ABOUT ISOGENIES BETWEEN SOME K3 SURFACES

MARIE JOSE BERTIN AND ODILE LECACHEUX

ABSTRACT. We study some 2 and 3-isogenies on the singular K3 surface Yio of discriminant 72
and belonging to the Apéry-Fermi pencil (Y}), and find on it many interesting properties. For
example some of its elliptic fibrations with 3-torsion section induce by 3-isogeny either an elliptic
fibration of Y3, the unique K3 surface of discriminant 8, or an elliptic fibration of other K3 surfaces
of discriminant 72.

1. INTRODUCTION

In the Apéry-Fermi pencil Y}, defined by the equation

1 1 1
Y, X+-+Y+-o+Z+-=k
(Ye) tx Yy tZ+5 =k

two K3 surfaces, namely Y5 and Yjg retain our attention. We observe first the relation between
their transcendental lattices T'(Y2) and T'(Y10) (see [1], [2])

)= (5 ) T = (5 ) -T2k

Even more, from results of Kuwata [10] and Shioda [18] (theorem 2.1), the equality T (Yi9) =
T (Y2) [3] reveals a relation between Y3 and Yig. Indeed, starting with an elliptic fibration of Y5 with
two singular fibers I7* and Weierstrass equation
2 3 1
(o) y == +o¢m+h+ﬁ+ﬁ,

a base change h = u? gives a Weierstrass equation denoted (}/2)23) of an elliptic fibration of a K3
surface with transcendental lattice T'(Y2)[3], which is precisely Yio. If, instead of the previous base
change, we use the base change h = u?, we obtain a Weierstrass equation (Yg)f) of an elliptic
fibration of a K3 surface with transcendental lattice T'(Y2)[2] which is the Kummer surface K. The
idea, previously developped in [3] when searching 2-isogenies between some elliptic fibrations of Y5
and its Kummer Ko, suggests possible 3-isogenies between some elliptic fibrations of Y5 and Y.
Indeed, in a recent paper, Bertin and Lecacheux [4] obtained Weierstrass equations of two rank 0
elliptic fibrations of Y1y by 3-isogenies from Weierstrass equations of rank 0 elliptic fibrations of Y5.
In [3], Bertin and Lecacheux obtained all elliptic fibrations, called generic, of the Apéry-Fermi pencil
together with a Weierstrass equation. Some of these fibrations are endowed with a 2 or a 3-torsion
section. It was also proved that the quotient K3 surface by a 2-torsion section is either the Kummer
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surface K}, of its Shioda-Inose structure or a non Kummer K3 surface Sj with transcendental lattice

-2 0 0
0 2 0
0 0 6

More precisely the 2-isogenies of YY) are divided in two classes, the Morrison-Nikulin ones, i.e. 2-
isogenies from Y} to its Kummer Kj, and the others, called van Geemen-Sarti involutions. It was
also proved that by specialization Sy = Y5. But there exist also other non specialized 2-isogenies on
Y5, some of them being Morrison-Nikulin, the others being called ”self-isogenies”, meaning either
they preserve the same elliptic fibration (" PF self-isogenies”) or they exchange two elliptic fibrations
of Y5 ("EF self-isogenies”).

We shall prove in section 3 a similar result for the specializations Ky and Syg, that is K¢ is the
Kummer surface with transcendental lattice (102 204) and S19 = Y1g9. We exhibit also a Morrison-
Nikulin involution of Y7o not coming by specialization and ”self isogenies” of rank 0 or positive rank
not coming from specialization.

We end this section with the following application that is the determination of the Mordell-Weil
group of a certain specialized fibration of Yjg. After expliciting the Kummer surface K9 =
Kum(E;, E;) where E; has complex multiplication we exhibit an infinite section on a fibration
of K¢ giving, by a 2-isogeny, a section on the fibration of Y.

The situation is quite different concerning the 3-isogenies.

We prove in section 4 that the quotient K3 surface of a generic member (Y}) by any 3-torsion section

0 0 3
is a K3 surface Ny with transcendental lattice | 0 4 0] whose specializations satisfy Ny = Y7o
3 00
. . S . 4 0
while Ny is a K3 surface of discriminant 72 and transcendental lattice [4 0 18] := 0 18)

We prove also the main result, our first motivation, that is, all the 3-isogenies from elliptic fibrations
of Y5 are 3-isogenies from Y5 to Yig. It remains a natural question: what about the other 3-isogenies
from elliptic fibrations of Y7¢? Indeed we found 3-isogenies from Yig to two other K3 surfaces with
respective transcendental lattices [4 0 18] and [2 0 36].

In the same section we use the elliptic fibration (Yg)f) to construct elliptic fibrations of Yjo of high
rank (namely 7 the highest we found) and by the 2-neighbour method, a rank 4 elliptic fibration
with a 2-torsion section defining the Morrison-Nikulin involution exhibited in section 3.

In the last section 5, we prove that the L-series of the transcendental lattice of a certain singular
K3 surface is inchanged by a 2 or a 3-isogeny. This result explains why the isogenous surfaces found
in the previous sections have equal discriminants up to square.

Finally we put our results on 2 and 3-isogenies on Y5 and Yjg in the perspective of a result of
Bessiere, Sarti and Veniani [5].

Computations were performed using partly the computer algebra system PARI [13], partly Sage
[14] and mostly the computer algebra system MAPLE and the Maple Library “Elliptic Surface
Calculator” written by Kuwata [9].

2. BACKGROUND

2.1. Discriminant forms. Let L be a non-degenerate lattice. The dual lattice L* of L is defined
by

L" :=Hom(L,Z)={x € L& Q/ b(z,y) € Z for all y € L}.
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and the discriminant group Gy by

G :=L"/L.
This group is finite if and only if L is non-degenerate. In the latter case, its order is equal to
the absolute value of the lattice determinant | det(G(e)) | for any basis e of L. A lattice L is
unimodular if G, is trivial.
Let G be the discriminant group of a non-degenerate lattice L. The bilinear form on L extends
naturally to a Q-valued symmetric bilinear form on L* and induces a symmetric bilinear form

bL : GL X GL —>Q/Z
If L is even, then by, is the symmetric bilinear form associated to the quadratic form defined by

qu: G — Q/2Z
qr(x+ L) +— 2%+ 27Z.

The latter means that gz (na) = n?qy(a) for alln € Z, a € G, and by (a,a’) = 3(qr(a+a’) —qr(a) —
qr(a’)), for all a,a’ € Gp, where 5 : Q/2Z — Q/Z is the natural isomorphism. The pair (Gr,br)
(resp. (GL,qr)) is called the discriminant bilinear (resp. quadratic) form of L.

When the even lattice L is given by its Gram matrix, we can compute its discriminant form using
the following lemma as explained in Shimada [16].

Lemma 2.1. Let A be the Gram matriz of L and U, V € Gl,,(Z) such that
dy 0
UAV =D = ,
0 dy,
withl=dy =...=dp <dg41 <...<d,. Then
GrL ~ @i>kl/(ds).

Moreover the ith row vector of V=1, regarded as an element of L* with respect to the dual basis e},
..., €5 generate the cyclic group Z/(d;).

2.2. Nikulin’s results.

Lemma 2.2 (Nikulin [12], Proposition 1.6.1). Let L be an even unimodular lattice and T a primitive
sublattice. Then we have

Gr~Gr.~L/(T®TY), qr.=—qr.
In particular, |detT| = |det T+| = [L: T ® T+].

