
6):

It is also worth noting that Corollary 1.6 yields that the �eld Q(i
p
2 +

p
3) =

Q(
p
3; i
p
2) is the unique quartic CM-�eld K; having a unit primitive element,

and such that
p
3 2 K and 
K = f�1g; as the norm of fK = 2+

p
3 is 1: From

this computation another question arises.

QUESTION 1.7. Let R be a totally real number �eld. Does there exists
exist a CM-�eld (resp. Do there exist in�nitely many CM-�elds) K without
unit primitive element and satisfying RK = R?

Clearly, we have a positive answer to 1.7 when R = Q; since each quadratic
�eld Q(

p
D); where D =2 f�1;�3g; has no unit generator. Also we may deduce

from Corollary 1.6, a positive answer to 1.7, when R is quadratic.

COROLLARY 1.8. Let R be a real quadratic �eld. Then there are in�nitely
many bi-quadratic CM-�elds K; without unit primitive element and such that
RK = R:

We are unable to answer 1.7 when the degree of R is greater than 2. Using
Corollary 1.5, we can prove a positive response to 1.7, in some special cases. In
particular, we have the following result.

THEOREM 1.9. Let K be a CM-�eld satisfying 
K = f�1g: Suppose that
there is a fundamental set of units of RK ; whose elements f1; :::; fd�1; are
positive, and such that for each embedding � of RK into R; other than the
identity of K; there is one and only one element of the set f1; :::; d�1g; say j�;
such that �(fj� ) < 0: If the correspondence � 7! j� is one-to-one, then K has
no unit primitive element.
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A remarkable class of the set of units is formed by reciprocal integers. An
algebraic integer � is said to be reciprocal if 1=� is a conjugate of �: Then,
the inverse of each conjugate of � is also a conjugate of �; the degree of � is
even, except when � = �1; and GQ(�) is a subgroup of the hyperoctahedral
group Bd = Z=2 o Sd; where Z=2 is the cyclic group with order 2; Sd is the
the symmetric group on d letters, and each � 2 GQ(�) is identi�ed, for an
appropriate ordering of the conjugates �1; :::; �2d of �; with an element e� of
S2d; de�ned by the equalities �(�j) = �e�(j) 8 j 2 f1; :::; 2dg: The following
question has been considered by Lalande [10].

QUESTION 1.10. Let K be a number �eld, having a unit primitive
element, and such that GK � Bd; where 2d is the degree of K: Is K generated
by a reciprocal integer?

Here the notation GK � Bd; means that GQ(�) � Bd for a certain generator
� of K; with an appropriate ordering of the conjugates of �: In fact, Lalande
[10] obtained a positive answer to 1.10, when the �eld K has at least one real
conjugate (in this case the condition "having a unit primitive element" may
be removed). To complete this result it remains to consider the case where K
is totally complex, i.e., all conjugates of K are non-real. Clearly, we have a
positive answer to 1.10, when K is cyclotomic, that is when K is generated by a
root of unity, and in particular, for K being a non-real quadratic �eld, because
in this last case K = Q((1 + i

p
3)=2) or K = Q(i): The theorem below gives

some partial responses to 1.10.

THEOREM 1.11.
(i) Let K be a non-cyclotomic totally complex number �eld, having a unit

primitive element, with degree 2d; where d is odd. Then, K is generated by a
reciprocal integer if and only if GK � Bd and K is non-CM.
(ii) Let K be a quartic totally complex �eld having a unit primitive element.

Then, K is generated by a reciprocal integer if and only if GK � B2:
(iii) Let K be a CM-�eld satisfying 
K = f�1g: Then K is generated by

a reciprocal integer if and only if there is a totally positive reciprocal integer �
such that Q(�) = RK and K = Q(i

p
�):

Recall that the problem whether a number �eld may be generated by a non-
reciprocal unit � satisfying certain conditions related to the distribution, in the
complex plane, of the conjugates of � has been considered by Dubickas in [6].
The proofs of Theorem 1.11 and some related lemmas, presented in the

last section, use Theorem 1.3, Kronecker�s theorem, asserting that an algebraic
integer is a root of unity when its conjugates belong to the unit circle, and a
well-known characterization of CM-�elds, which says that a non-real number
�eld K is CM, if and only if K is closed under complex conjugation, and each
embedding of K into C commutes with complex conjugation (see for instance
[4]). In the next section we easily deduce Theorem 1.4 from Theorem 1.3. The
corollaries, Theorem 1.9, and two auxiliary results, proved in the third section,
allow us to obtain families of number �elds with degree at most 10, and without
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unit generator. All computations are done using the systems PARI [1] and
SAGE [13].

2. Proof of Theorem 1.4

PROOF. The direct implication in the equivalence: K is not CM, or 
K 6=
f�1g; or K = Q(i

p
�) for some totally positive Pisot unit � , K is generated

by a unit, follows trivially from Theorem 1.3, since a real or a complex Pisot unit
is a unit, and the �elds Q; Q(i) and Q(i

p
3) are, respectively, generated by the

units 1; i = ei2�=4; and (�1 + i
p
3)=2 = ei2�=3: To prove the converse, suppose

that K is generated by a unit u; and K is CM (if K is non-CM, then there is no
thing to show). Let u1; u1; :::; ud; ud; be the conjugates of u; and let � be a Pisot
unit generating the real �eld RK ; such an element � exits by Theorem 1.3 (i).
If �1; :::; �d; designate the corresponding conjugates of �; then the conjugates of
the algebraic integer u�n; where n 2 N; are u1�n1 ; u1�n1 ; :::; ud�nd ; ud�nd ; and the
result follows immediately by Theorem 1.3 (ii), since u�n is a complex Pisot
unit generating K; when n is su¢ ciently large:�

3. Families of number �elds without unit generator

3.1. PROOF OF COROLLARY 1.5
PROOF. Let K be a CM-�eld with 
K = f�1g and such that all totally

positive units generating RK are squares in RK : Assuming on the contrary that
K is generated by a unit, we have, by Theorem 1.4, that K = Q(i

p
�) for some

totally positive (Pisot) unit � generating RK : Then,
p
� 2 RK ; i = i

p
�=
p
� 2

K and this last relation leads to a contradiction, since K does not contain
non-real roots of unity:�

3.2 PROOF OF COROLLARY 1.6
PROOF. Let K be a quartic �eld. If K 6= Q(u) for all units u 2 K; then

we deduce from Theorem 1.4 that K is CM, and 
K = f�1g ) i =2 K; (�1 +
i
p
3)=2 =2 K and ei2�=5 =2 K; thus K\fi; i

p
3; ei2�=5g = �: Also, the case where

fK has norm 1 and K = Q(i
p
fK) can not hold, because fK is a totally positive

unit, and so i
p
fK is a unit generating the CM-�eld Q(i

p
fK):

To prove the converse, notice �rst when � 2 
K and � 6= �1; that a con-
jugate of � belongs to the set fei2�=3; ei2�=4 = i; ei2�=6g if � is quadratic, or
to the set fei2�=5; ei2�=8; ei2�=10; ei2�=12g; when � is quartic. It follows from
the equalities (ei2�=6)2 = ei2�=3 = (�1 + i

p
3)=2; (ei2�=10)2 = ei2�=5 and

(ei2�=8)2 = (ei2�=12)3 = i; that the relation fi; i
p
3; ei2�=5g \ K = � im-

plies 
K = f�1g: Now, assume on the contrary, that the CM-�eld K; satisfying
the two conditions: fi; i

p
3; ei2�=5g \K = � and fK has norm �1 (resp. has

norm 1 and K 6= Q(i
p
fK)), is generated by a unit. It follows, by Corollary

1.5, that there is a totally positive unit � such that RK = Q(�); K = Q(i
p
�)

and
p
� =2 RK : Hence, � = f2(l+1)K (resp. � = f2(l+1)K ; or � = f2l+1K ), for some
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non-negative rational integer l;
p
� = f

(l+1)
K 2 RK (resp.