2.3. Shioda’s results. Let (S, ®,P!) be an elliptic surface with a section ®, without exceptional
curves of first kind.
Denote by NS(S) the group of algebraic equivalence classes of divisors of S .
Let u be the generic point of P! and ®~*(u) = E the elliptic curve defined over K = C(u) with
a K-rational point o0 = o(u). Then, E(K) is an abelian group of finite type provided that j(F)
is transcendental over C. Let r be the rank of E(K) and s1, ..., s, be generators of E(K) modulo
torsion. Besides, the torsion group F(K)rs is generated by at most two elements ¢; of order e;
and to of order ey such that 1 < es, esle; and | E(K)iors |= €162.
The group E(K) of K-rational points of E is canonically identified with the group of sections of S
over P(C).
For s € E(K), we denote by (s) the curve image in S of the section corresponding to s.
Let us define

Dy :=(sa)—(0) 1<a<r
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Djs = (tg) — (o) B=1,2.
Consider now the singular fibers of S over P!. We set
Y :={veP'/C,=® '(v) beasingular fiber}

and for each v € ¥, ©,;, 0 < i < m, — 1, the m, irreducible components of C,,.
Let ©,,0 be the unique component of C,, passing through o(v).
One gets

Cv = 61),0 + Z,va,iev,iy Hou.i Z 1.

i>1

Let A, be the matrix of order m, — 1 whose entry of index (i, ) is (6,,0y,;), 4,7 > 1, where (DD’)
is the intersection number of the divisors D et D’ along S. Finally f will denote a non singular
fiber, i.e. f=Cy, for ug ¢ .

Theorem 2.1. The Néron-Severi group N S(S) of the elliptic surface S is generated by the following
divisors
[i©u; (1<i<m,—1, veY)
(0),Da 1<a<r, Dy B=1,2.
The only relations between these divisors are at most two relations
(D5Oy,1)

eﬁDg ~ eﬁ(Db(O))f + Z(Gv,la oo @v,mq,—l)eﬁAgl

vED .

(D/ﬁ@v,mv—l)
where =~ stands for the algebraic equivalence.

2.4. Transcendental lattice. Let X be an algebraic K3 surface; the group H?(X,Z), with the
intersection pairing, has a structure of a lattice and by Poincaré duality is unimodular. The Néron-
Severi lattice NS(X) := H?(X,Z) N HY'(X) and the transcendental lattice T'(X), its orthogonal
complement in H?(X,Z), are primitive sublattices of H?(X,Z) with respective signatures (1,p —1)
and (2,20 — p) where p is the rank of the Néron-Severi lattice.

By Nikulin’s lemma, their discriminant forms differ just by the sign, that is

(Gr(x), ar(x)) = (Gns(x), —ANs(x))-
2.5. 3-isogenous curves.
2.5.1. Method. Let E be an elliptic curve with a 3-torsion point w = (0, 0)
E:Y?+AYX + BY = X°

and ¢ the isogeny of kernel < w > .

To determine a Weierstrass equation for the elliptic curve E/ < w > we need two functions z; of
degree 2 and y; of degree 3 invariant by M — M + w where M = (X, Yas) is a general point on
E. We compute M + w and M + 2w (= M — w) and can choose

X34+ ABX + B2
X2

r1 =Xy + Xvyw + Xvyow =
y1=Ym + Yriw + Yuiow
Y (X3 - AXB—2B?%) — B(X® + A’X? + 2AX B + B?)
= e
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The relation between z1 and y; gives a Weierstrass equation for £/ < w >
y: + (Azy +3B)y, = 2} — 6ABz; — B (A* + 9B) .
Notice that the points with z; = —%2 are 3-torsion points. Taking one of these points to origin

and after some transformation we can obtain a Weierstrass equation y? + ayz + by = x® with the
following transformations.

2.5.2. Formulae. If j3 = 1 then we define
S1=2(j>—1)y+6Az—2(j — 1) (4° — 27B)
Sy=2(j —1)y+6Az —2(j* — 1) (4° — 27B)

and
_ ;181‘92 y — Lbj’
324 g2’ 5832 3

then we have
E/<w>1y*+ (—=3A)yz + (27TB — A°) y = 2°.
If Ay = —3A, B; = 27B — A3, then we define

o1 =2(2—1)3% +6A;3°X —2(j — 1) (A} — 27By)
oy =2(j —1)3°%V +64;3'X —2 (52— 1) (43 — 27B,)
and then

—1 o109 73X3+A2X2+3BAX+3BQ 1 o3

T 3a38x2 X2 © Y7 hg323izx3

2.5.3. Other properties of isogenies. The divisor of the function Y is equal to —3 (0)+3w so Y = W3
where W is a function on the curve E/ < w >. If X = WZ, the function field of £/ < w > is
generated by W and Z. So replacing in the equation of F we obtain the relation between Z and W

W3+ AZW + B - 272 =0.

This cubic equation, with a rational point at infinity with W = Z can be transformed to obtain a
Weierstrass equation in the coordinates X, and Ys:

_ _ 3 _
_ LB 3XA 04 Y)Y
9 X, 9 X,
A3 —27B A3 —27B
i Xy=3— 22y, _opy O TP
obinverse X2 =3err— v a2 3(W_2)+ A

Y5 + 3AY, X5 4 (—9A° + 243B) Y, =
X3 —9X2A? 4 27TA (A® — 27TB) X, — 27 (4* — 27B)>.

The points of Xs-coordinate equal to 0 are 3—torsion points and easily we recover the previous
formulae.

2.6. Notation. The singular fibers of type I, Dy, IV*, ... at t = t1, ., t,,, or at roots of a polynomial
p(t) of degree m are denoted mI, (¢, ..,t,m) or mI,(p(t)). The zero component of a reducible fiber
is the component intersecting the zero section and is denoted 6y or 6, 9. The other components
denoted 0., ; satisfy the property 0y, - 04, i+1 = 1.
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3. 2-ISOGENIES OF Yig

In [3], Bertin and Lecacheux classified all the 2-isogenies of Y5 in two sets, the first defining Morrison-
Nikulin involutions, that is from Y5 to its Kummer surface K5 and the second giving van Geemen-
Sarti involutions that is exchanging two elliptic fibrations (different or the same) of Y2 named
”self-isogenies” .

Since we have no exhaustive list of elliptic fibrations of Y79 with 2-torsion sections, we cannot give
such a classification. However we found on Y79 Morrison-Nikulin involutions from Y7 to its Kummer
surface K.

3.1. Morrison-Nikulin involutions of Yj,.

3.1.1. Specialized Morrison-Nikulin involutions. We first recall a result concerning the involutions
on the generic member (Y}) of the Apéry-Fermi pencil.

Theorem 3.1. (Bertin and Lecacheuz [3])

Suppose Yy, is a generic K3 surface of the family with Picard number 19.

Let m:Y;, — P! be an elliptic fibration with a torsion section of order 2 which defines an involution
i of Y}, (van Geemen-Sarti involution) then the minimal resolution of the quotient Yy /i is either
the Kummer surface K associated to Yy given by its Shioda-Inose structure or a surface Sy with
transcendental lattice T'(Sy) = (—=2) @ (2) @ (6) and Néron-Severi lattice NS(Sx) = U @ Es[—1] @
E:[-1] ® ((—2)) @ ((—6)), which is not a Kummer surface. Thus, m leads to an elliptic fibration
either of Ky or of Si. Moreover there exist some genus 1 fibrations 0 : K;, — P! without section
such that their Jacobian variety satisfies Jg (Kj) = Sk.

More precisely, among the elliptic fibrations of Yy (up to automorphisms) 12 of them have a two-
torsion section. And only T of them possess a Morrison-Nikulin involution i such that Y /i = K.

With the same argument as for specialization to Y, Morrison-Nikulin involutions specialized to
Y10 remain Morrison-Nikulin involutions of Y73. Hence we obtain in the following Table 1 the
corresponding Weierstrass equations of such elliptic fibrations of the Kummer surface K7y with

. 12 0
transcendental lattice ( 0 2 4> .