p
� = f

(l+1)
K 2 RK ;

or i
p
� = if lK

p
fK 2 Q(i

p
fK) ) K � Q(i

p
fK)); and this last relation leads

to a contradiction:�
3.3. PROOF OF COROLLARY 1.8
PROOF. Set R = Q(

p
N); where N is a square-free rational integer greater

than one. Then, each bi-quadratic �eld K of the form R(
p
D) = Q(

p
N;
p
D) is

a normal CM-�eld such that GK is the Klein group, RK = R; and ei2�=5 =2 K;
as Q(ei2�=5) is cyclic. Letting (for instance) jDj run through the set of prime
numbers greater than maxf3; Ng; we see that the quadratic sub�elds of K are
Q(
p
N); Q(

p
D) and Q(

p
ND); and so fi; i

p
3g \ K = �: Then, the result

follows immediately from Corollary 1.6:�

The following interesting lemma, due to the referee, determines whether a
totally real number �eld R is generated by a totally positive unit which is not a
square in R; and allow us to simplify the proofs of Theorem 1.9 and Proposition
3.3 below. To state this result, set f1 = �1; ff2; :::; fdg a fundamental set of
units of R; �1; :::; �d the distinct of embeddings of K into C; h the usual group
isomorphism from the multiplicative group f�1; 1g into the additive group F2
(sending 1 to 0; and �1 to 1), and

MR = [h(sg(�j(fk)))]
1�k�d
1�j�d

the d � d matrix, whose (j; k)th entry is the image by h of the signature of
�j(fk):

LEMMA 3.1. A totally real number �eld R is generated by a totally positive
unit which is not a square in R if and only if det(MR) = 0:

PROOF. It is clear that det(MR) belongs to the �eld F2: If det(MR) = 0;
then a certain sum of the columns of MR is the zero vector, so that the product
of the corresponding product of distinct fk0s is totally positive. On the other
hand, if det(MR) = 1; then no such product is totally positive and so the only
totally positive units in R are squares:�

3.4. PROOF OF THEOREM 1.9
PROOF. With the notation above, let R = RK ; where K is a CM-�eld

satisfying 
K = f�1g: By re-ordering, if necessary, the embedding of R into
R; we obtain that MR is a upper triangular matrix having only ones on its
diagonal. Hence, det(MR) = 1 and the result follows immediately by Lemma
3.1 and Corollary 1.5:�

The following consequence of Theorem 1.9 allows us to answer 1.7, in some
particular cases, and also to obtain families of sextic cyclic CM-�elds without
unit generator.
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COROLLARY 3.2. Let R be a normal real number �eld with odd prime
degree. If there is an element of R whose all conjugates, but one, have the same
sign and form a fundamental set of units of R; then there are in�nitely many
cyclic CM-�elds K; of the form R(

p
D); without unit primitive element, and

such that RK = R:

PROOF. Notice �rst that if � generates the totally real number �eld R;
then � +

p
D is a primitive element of the �eld K := R(

p
D): Hence, K is

CM, RK = R; and K is normal, as R is so. By considering the element � of
GK ; which sends

p
D to �

p
D; and whose restriction to R is a generator of

GR (R is cyclic because its degree d is prime), we obtain from the equivalences:
�j(�) = � , j � 0mod d; and �j(

p
D) =

p
D , j � 0mod 2; where j 2 Z;

that the order of � is 2d and so K is cyclic.
In order to apply Theorem 1.9 we �rst prove that the equality 
K = f�1g

holds, when D is su¢ ciently small. Indeed, let � 2 
K satisfying � 6= �1: Then,
the degree of � is 2 or 2d: Since K is cyclotomic when the degree of � is 2d; and
as there are at most a �nite number of cyclotomic �elds with a given degree,
we immediately see that the degree of � is not 2d; when D is su¢ ciently small.
Notice also that a calculation similar to the one in the proof of Corollary 1.6,
gives that the degree of � can not be equal to 2; when fi; i

p
3g \ K = �:

Because the cyclic �eld K contains one and only one quadratic �eld, namely
Q(
p
D); the condition D =2 f�1;�3g implies immediately fi; i

p
3g \ K = �

and so the claim is proved. To conclude consider the conjugates, say u1; :::;
ud of a unit u of R; satisfying the second assumption in Corollary 3.1. By
replacing, if necessary, u by �u; we may re-order these numbers so that u1 >
0; :::; ud�1 > 0; and ud < 0: Also, we may suppose, without loss of generality
that fu1; :::; ud�1g is a fundamental set of units of R: Now, let 'j be the
unique automorphism of R sending ud to uj ; where j 2 f1; 2; :::; dg: Then,
GR = f'1; :::; 'dg = f�1; :::; �dg; where �j := '�1j 8 j 2 f1; :::; dg; and so for
each �j ; with �j 6= �d (�d is the identity of R); there is one and only one element
j� (j� = j) of the set f1; :::; d�1g such that �j(uj� ) < 0; as �j(uj) = ud: Then,
the results follows immediately from Theorem 1.9, since the above mentioned
correspondence between the group GR and the set f1; :::; dg is trivially one-to-
one:�

Using Corollary 3.2, one can easily deduce a positive answer to 1.7 when R
runs through the following set of normal cubic �elds Cn := Q(�n); de�ned by
the conditions �3n�n�n+n = 0; n is a square-free positive rational integer, the
residue mod3 of each prime divisor of n is 1; and 4n � 27 is the square of a
rational integer.
This family of normal cubic �elds has been investigated by Francisca [7],

who has also shown that each �eld Cn contains a unit, say u; such that the set
fu; u0g; where u0 is a conjugate of u; is a fundamental set of units of Cn and the
conjugates of u do not have the same sign; thus each Cn satis�es the condition of
Corollary 3.2, and so there are in�nitely many CM-�elds of the form Cn(

p
D);

without unit primitive element. In fact, using the approach of Gras [9] to show
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Godwin�s conjecture [8], a fundamental set of units of Cn is explicitly given in
[7]. The following proposition exhibits two examples of families of CM-�elds,
having degrees 8 and 10, without unit generator.

PROPOSITION 3.3. If R = Q(�); where �4 + �3 � 3�2 � � + 1 = 0 (resp.
where �5 + �4 � 4�3 � 3�2 + 3� + 1 = 0); then there are in�nitely many (resp.
many cyclic) CM-�elds K of the form R(

p
D); without unit primitive element,

and such that R = RK :

PROOF. Case R = Q(�) and �5 + �4 � 4�3 � 3�2 + 3� + 1 = 0
Replacing (x + 1=x) by x in the irreducible cyclotomic polynomial (x11 �

1)=(x� 1); we see that R = RQ(ei2�=11); R is cyclic and the conjugates of � are
2 cos 2�=11 = 1:68:::; 2 cos 4�=11 = 0:83:::; 2 cos 6�=11 = �0:28:::; 2 cos 8�=11 =
�1:30::: and 2 cos 10�=11 = �1:91::::
With the same argument as in the �rst part of the proof of Corollary 3.2,

we obtain that each �eld K of the form R(
p
D); where D =2 f�1;�3;�11g; is a

cyclic CM-�eld such that R = RK and 
K = f�1g (recall that Q(
p
�11) is the

unique quadratic sub�eld of Q(ei2�=11)): Using SAGE [13], we �nd that

ff1(�) = �2�2; f2(�) = �3�2�; f3(�) = �2+��1; f4(�) = �4+�3�3�2�3�g

is a fundamental set of units of R: Table 1 gives the approximate values of the
elements of the corresponding four fundamental units of R:

TABLE 1

� f1(�) f2(�) f3(�) f4(�)
2 cos 2�=11 0:83::: 1:39::: 3:51::: �0:76:::
2 cos 4�=11 �1:30::: �1:08::: 0:52::: �3:51:::
2 cos 6�=11 �1:91::: 0:54::: �1:20::: 0:59:::
2 cos 8�=11 �0:28::: 0:37::: �0:59::: �0:52:::
2 cos 10�=11 1:68::: �3:22::: 0:76::: 1:20:::

Then, we conclude similarly as in the proof of Theorem 1.9, where the cor-
responding matrix

MR =

1 0 0 0 1
1 1 1 0 1
1 1 0 1 0
1 1 0 1 1
1 0 1 0 0

satis�es det(MR) = 1:

Case R = Q(�) and �4 + �3 � 3�2 � � + 1 = 0
In that case R is a totally real quartic �eld whose Galois group is the Dihedral

group D4: Similarly as in the proofs of Corollary 1.8 and of the case above, we
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obtain that K := R(
p
D) is a CM-�eld with 
K = f�1g; for in�nitely many D:

Using SAGE [13] we �nd that

ff1(�) = �; f2(�) = �3 + �2 � 2�; f3(�) = �3 + 2�2 � � � 1g

is a fundamental set of units of R: The approximative values of these units,
together with their conjugates, are given in Table 2.

TABLE 2

� = f1(�) f2(�) f3(�)
1:35::: 1:61::: 3:81:::
0:47::: �0:61::: �0:91:::
�0:73::: 1:61::: 0:42:::
�2:09::: �0:61::: 0:67:::

:

Then, we conclude as in previous case, since

MR =

1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

and det(MR) = 1:�

4. Proof of Theorem 1.11

To make clear the proof of Theorem 1.11, let us show some auxiliary results.
The �rst one has already been proved in [10], we prefer to give a di¤erent simple
proof.

LEMMA 4.1. ([10]) Suppose that the conjugates �1; �2; :::; �2d�1; �2d of an
algebraic number � are ordered so that GQ(�) � Bd: Then, �2j 2 Q(�2j�1) 8
j 2 f1; :::; dg:
PROOF. Let �k be a conjugate, over the �eld Q(�2j�1); of the number �2j ;

for some j and k: Then, there is an embedding � of Q(�2j�1; �2j) into C sending
�2j�1 to �2j�1 and �2j to �k (� is an extension of the identity of Q(�2j�1)): By
considering an element of GQ(�) � Bd whose restriction to Q(�2j�1; �2j) is �; we
see that �(�2j�1) = �2j�1; �(�2j) = �2j ) �2j = �k; and so the only conjugate
of �2j over Q(�2j�1) is �2j ; thus �2j 2 Q(�2j�1):�
The following result asserts that the Galois group of the normal closure of a

CM-�eld is always contained in the hyperoctahedral group.

LEMMA 4.2. If K is a CM with degree 2d; then GK � Bd:

PROOF. Let � be a primitive element of the CM-�eld K: Suppose that the
conjugates �1; :::; �2d of � are ordered so that �2j = �2j�1 8 j 2 f1; :::; dg; and let
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� 2 GQ(�) satisfying �(�2j) = �2l (resp. �(�2j) = �2l�1); for some j and l: Since
the restriction of � to the CM-�eld Q(�2j) commutes with complex conjugation,
i. e. �(�2j) = �(�2j); we see that �(�2j�1) = �2l�1 (resp. that �(�2j�1) = �2l):
In a similar manner we obtain when �(�2j�1) = �2l (resp. �(�2j�1) = �2l�1);
that �(�2j) = �2l�1 (resp. �(�2j) = �2l); thus GQ(�) � Bd and so GK � Bd:�

The lemma below may be viewed as a converse of Lemma 4.2.

LEMMA 4.3. Let K be a totally complex number �eld with degree 2d such
that GQ(�) � Bd for some primitive element � of K; whose conjugates are
ordered so that �2j = �2j�1 8 j 2 f1; :::; dg: Then, K is a CM-�eld.

PROOF. Notice from Lemma 4.1 that �2j 2 Q(�2j�1); and so K is closed for
complex conjugation. Set � := �1; and let ' be an embedding of Q(�) into C;
sending � to some �2j (resp. some �2j�1): By considering an element of GQ(�);
whose restriction to K is '; we deduce that '(�) = '(�2) = �2j�1 = �2j (resp.
'(�) = '(�2) = �2j = �2j�1); '(�) = '(�); and so ' commutes with complex
conjugation. Hence, K is a CM-�eld:�

The following result is an analogue of Theorem 1.3 (ii), in terms of reciprocal
generators.