3.1.2. A non specialized Morrison-Nikulin involution of Y1g.
Theorem 3.2. The rank 4 elliptic fibration of Yio (4.3), with Weierstrass equation
B, yP=a" - (457 —2)® + (P + 1)

and singular fibers I} (00), 31, (t3+1), I5(0), 411(1,—5/3,t> —4t—4), has a 2-torsion section defining
a Morrison-Nikulin involution from Y1 to K1, that is Fy = E;/{(0,0)) is a rank 4 elliptic fibration
of K19 with Weierstrass equation

Fr Y2=X3423+562 —2)X2 — (2 — 4t — 4)(t — 1)(3t + 52X
and singular fibers 17 (00), 14(0), TIo(+1,—5/3,t% —t + 1,1 — 4t — 4).

Proof. Starting from F; and taking the new parameter p = i
elliptic fibration with Weierstrass equation

X
T G5 Ve get a rank 1

3 1
F,:Y?2=X%4 1P (5p - 1)° X%+ 6p2 (2p—1) (5p — 1) (49p* — 13p + 1) X

L 4 2 2 2
— P (2p—1)% (499> —13p + 1
+ 105" (2P )" (49p p+1)
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No Weierstrass Equation
: st —a)(t —a2)(t —a3)) (@ — 5(t = b1)(t — ba)(t — b3))

y* =z —
a :—% AV6+8V3 —4v2,a3 = =% — 46 — 8V/3 +4V2,
#4 bi =5 +4V6+24v2 +8V3,by = § + 46 — 24v/2 - 8V/3
az = 1§6+8f,b3——§—8\/€
Ig(OO), 6]2((11', bz), (7’ = 2)
48 y? = 2% 4+ 2(t3 — 25t% + 50t — 24)2% + (1% — 24t + 36)(¢t* — 24t + 16)(¢t — 1)%z
I3(0), I4(1), 415 (t? — 24t + 16, 1% — 24t + 36), I;(c0), (r = 2)
y? = x(z +t(t2 + (238 — 96V6)t + 1) (z + t(t? + (42 — 16V/6)t + 1)

16

# 215(0,00), 415 (t? + (—16v/6 + 42)t + 1,2 + (— 96\f+238)t+1) (r=2)

417 v =a(x — (12 —48)(t> = 8))(xz — (t* + 4t — 20)(t2 4t — 20))
Ig(00), 815(t? — 4t — 20,12 + 4t — 20,12 — 8,12 — 48), (r = 3)

493 =zl + (42— 12+ 1)(8t — 1)) (z + (12t — 1)(42 — 8t + 1))
I5(00), 16(0), 615 (5, 75,44 — 8t + 1, 44> — 12t + 1), (r = 3)

494 v =a3 +2t(t2 — 22t + 1)a® +2(2 — 14t + 1)(¢2 — 34t + 1)z

215 (0, oo) 5I(—1,t2 — 14t + 1,12 — 34t + 1), (r = 3)

1496 v =a(e— 12— 14t + 1)t — 6t +1))(z — 1(t* — 10t + 1)?)

41,(0,00,t2 — 10t + 1),41(t? — 14t + 1,2 — 6t + 1), (r = 2)

TABLE 1. Specialized fibrations of the Kummer Kiq

and singular fibers I (c0), 15(0), 313(5,49p* — 13p + 1). The infinite section P = (—15p(49p* —
13p+1), épz(49p2 —13p+1)) is of height h(P) = 3, is not equal to 2Q or 3Q, hence the discriminant
of the Néron-Severi lattice satisfies A = 4 x 4 x 33 x % =72 x 4.

Now we are going to compute its Gram matrix and deduce its transcendental lattice.

To compute the Néron-Severi lattice we order the generators as (0) the zero section, (f) the generic
fiber, 0;,1 <i <4, 1,1 <i <7, 7, 0, €, 1 <i<2 the rational components of respectively Dy,
D7 and the three A and finally the infinite section (P).

—210 0 0 0 0 0 00O 0O 0O O OO0 OO0 0 0

100 0 0000 0O0DO0O0DO0O0DO0O0 D0 0 0 1
00-20 1 0000000000000 0 0

000 -21 000000000000 0 0 0

001 1-210000000 00000 0 0

000 0 1 -200200000 00000 0 1

000 00 0-2012020200200 000 0 0

000 00 0O0-212020202020000 0 0 0

000 0001 1-2102020202000 0 0 0

NS—] 00000000 1210000020000
=]l 000000000 T1-210200T0T00 0 0
000 00 0O0O0GO0OT1-2100700 00 0

000 0O00O0DO0GOOGOT1-20020200 0 1

000 00 0O0O0UO0OTO0OO0O0-210200 0 0
00000 0O0O0OO0GOO0O0OT1-200200 0

000 0O00O0O0GOUOO0OO0O0O0O0-2120 01

000 00 0O0O0OUO0OUO0O0O0O0 1-200 0

000 0O00O0DO0GOOOO0O0O0O0 0 0 -21 1

000 00 0O0O0O0UO0O0IO0O0 000 0 1 —20
01000 100O00O0DO0TLO0OGO0T1O0 1 0 -2

Fom lemma 2.1 we deduce that Gns = Z/12Z & Z/247 and we get generators f1 and fo with
respective norms ¢(f1) = —é ( f2) = gi modulo 2 and scalar product fi.fo = 1 modulo 1.

. . (12
In order to prove that the transcendental lattice corresponds to the Gram matrix < 0 204> we must

find for the corresponding quadratic form generators ¢g; and go satisfying ¢(g1) = 12, q(g2) = %
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No Weierstrass Equation
BT 2= +222t (11t +1) —2(t— 1)’z
I1T*(00), I$(0), I(1), 21 (£ + 118t + 25)
EET:=Y? =X —4X?t (11t + 1) + 4¢* (118t + 25 + £*) X
I1T*(00), I5(0), I3(1), 215 (% + 118t + 25)
E9:y? =234+ 28t%22 + 3 (2 + 98t + 1)
21171%(0,00),2I5(t* + 98t + 1), 211 (¢* — 98t + 1)
#9 EE9:Y? = X% —56t2X? — 413 (2 — 98t + 1) X
2111%(0,00),2I5(t% — 98t + 1), 211 (1% 4 98t + 1)
El14: 9% =23 + ¢ (98t2 + 28t + 1) x? + %
214 I3(0), If (00), I (4t + 1), I; (24t + 1), 21, (100¢ + 28t + 1)
EE14:Y? = X (X — 961> — 28t% — t) (X — 100> — 28t> — t)
I5(0), If (00), Io (4t + 1), Iy(24t + 1), 215(100¢> + 28t + 1)
B15:y° =2 —t(2+ 82— 22t) 2> + 2 (t + 1)’z
I5(0), I (00), I4(—1), 11 (24), 21 (t* — 20t + 4)

#7

#15 EE15:Y? = X (X + 3 — 24¢%) (X + 3 — 20t + 4¢)
13(0), I3 (00), Io(—1), I5(24), 215 (t* — 20t + 4)
E20:y? =23+ (3" =53+ F42 - 15t — 2)a? —t (t — 10) =
IQ(O),112(OO),213(t2 — 10t + 1),[2(10)711(1),11(9)
#20 EE20:Y? = X3 4 (—5t* + 10t* — 53t + 30t + 3) X?

b =1 (t—9) (2 —10t+1)° X
11(0)7[6(00)7216(t2 - 10t + 1),[2(1)712(9),11(10)

TABLE 2. Fibrations E#i of Yo and EE#i of Syg

modulo 2 and scalar product g;.g2 = —% modulo 1. This is obtained with g; = (

[SUEEENE

Jon

In a previous paper, Bertin and Lecacheux [3] explained that, in the Apéry-Fermi family, only Y5
and Y79 may have ”self-isogenies”. A 7self-isogeny” is a van Geemen-Sarti involution which either
preserve an elliptic fibration (called ”PF self-isogeny” for more precision) or exchanges two elliptic
fibrations ”EF self-isogeny”.

Moreover, in the same paper, all the "self-isogenies” of Y, were listed. Since it is quite difficult
to get all the elliptic fibrations of Yjg with 2-torsion sections, we shall give ”self-isogenies” of Yiq
obtained either as specializations or from rank 0 fibrations or from non specialized positive rank
elliptic fibrations.

oo\»—{g“ox

)

O

Thus F),, hence F}, are elliptic fibrations of the Kummer surface Kig.

3.2. Specialized ”self-isogenies”. In [3] we characterized the surface Sy obtained by 2-isogeny
deduced from van Geemen-Sarti involutions of Y}, which are not Morrison-Nikulin. Let us recall the
specialized Weierstrass equations of S19. We denote E#n (resp. EE#n) a Weierstrass equation of
a fibration of Yy (resp. Sio)-

The specialization of Sy for k = 10 has the following five elliptic fibrations given on Table 2. The
first Weierstrass equation concerns Y19 and the second S obtained as its 2-isogenous curve.

Theorem 3.3. The previous 2-isogenies are in fact ”self-isogenies”, the surface S1g being equal to

YlO‘
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Proof. We observe that E9 and FE9 have the same singular fibers. In fact these two fibrations

are isomorphic, the isomorphism being defined by t = —T, x = fg, y = 2\}/3. This property is

sufficient to identify Sio to Yig.
Among these ”self-isogenies” only the number #9 is ”PF”.

3.3. Rank 0 ”self-isogenies”.

Theorem 3.4. There are four 2-isogenies from Y19 to Yo defined by extremal elliptic fibrations with
2-torsion sections, denoted number 8, 87, 153, 262 as in Shimada and Zhang’s paper [17]. They are
all 7PF self-isogenies”.

Proof. We write below Weierstrass equation E,,, its 2-isogenous EF, and the corresponding iso-
morphism.

By Y2 =2+ 229t +5)(t+3)+ (t+9)?) -3t +5)%

III*(OO)v IG(O)7 14(_5)7 IS(_9)7 12(_4)

EFEsy  Y?=X?—-209(T+5)(T+3)+ (T+9)*)X?+4(T +4)*(T +9)*X

III*(OO)7 16(_9)a 14(_4)7 13(0)7 IQ(_5)

Isomorphism: t = -T —9, z = Y

X _
Y= =

Eis53  y? =2 +t(t2 + 10t — 2)a® + (2t + 1)3t%z

13(4)a IG(_l/z)a Iik(o)a IS(OO)

EE53  Y2?=X3—2T(T? + 10T — 2) X2 + T3(T — 4)*X
16(4)7 13(*1/2)3 I;(O)a IT(OO)

Isomorphism: ¢t = —%, T=—Fr, Y= — "
Egr  y? =% — (94 + 93 + 612 — 6t + 4)2% + (2112 — 12t + 4)x

I12(0), I6(0), 215(21t2 — 12t + 4), 211 (3t> + 6t + 7)

EEg;  Y2=X3— (9T* + 973 +6T? — 6T +4) X2 + (21T? — 12T + 4)X
112(0), IG(OO)7 2]2(3t2 + 6t + 7), 2]1(21t2 — 12t + 4)

\ e — 2X . 2v/=2
Isomorphism: t = — —ora, Y = Foge-

Foos
Eg y? = 2% — (3t — 60t% — 24)2? — 144(¢? — 1)%x
15(0), 2I3(t? 4+ 8), I4(00), 216(t* — 1)

EEg  y? =23 +2(3t* — 60t2 — 24)22 + 9t2(t? + 8)3x
IQ(OO)7 2[3(t2 — 1), 14(0), 2]6(t2 + 8)

Isomorphism: ¢t = QVT_Z, T = %, y= %.

O

3.4. Positive rank non specialized "EF” and ”PF self-isogenies”. Using the 2-neighbor
method we found many examples of 2-torsion elliptic fibrations of Y.
Denote FE, Ei, FE5, F3, E4 the following elliptic fibrations of Yig obtained in the following way.

Starting from E753 and new parameter W we get F. Starting from FE15 we get successively Fo,
E3, E4 with the successive parameters t2(tf24)’ tQ(fﬂ), t(t74ﬁt724). And from EE, = E5/{(0,0))

xT

we get Fq with the new parameter RS =g

Theorem 3.5. (1) The 2-isogenies, from E3 to EEs, from E4 to EEy, from Ey to EE; are PF
self-isogenies”.

(2) The 2-isogenies from E to EE, from EE14 to EE14/{(100t* 4 28t +1,0)) and from Es to EFy
are "EF self-isogenies”.
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Proof. (1) We only need to give the respective Weierstrass equations, singular fibers and isomor-
phisms concerning the 2-isogenies from FE; to F'E;.
Bz  y?=a% - 2t(t? — 14t — 2)2% + t*(t — 4)(t — 24)x
I5(0), 215(4,24), 21, (—1/2,—1/12), I5(c0)
EE3 = E3/<(070)>
Y2 =X34+T(T? — 14T — 2) X2 + T?(2T + 1)(12T + 1) X
I5(0), 211 (4,24), 2I5(—1/2,-1/12), I5(c0)
Isomorphism: t = —%, T=—%F Y=
Ey  y?P=a2% 2883t — 1)a® + 483 (t — 1)?(24t + V)
IT1(0), I3 (1), Io(~1/24), 1,(1/25), I (o0)
EEy = E4/{(0, 0)>
Y2 = X3 +56T%(T —1)X2% +16T3(T — 1)%(257 — 1) X
1177(0), I5(1), I5(1/25), I,(—=1/24), I5(0)

o(1
Isomorphism: ¢ = L, r = 7ﬁ y = 7%

By y? =% —t(5t* + 56t + 160)z? + 4t2(t + 6)*(t + 4)*x
13(0), 2I4(—4, —6), 215(—8,—16/3), I;(c0)
EE, = E1/{(0,0))
Y2 = X3+ 2T(5T? + 56T + 160) X2 + T?(T + 8)%(3T + 16)?X
Ig (O), 21—4(787 *16/3% 2-[2(767 *4), IS (OO)
Isomorphism: t = 3—7?, T = 72;5 Yy = lejﬂﬂ
(2) Let us give Weierstrass equations and singular fibers of E and FFE.
E g2 =23 4222 +5t+ V)a? + 34t + 1)(t — 1)z
13(0), Li(1), Is(~1/3), Lo(~1/4), I} (c0)
EE = E/((0,0))
Y2 = X3 —AT(2T? + 5T + 1) X% + AT?*(3T + 1)*X
IT(O), IG(_]-/S)a IZ(]-)» Il(_1/4)7 I;(OO)
The fibration EF'F is a fibration of Y7jq, since with the new parameter ﬁ, we get the rank
0 elliptic fibration Es52, that is the extremal elliptic fibration numbered 252 in Shimada and
Zhang’s paper [17].