LEMMA 4.4. Let � be a reciprocal integer generating a CM-�eld K: If � =2

K ; then the degree of � is a multiple of 4; and there is a totally positive
reciprocal integer � 2 RK such that �2 = �� and � 2 
K�f1g:
PROOF. Let �1 := �; :::; �2d be the conjugates of �; ordered so that �2j =

�2j�1 8 j 2 f1; :::; dg: Then, similarly as in the proof of Theorem 1.3 (ii) (see [3]),
we have that the conjugates of �; over RK ; are � and �; and so the conjugates of
the algebraic integer � := j�j2 2 RK (over Q) are the numbers j�1j2 ; j�3j2 ; :::;
j�2d�1j2 : It follows that there is no j 2 f1; :::; dg such that j�2j�1j2 = 1; since
otherwise all conjugates of � belong to the unit circle and so, by Kronecker�s
theorem, � 2 
K : Hence, if �k is a conjugate of �; then so are all the distinct
numbers �k; �k; 1=�k and 1=�k; and consequently 1=� is a conjugate of �; thus
� is a totally positive reciprocal integer (having even degree), the degree of RK
is even, and so the degree of K is a multiple of 4:Moreover, since � is a unit and
the conjugates of the algebraic integer �2=� 2 K are the numbers �21= j�1j

2
; :::;

�22d= j�2dj
2
; which are all of modulus 1, we have again by Kronecker�s theorem,

that �2=� 2 
K and so �2 = ��; for some � 2 
K�f1g:�
The lemma below allow us to obtain a complete answer to 1.10 in the quartic

case.

LEMMA 4.5. A quartic CM-�eld, having a unit primitive element, is gener-
ated by a reciprocal integer.

PROOF. Let K be a quartic CM-�eld having a unit generator. It is clear
when there is a quartic element � 2 
K that the cyclotomic �eld K is gener-
ated by the reciprocal integer �: Notice also, when 
K = f�1g; that Corol-
lary 1.6 yields K = Q(i

p
fK); where the fundamental unit fK of RK has
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norm 1: Hence, 1= fK is a conjugate of fK ; the conjugates of i
p
fK are i

p
fK ;

�i
p
fK ; i=

p
fK ;�i=

p
fK = 1=i

p
fK ; and so i

p
fK is a reciprocal integer gener-

ating K: Finally, suppose that there is a quadratic element � 2 
K : Then, the
minimal polynomial of � over RK is (x � �)(x � �) 2 Z[x]; and since the real
quadratic number f2K is a reciprocal integer generating RK ; we deduce that the
conjugates of �f2K are the four distinct numbers �f

2
K ; �f

2
K ; �=f

2
K ; �=f

2
K = 1=�f

2
K ;

and so �f2K is a reciprocal integer generating K:�

REMARK. We may also deduce from Lemma 4.5 the following answer to 1.1:
A non-normal quartic CM-�eld has no unit primitive element. Indeed, let K
be a quartic CM-�eld, and suppose that K has a unit generator. Then, Lemma
4.5 asserts that K is generated by a reciprocal integer, say �: If � 6= 1=�; then
K is a normal extension of Q; because the conjugates of � are �; 1=�; �; 1=�:
Otherwise, � = 1=�; there is a conjugate �0 of � such that �0 =2 f�; 1=�g; and
so the conjugates of �; are �; 1=�; �0; 1=�0: It follows, in this last case, from
the relation �0 =2 f�; 1=�; �0g; that �0 = 1=�0; the conjugates of � belong to the
unit circle (� is a root of unity by Kronecker�s theorem) and so the �eld K is
(cyclotomic) normal.

PROOF OF THEOREM 1.11 (i) Let K be a non-cyclotomic totally
complex number �eld, having a unit generator with degree 2d; where d is odd.
The direct implication, in Theorem 1.11, follows trivially from the introduction
and the �rst assertion in Lemma 4.4, because K is not cyclotomic and 2d is not
a multiple of 4. Notice also, from Lemma 4.2, that the condition GK � Bd is
always true, when K is CM.
To prove the converse, suppose that K is not CM and GK � Bd: Let � be a

primitive element of K such that GQ(�) � Bd; for an appropriate ordering, say
�1; �2; :::; �2d�1; �2d; of the conjugates of �: It follows by Lemma 4.3 that there
is j 2 f1; :::; dg such that �2j 6= �2j�1:
To simplify the notation we may suppose, without loss of generality, that j =