We also obtain
Es y? = a® — 4t(t + 1)(6t + 5)x? + 4t2(t + 1)3x
IE)k (0)5 15(71)7 211(78/95 73/4)
EE, = E5/((0,0))
Y2 =X3+8T(T +1)(6T + 5)X?
+16T2(T + 1)2(9T + 8)(4T + 3) X
If(_l)v 15(0)7 212(_3/4) _8/9)7 IT(OO)
To prove that EFF5 is an elliptic fibration of Yy first we change the parameter T'=1/u — 1 to
get the new equation EF5(1)

EFE5(1) y? =23 4+ 8u(u — 1) (u — 6)2% + 16u®(u — 4)(u — 9)(u — 1)*z

Now with the new parameter 0 we obtain

u ufl)(uxf4)(u79) ’
EEy(2)  y? =2 —t(59t* — 88t + 32)2® + 32t*(t — 1)) (3t — 2)°x
Again, from EF5(2), the parameter % leads to the rank 0 fibration Fa50 of Yig.
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Finally, the fibration EF14/((100t? 4 28t + 1,0)) with Weierstrass equation
y? = 2% — 2t(104t% + 28t + 1)? + t2(4t + 1)%(24t + 1)z

is a fibration of Yig, since with the new parameter m we obtain EFEs.

O
In the previous theorem we gave ”self-isogenies” of elliptic fibrations with rank less than 2. However

we found in section 4 an interesting 2-torsion rank 4 fibration. We present it in the following
theorem.

Theorem 3.6. The rank 4 elliptic fibration of Yo (4.2) with singular fibers 31, 315, 2I11, Weier-
strass equation

F oy =23+ 4222 +t(t3 + 1)%
and its 2-isogenous F/{(0,0)) are ”PF self-isogenous”.

Proof. We get
F/{(0,0))  Y?=X3_-8T?X? —4T(T% - 1)*X
with the same type of singular fibers. The isomorphism is given by
T = —t, Y = -2v—2y, X = —2z.
O

3.5. Generators for specialization of #16 fibration on Yjy. The rank of the specializations
for k = 10 of generic elliptic fibrations increases by one ([4], Theorem 4.1), so we have to determine
one more generator for the Mordell-Weil group. We give an example where the computation is easy
using a 2-isogeny between an elliptic fibration of Y7o and an elliptic fibration of the Kummer surface
Ki0 = Kum(E1, Es) associated to Y19, where Ey, Fy are elliptic curves with complex multiplication.
Then using the method developped in [20] and [11], we determine a section on an elliptic fibration
of K10~

From [3] Corollary 4.1, the two elliptic curves F; and E have respective invariants j; = 8000 and
Jjo = 188837384000 — 77092288000+/6. Take

Ei:Y? =X (X?+4X +2)
as a model of the first curve. The 2-torsion sections have X-coordinates 0, —2 + /2, the 3— torsion

sections have X-coordinates & (1 + 4v/2) and —1++/6 that are roots of (3X%—2X +1)(X?+2X —5).
The elliptic curve E; has complex multiplication by mo = v/—2 defined by

X.v) 3 (_1X2+4X+2 i\/iY(XQ—2)>.

2 X ! X2

Let C3 and 6’; the two groups of order 3 generated by the points of respective X-coordinates
% (—2 + Z\/i) and % (—2 - z\/i) . These groups are fixed by mso while the two order 3 groups I's
and f; generated by the points of respective X-coordinates —2 4+ v/6 and —2 — /6 are exchanged
by ms.

If M = (X,Y) is a general point on F7, the 3-isogenous curve by the isogeny ws of kernel I's is thus
obtained with Xy = Zsers Xyis+cand Yy = ZS€F3 Y1 s where ¢ can be chosen so that the
image of (0,0) is X5 = 0. It follows the 3-isogeny ws

o x, — X (X =2-V0) _ Y(X?P+(8-2V6) X +2) (X —2-V6)

(X +2-6) (X +2 - /6)

2
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and its 3-isogenous curve Fs

By Y = X3 +28XF + (98 +40V6) X;
j (E2) = 188837384000 — 77092288000v/6.

An equation for the Kummer surface K is therefore

Ko X (X2 +4X +2) = ?Xp (X3 + 285 + 98+ 40V6)
3.5.1. Elliptic fibrations of K1p and Y19. We use the following units of Q (\/5, \/§)

2
rm=1+vV2+V6, i =1-v2+6, rlr’lzsz(\@—k\/g)
ro=1-2V3-v6, r,=1+2V3-6.

In this paragraph we construct an elliptic fibration of Kg giving after a two-isogeny the specializa-
tion of the elliptic fibration #16 on Yig.
We consider the fibration

Ko — P!

(X7X27y) =t =

alla

Notice that Xy = tX and a Weierstrass equation (Kiq
following transformation

+ for this fibration is obtained with the

~—

B X —2t(t—r}) (t—r3) B X,
X__\/i(l—i_\/i)X1(3+2\/§)—2t(t—rf)(t—r§)7 y_Nin
(3.1) (Kio)e : Y9 =Xy (Xy =2t (t—r}) (t —r)) (X1 =2t (t —73) (t = 15)).

The singular fibers are in t = 0 and oo of type I3 and at t = r?,r3 ri?, rf? of type I. The rank of
the Mordell-Weil group is 2.

Remark 3.1. We can show that (Kig); is the fibration of line #16 of Table 1 . More precisely if
t = —stp and X = b%z, Y = b3y with b = \/i(\/ﬁ +v/3)3 we get exactly the fibration #16 with
parameter tg.

3.5.2. Sections on the elliptic fibration (Ki0):. In many papers ([18] [19] [20] Th 1.2. and [8], [11])
results on the Mordell-Weil lattice of the Inose fibration are given. We follow the same idea here,
with the previous fibration (K7¢); of parameter .

We find a section on this fibration using ws € Hom (Ej, F2). The graph of w3 on E; x Fy and

. _ _ X(X-2-6)? _(x—2-v6)?
the image on K19 = F; X E3/ £ 1 correspond to Xy = m ort = m. If we
consider the base-change of the fibration u? = ¢t we obtain a section defined by u = E);;zi::/fgg or
X = %, that is P, = (X1 (u), Y1 (u)) on the Weierstrass equation (K71q),2
2
X1 (u) = ﬁuz (u2 - r%) (u+mr)(u—ry)
8383

Yl(u):Qqu(u)<(\/§f\/§>u2+(72\/§+\/§)u+\/§+\@),
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where s9 = V2 —V3+1 ,83 = V2+1. If/PZ = (X1 (—u),Y1 (—u)), then 13; € (K19)y2 and
2
P =P, + P, € (K1), thus
P = (IP7yP)

1 2—+6 [(t—
xp:S(t+s)2(t—7“f)(t—Tiz)vyPZl“Pf( 8>(t2—14t_4‘/6t+52)

2 t+s

so we recover an infinite section P on the fibration (Kj¢); of the Kummer surface Kjo.

3.5.3. Sections on the fibration #16 of Y1g. The 2-isogenous elliptic curve to (3.1) in the isogeny of
kernel (0,0) has a Weierstrass equation

t4
(3.2) Yi=X3 (X§ + 8t (t* — 28t + s%) X5 + 64 52)
v, \? Yi(B — X2)
X: = e Y e
: (X) o w=ns

where B is the coefficient of X; in (3.1). Singular fibers are in ¢ = 0 and oo of type I} and of type

I at t =72 73, 72 ri2 .

Using the remark 3.1 this is fibration #16 of Y7¢. The image of P by this isogeny, in the Weierstrass

equation (3.2), is Q = (g, n¢g) with

1 (214t — 46+ 52) 7 (1 — 5)°

2 (t+s)?

(=2+6) (> — 14t — 4V/6t + s°) (t — ) Ly
4s (t+s)?

where L; =6 4+2 (1 n 2\/6‘) 5 (993 n 404\/6) 4 (17820 n 7272\/6) £

o

nQ =—

- (97137 + 39656\/6‘) 2t (56642 n 23124\@) £+ 85,

Recall that by specialization of the generic case [3] we have also a point P’ = (£, 7)) of X3 -coordinate

r_ t? (t — 1)2
T
, 032 (5v2+2v/3) t* (192 — (326 + 140/6)t + 931 + 380v/6)
19 (t— 82)3 )

We verify using definitions that < P’,@Q >= 0 and h (P’').h(Q) = 18. So by Shioda-Tate formula
([21] [22]) P’ and @ and (0,0) generate the Mordell-Weil group.

4. 3-ISOGENIES FROM Y5 AND FROM Yjq

4.1. Generic 3-isogenies. In [3], Bertin and Lecacheux exhibited all the elliptic fibrations of a
generic member of the Apéry-Fermi pencil, called generic elliptic fibrations and found two 3-torsion
elliptic fibrations defined by a Weierstrass equation, namely F49 with rank 1 and Eyg¢ with rank
0. We are giving their 3-isogenous K3 surface.

Theorem 4.1. The 3-isogenous elliptic fibrations of fibration #19 (resp. #20) defined by Weier-
strass equations Hy19(k) (resp. Hyoo(k)) are elliptic fibrations of the same K3 surface Nj with

transcendental lattice (§ % §) and discriminant form of its Néron-Severi lattice Gys = Z/3Z(—§) @
ZJ12Z(5).
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Proof. The 6-torsion elliptic fibration #20 has a Weierstrass equation
Eyo0(k) y? — (2 =tk +3)ay — (2 —th + 1)y =23

with singular fibers I12(c0), 2I3(t? — kt + 1), 215(0,k), 211 (t*> — kt + 9) and 3-torsion point (0,0).
Using 2.5.2, it follows the Weierstrass equation of its 3-isogenous fibration

Hyoo(k) = Eyao(k)/((0,0)) Y2 43(t2 —th +3)XY +2(t> —thk +9)(t — k)?Y = X*

with singular fibers 216(0, k), I(c0), 215(t? —kt+9), 211 (t* —kt+1). Thus it is a rank 0 and 6-torsion
elliptic fibration of a K3-surface with Picard number 19 and discriminant GX%M =12 x 3.
Now we shall compute the Gram matrix N.S(20) of the Néron-Severi lattice of the K3 surface with
elliptic fibration Hyoo(k) in order to deduce its discriminant form.

Applying Shioda’s result 2.3, we order the following elements as, so, F, 6, 1 < i < 4, s3, 14,
1<i<5,000,,1<5<3, 04,1 <70<2,04,;,1<1<2, where sg and s3 denotes respectively the
zero and 3-torsion section, F' the generic section, 6 ; the components of reducible singular fiber s,
to and t; being roots of 2 — kt +9. We obtain

—210 0 0 0O OO OO 0OUOTU OO OTU OO0 O
100 0 0 0 1 0 0 00O O0O0OUOTUOTU 0O O
00-21 00 1 0000 O0O0UO0O0O0UO0UO0 O
001 -2100 0000000000 0 0
000 1 -21 00000000000 0 O
000 0 1-20000 0000000 0 O
01100 0-212020202001 020 1 0 1
000 0 0O 1-21020000 000 0 0
000 0 0O0OO0O1-2120000 000 0 0
NS(20)=] 000 0 0 0 0 0 1-2100 0000 0 0
000 0 0O0OO0OO OGO T1-21020202020 0 0
000 0 0DO0OOO0OOTU O T1-20020020 0 0
000 0 0O0OOO0OOU OUO0OO0=-212000 0 0
000 0 0O 1 00000 1-211020 0 0
000 0 0OOO0OOU OU OO OGO 1-2020 0 0
000 0 0O0OO0OO0OOU OUO0OO0GOUO0O0-2110 0
000 0 0O 1 00O0O0O0O0UO OO0 1-20 0
000 0 0O0OO0OOUOU OUO0OOUOUOO0 0 0 —21
000 00O 1 00O0O0O0O0UO0UO0O0 0 1 —2

We get det(N.S(20)) = 12 x 3 and applying Shimada’s lemma 2.1, the discriminant form G yg(20) ~
Z/3 ® Z/12 is generated by vectors Ly and Ly satisfying q, = 0, qr, = —13 and b(L1, L2) = 3.
Denoting M (20) the following Gram matrix of the lattice U(3) @ (4),

00 3
M20)= (0 4 o],
300

we find for generators of its discriminant form the vectors

g1 = g2 =

= WO O
SN NI

satisfying qg, = 0, qg, = 13 and b(g1,92) = 5. We deduce that M (20) is the transcendental lattice
of the K3 surface with elliptic fibration Hyo0(k).
A Weierstrass equation of the 3-torsion, rank 1, elliptic fibration #19 can be written as

Eyi19(k) y? + ktoy + t2(82 + kt 4+ 1)y = 2°
with singular fibers 21V *(0, 00), 2I3(t2 + kt + 1), 21 (k*t — 27kt — 27t?> — 27) and infinite order point
P = (—t%,—t%) of height h(P) = 3. Using 2.5.2, its 3-isogenous elliptic fibration E419(k)/((0,0))
has a Weierstrass equation

Hyo(k) Y2 = 3KtXY — Y227t — k(k* — 27)t +27) = X°.
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It is a 3-torsion, rank 1, elliptic fibration of a K 3-surface with Picard number 19 and singular fibers
21V*(0,00), 2I3(27t2 — k(k? —27)t+27), 21, (t*+kt+1) and infinite order point ) with X-coordinate
X = —3—3kt— (k? 4+ 3)t? — 3kt® — 3t* and height h(Q) = 4. This point @ is the image of the point
P in the 3-isogeny and non 3-divisible, hence generator of the non torsion part of the Mordell-Weil
lattice. We deduce the discriminant of this K 3-surface 3X3X3X3x4 — 19 » 3,

Applying Shioda’s result 2.3, we order the components of the singular fibers as, so, £, 0p;, 1 < i <6,
Oscis 1 <0 <6, 04, 1 <0 <2, 83, 0, 2, S0, Where sg, 83, Soo denotes respectively the zero, 3-
torsion and infinite section, F' the generic section, ¢y and t; being roots of 27t> — k(k? — 27)t + 27.
The numbering of components of IV* is done using Bourbaki’s notations [6]. It follows the Gram
matrix N.S(19) of the corresponding K3 surface

-210 0 0 0 0 OO OO OO0 OOTUOUOO0 O
100 0 0 0 00 OO0OUOUOUOUOTUOUOT1 0 1
00-20 0 1 0 0 0 0 0O 0O OO0 0 0 O
000-21 00 00 000 0O0 OO0 1 0 0
000 1 -21 0000 00 0UO0 O0O0 0 0 O
001 0 1 -21 000 00 0O O0O0 0 0 O
000 0 0 1 -2100 00 00 00 0 0 O
000 0 0O 01 -200 020 00 00 0 0 O
000 0 0 OO O0-2001 00 00 0 0 0
NS(19): 000 0 O OOU OO0O-210000 01 0 0
000 0 0 O0DO0O OO0 1-21 00020 0 0 0
000 0 0O 0O O 1 0 1-21000 0 0 0
000 0 0 0O OO0 OO0 1-210200 0 0
000 0 0O OO O OO OO0 1-20200 0 0
000 0 0O 0O OO0 OO0 O0 0 O0-2120 0 0
000 0 0 0O OO0 OO0 O0 00 1-2120 0
010 1 00000100 00 0 1 —21 2
000 0 0O 0O O OO 0O O0O0 0 O0 1 -20
010 00 0O0O0OUO0OUOTUOUOTOTOTOTUO0 2 0 —2

Its determinant satisfies det(/N.S(19)) = 12 x 3 and according to Shimada’s lemma 2.1, Gy g(19) =~
Z/3®Z/12 is generated by vectors My and M, satisfying gpr, = *%, am, = 5 and b(My, Ms) = 0.
We find also generators for the transcendental discriminant form M (20)

1
hy = ho=| 1

_1
3
satisfying qn, = 2, qn, = —15 and b(hy, he) = 0. We deduce that M (20) is also the transcendental
lattice of the K3 surface with elliptic fibration Hy19(k).
It follows the discriminant form of its Néron-Severi lattice,
Gns(i9) = Z/SZ(—%) &) Z/IZZ(%), which is also G yg(20) since the generators L) = 15L; + 4Lo,

L, = Ly — Lo satisfy qry = —%, qr, = %, b(Ly, Ly) = 0.