1; since any conjugate of a reciprocal integer is reciprocal, and each conjugate
of K satis�es the same assumptions as K: Let �1 be a complex Pisot unit
generating K; such an element exists from Theorem 1.3 (ii), since K is not CM
(this does not also a¤ect the supposition j := 1). Let �1; �2; :::; �2d�1; �2d; be
the corresponding conjugates of �1: Then, �2 6= �1 ) �2 6= �1; and we have from
Lemma 4.1 that �2j 2 Q(�2j�1) 8j 2 f1; :::; dg: Let c the unique element of
f3; :::; ng such that �1 = �c; and consider the algebraic integer �1 := �1=�2 2 K:
Then, the corresponding conjugates of �1 are

�1; �2 := �2=�1 = 1=�1; :::; �2d�1 := �2d�1=�2d; �2d := �2d=�2d�1;

and so �1 is a reciprocal integer.
Now, we claim that �1 is a primitive element of K: Indeed, let s be the

degree of �1 (over Q) and let t be the degree of �1 over Q(�1): Then, st = 2d
and the claim follows immediately when t = 1: Now, assume on the contrary
that t � 2: Then, �1 is repeated t times in set f�1; �2; :::; �2dg; and if �1=�2 =
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�l = �l=�v for some l 2 f2; :::; 2dg and v 2 fl � 1; l + 1g; then �1�v = �l�2;
1 � j�1�vj = j�l�2j ; because �1 is a complex Pisot number, and so 1 < j�lj ;
thus �l = �1; l = c and t = 2: Hence, s = d and this last equality leads to a
contradiction, because d is odd and the degree s of the reciprocal integer �1 is
even (j�1j > j�1j > 1) �1 6= �1):
(ii) From the introduction we know that the direct implication is true. To

prove the converse, consider a primitive element � of the totally complex quartic
�eld K and suppose that the conjugates � = �1; �2; �3; �4 of � are ordered so
that GQ(�) � B2: Recall, by Lemma 4.1, that �2 2 Q(�1) and �4 2 Q(�3): Notice
also that Lemma 4.5 yields that K may be generated by a reciprocal integer,
when it is CM. This happens, in particular when �2 = �1; because in that case
�4 = �3; and so from Lemma 4.3 K is CM. Suppose, now, that K is non-CM (so
�2 6= �1), and set for instance �3 = �1: Then, �4 = �2; and Theorem 1.3 (ii) gives
that there is complex Pisot unit � generating K: Let �1 = �; �2; �3; �4 be the
corresponding conjugates of �: Then, �2 2 Q(�2) = Q(�1) = Q(�1); �3 = �1;
and �4 = �2 2 Q(�3) = Q(�3): Now, we claim, similarly as in the proof of
Theorem 1.11 (i), that the reciprocal integer � := �1=�2; whose conjugates are

�1=�2; �2=�1 = 1=�; �3=�4 = �; �4=�3 = 1=�;

is a generator of K: Indeed, assuming on the contrary, we have that � is
quadratic, since j�1j > 1 > j�2j and so j�j > 1 > j1=�j : Moreover, � is real,
as � = �: It follows from the relations Q � Q(�) � Q(�)(�) = Q(�); that � is
quadratic over Q(�); the minimal polynomial of �; over the real �eld Q(�); is
(x � �)(x � �) = (x� �1)(x � �3); and so the minimal polynomial of �2; over
Q(�); is (x � �2)(x � �2) = (x� �2)(x � �4): Hence, K is a totally non-real
quadratic extension of the totally real �eld Q(�); and this last assertion leads
to a contradiction, since K is supposed to be non-CM.
(iii) LetK be a CM-�eld with 
K = f�1g: Suppose that there is a reciprocal

integer � generating K: Then, the second assertion in Lemma 4.4 implies that
there is a totally positive reciprocal integer � 2 RK such that �2 = ��: Hence,
the degree of � is the half of the degree of �; � is a primitive element of RQ(�)
and K = Q(�) = Q(i

p
�): The converse follows trivially from the fact that

i
p
� is a reciprocal integer generating the CM-�eld Q(i

p
�); when � is a totally

positive reciprocal integer:�
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