LI S el

d

We can prove the following specializations of Ny for k = 2 and k = 10.

Theorem 4.2. For k = 2, the K3 surface Ny is Y19 with transcendental lattice [6 0 12] =
T(v,)[3).

For k = 10, the K3 surface Nig is the K3-surface with discriminant 72 and transcendental lattice
4 0 18].

Proof. To prove that No = Yj¢ it is sufficient to prove that Hyo0(2) is an elliptic fibration of Yig
since, by the previous theorem, Hu19(2) is another fibration of the same K 3-surface.

But we see easily that Hyo0(2) is the 6-torsion extremal fibration of Y79 numbered 8 in Shimada
and Zhang [17].

Similarly, Nyg is the K3 surface with transcendental lattice [4 0 18] since Hy90(10) is a fibration
of that surface according to the following proof.
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A Weierstrass equation for Hyoo (10) has a Welerstrass equation
Y243 (82— 22) VX + (£ - 25)° (1> = 16) Y = X?
with singular fibers I (00), 2l (£5),213 (£4), 211 (t* — 24) . We have a 2-torsion section sy =
(7 (t2 — 25)2 , (t2 — 25)3) and a 6-torsion section
s = (= (12 = 25) (12 = 16) , — (12 - 25) (¢ ~ 16)").
The section P, = (4 (t+572t—4),—(t+5)" (t— 4)2> is of infinite order and is a generator of the
Mordell Weil lattice. Moreover we have 015 1.56 = 1,05,2.56 = 1,0131.5¢ = 1. So the following
divisor is 6 divisible
5

Z (6 —1)0x5,i + 30001 + 30003 + 40+ 41 + 20142 = 636

i=1
So we can replace 05 5 by s¢.
Moreover we can compute sg.P, = 1 (for ¢ = —3). We have also 659.P, = 1,0_54.P, = 1 and

0oc,0- Py =1,041.Py =1,0_49.P, = 1. All these computations give the Gram matrix of the Néron-
Severi lattice of discriminant —72

~210 0 0 00O OOOOOO0UO0UO0O0UO0O0 O
100 0 0 000 O0O0UOT1O0O0UO0O0O0O0 0 1
00-21 0000 000T1U0O0UO0UO0TO 0O OO0 0
001 -21 020000000000 O0O0 0 0
000 1 -21 0000000 O0UO0UO0O0O0 0 0
000 0 1-21 0200000000 O0O0 0 0
000 0O 1-200000000O0O0O0 0 0
000 0O0O0OO-210201200200 00 0 0
000 0O0OOUOT1-21102002020U00 0 0 0
000 0O0OOUOODTI1-2110202020U020 0 0 0
000 0O0OOUOUO OO OT1-2002020020 0 0 1
011000071000 -20120T1T01 0 1
000 0O0OOUOUO OO OO OOO0-212020200 0 0
000 0O0OOUOUO OO OO OOTI11-21102020 0 0
000 0O0O0OUOUO OO OO OO OUOO0 1 -202020 0 0
000 0O0OO0OUOUO OO OO OO OTI1O0O0O0-2120 0 1
000 0O0OOUOTO OO OO OOUOO0O0UO0 1-200 0
000 0O0OOUOUO OO OO OOTI1O0O0UO0GO0O0=-21 0
000 0O0OOUOTO OO OO OOUOO0O0UO0O0O0 1 -20
010 00O0UO0OUO0OO OGO OT1T1U0O0GO0T1UO0TO0 0 —2
According to Shimada’s lemma 2.1, Gyg = Z/2Z & Z/36 is generated by the vectors Ly and Lo

|
—

satisfying qr, = 5',qr, = 5 and b(Lq, Ly) = 3.

Moreover the following generators of the discriminant group of the lattice with Gram matrix Mg =
(3 1), namely fi = (0, 3),f2 = (3, 75) verify a5, = 5. 45, = 5¢ and b(f1, f2) = 5.

So the Gram matrix of the transcendental lattice is ( :)1 108 ) .

Remark 4.1. Instead of proving that Hyo0(10) is a fibration of the K3 surface with transcendental
lattice [4 0 18], we may prove that Hy19(10) is a fibration of the same K3 surface.
We have the Weierstrass equation

Hy19(10) : Y2 —30tY X + 2 (t —27) (27t — 1) Y = X?
with the two sections

1
, ﬁz\/ﬁ(e’ﬁ +10iV/3t + 30t + 3iv/3 + 3)%)

image of the point (—t2, —t2) on E419(10), and

P’ = (—=100t* — 3 — 3t(t + 10)(1 + t?)

P’ = (— (t+1)(27t—1),— (27t —1) (t + 1)3> .
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The Néron-Severi lattice, with the following basis (s, F, 00, 1 <1 <6, 8p,4,1 <7 <6, 041,042,
s3, 04, 2, P', P") has for Gram matrix

-210 0 0 0 0 0 00 00 0O O0O0O0 0 0 0
1000000000 OUO0OOUO0OO0O0 1 0 1 1
00-20 010 000O00O0O0O0O0O0 0 0 0
000-210000000O0 000 1 0 0 0
000 1-2100000 000000 0 0 0
001 0 1 -210200000 0000 0 0 0
000 00 1-2110000000 00 0 0 0
000 000 1-200200000 000 0 1
000 00 0O O0-20012010000 0 0 0
000 00 O0O0OUO-2102002001 0 0 0
00000 0O0O0UOT1-2120102072020 0 0 0
000 00 O0O0OT1O0OT1-211002020 00 0
00000 0O0O0OUOOUOT1-212020200 0 0
000 00 0O0O0OUO OO OO OO T1-200200 0 0
000 00 O0O0OUOOT OO OTO0OO=-210 0 0 1
000 00 0O0O0UOOUO0OOO0O0 1 -21200 0
010 100000100000 1-21 21
000 00 0O0O0OUOOTOOTO0OO0O0O0 1 —20 0
01000 0O0O0UO0O0TO0OO0O0O0O0 0 2 0 —22
0100000 100O0O0O0O0T1O0T1 0 2 —2
According to Shimada’s lemma 2.1, Gns = Z/27Z @ 7Z/36 is generated by the vectors L; and Lo

satisfying qr, = _717qL2 = % and b(Lq, La) = _71
Moreover the following generators of the discriminant group of the lattice with Gram matrix Mg =
(é 108) na‘mely fl = (07 %)7]62 = (i? %) Verify qf = %a qf, = _:IJTg and b(fl7f2) = %

4 0

0 18 /-
An alternative proof: From the equation Hyg19 (10) and with the parameter m = ﬁ we obtain

another elliptic fibration defined by the following cubic equation in W and ¢ with X = W (¢t — 27)

So the transcendental lattice is Mg =

W3 +30Wtm —m (£ (27t — 1) + m (t — 27)) =0
and the rational point

m(m—1) _2Tm? — 64841
m2 — 648m + 277 m2 — 648m + 27’

This fibration has a Weierstrass equation of the form

W =676

1
y2—x3—3ax+<m+—2l))
m

with a = 38425/9,b = —7521598/27.  So the Kummer surface associated is the product of two
elliptic curves with J,J' = 2950584125/27 + 1204567000/27\/6 that is 7,57/ = 188837384000 +
770922880004/6. So the fibration H 19 (10) corresponds to a surface with transcendental lattice of

. 4 0
Gram matrix ( 0 18 > .

O

Theorem 4.3. Define Yk(g) the elliptic surface obtained by the base change T of the elliptic fibration
of Y3, with two singular fibers of type I1*, where T is the morphism given by u— h = u>. Then the

K3 surface Yk(?’) has a genus one fibration without section such that its Jacobian variety satisfies
I (&) = Ny

Proof. Recall a Weierstrass equation for fibration #19 (see [3], Table 4)
() YZ4thYX +t2(t+s)(t+1/s)Y = X3
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where k = s+ L. The fibration of Y}, with two singular fibers IT* can be obtained from (*) with
the parameter hy = ﬁ ([3], Table 3). The surface Yk(s) is defined by hj = u® and has then the
following equation

uds (t 4 8) + thuWs + 1% (ts — 1) — W3s = 0,

where X = (¢t + s) uW.
We consider the fibration

v - p!

(u, t, W) — t;

this is a genus one fibration since we have a cubic equation in u, W.
However, this fibration seems to have no section. Nevertheless, taking its Jacobian fibration produces
an elliptic fibration with section and the same fiber type.
If we make a base change of this fibration: (¢ 4+ s) = m? then we obtain the following elliptic fibration
with U = um.

U3sm — (5 — m?’) ksWU — W3sm — (s — m3)2 (52 —sm? — 1) m = 0.

The transformation

W =24y +12(s> + 1)(s = m®)z + (s — m3)2 Q
N 18sm(4x — m2(s? + 1)?)
U =24y —12(s* + 1)(s = m®)z + (s — m3)2 Q

18sm(4x — m2(s? + 1)?)

where Q = (108m°s® + (55 + 1055% — 111s* — 1)m® + s(s? 4+ 1)3) gives a Weierstrass equation, the

point 73 of x coordinate fm?(s* + 1) is a 3-torsion point. Taking again m® = (t+s), and

m3 = (X =0,Y =0), we recover a Weierstrass equation for the 3-isogenous fibration #19

Y2 - 3thY X —t* (27 — k (K> - 27)t +27) Y = X°
hence a fibration of Nj. Recall that the transcendental lattice of Yk(g) is T(Y%)[3] [18]. O

4.2. 3-isogenies of Y3. Recall the results, given in [2], about the 4 elliptic fibrations of Y3 with
3-torsion.

Weierstrass Equation

Singular Fibers Rank
V2 (w?+2) VX —w?Y = X°
#NT—w) (), I(0), 2B(£1), 20 "
Y2420V X +02(b+1)°Y = X3
1 —-b 1
. - 2
0 YV2oA(P-DYX+4( )Y =X,
1o (OO) 5 v (_1) ) I (_5) b 2
Vi (@+5)YX 1Y =X°
21 — ¢ L

IlS (OO) , 6[1

Theorem 4.4. The K3 surface Yo has 4 elliptic fibrations with 3-torsion, two of them being spe-
cializations. The 3-isogenies induce elliptic fibrations of Y1g.
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Proof. Using 2.5.2 we compute the 3-isogenous elliptic fibrations named H,,, Hy ,H; and H. and
given in the next table. To simplify we denote H,, (resp. Hp) the specialized elliptic fibration
H20(2) (resp. Hy19(2)).

We know from Theorem 4.2 that H,, and Hp are elliptic fibrations of Y7g; we present here a proof
for H; and H. together with remarks using ideas from [10], [8], [18],[19].

Weierstrass Equation
Singular Fibers

Y243 (w?+2) VX + (w?+38) (w2 —1)°Y = X3

Hy,
I4 (OO) 5 216 (:l:l) 5 IQ (0) 5 2]3
" Y2 — 6bY X + b% (270 + 46b + 27) Y = X3
b 2IV* (00,0), 2I3, Ip(—1)
g YPHR(P-1)YX +4 (457 - 12j+11) G+1)*@2j+1)°Y =x3
’ Ii(o0), IV*(=1), Iy(%), 2@
2 2 2 2 2
. Y —3((: +5)YX—(C +2)(c +c+7)(c —c—|—7)Y=X3
Is (<), 613

Recall that the transcendental lattice of Yi¢ is T (Y2) [3] = T (Y10) . Notice that the surface Y has
an elliptic fibration with singular fibers 217* (00, 0), I3, 2I; and Weierstrass equation
25 1 196 (h+1)2 ) 5
E 2_ .3 _ %9 L9 2_ 3 _ g2 L) h 2
h Yy =z Bx—l—h—i—h 5 or y z° —bz" + N with =2z 3
The base change of degree 3, h = u® ramified at the two fibers IT* induces an elliptic fibration of

the resulting K3 surface named Y2(3) in [10]. As the transcendental lattice of the surface Y2(3) is

T (Y>) [3] [18], this surface Y2(3) is Y19. Moreover we can precise the fibration obtained: a Weierstrass
equation is

(4.1) B, :Y?= X% - 5u2X? 4 u®(u® 4+ 1)?
215 (00,0), 315 (u® + 1) ,61; rank 7.

Now we are going to show that every elliptic fibration of Y5 with 3-torsion is linked to the elliptic
fibration of Y3 with 217* (00,0), I, 2.

For the fibration 20 — j we can obtain the elliptic fibration 211* (c0,0) , I2,2I; from the Weierstrass
equation given in the table and the elliptic parameter h = Y. So the fibration 20 — j induces a
fibration on Yjy with parameter j and an equation obtained after substitution of Y by u?. So, with
the previous computations 2.5.3, this is the 3-isogenous to 20 — j.

The same proof can be done for fibration 21 — c.

Remark 4.2. Moreover we can remark using 2.5.3 that the 3-isogenous to 21 — ¢ fibration has an
equation

W2+ (*+5)ZW+1-2°=0.
Since the general elliptic surface with (Z/3Z)° torsion is 3 + y® + t3 + 3kayt = 0, we deduce that
the torsion on the fibration H, induced on Yig is (Z/37Z)>.

For the fibration #19 (8 — b) we obtain the elliptic fibration 2IT* (00, 0), I3, 217 from the Weierstrass

equation given in the table and the elliptic parameter h = ﬁ Substituing h by u® and defining

Was X =(b+ 1)2 uWW we obtain a cubic equation in v and W with a rational point u =1, W =1,
so an elliptic fibration of Yiq
Y10 — ]Pl
(u, b, W) — .
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Computation gives the 3-isogenous elliptic curve to #19 (8 — b).
For the last fibration #20 (7 — w) the relation with the fibration 217*, I, 21; is less direct. O

Remark 4.3. With the previous method we can construct two elliptic fibrations of Y7 of rank 4.
First from Weierstrass equation #20 (7 — w) and with the parameter m =Y we obtain the fibration
#1 (11 — f) of Y3 ([3] last table) with singular fibers IT* (c0) , IT11* (0), Iy (1), I (32) . A Weierstrass
equation

Ep Y2 =X} —m©2m —3)X2 4+ 3m? (m - 1)> X, + m® (m —1)*

is obtained with the following transformations

Y (Y —1)° Y2(Y —1)°
=Y, Xj=—" 7 Vi=w—
m ) 1 X+1 ) 1 w X+1
—Y1 X1 +m (m — 1)2
= X:— Y: .
S Xm X, : m

The base change m = u’® gives an elliptic fibration of Y;o with singular fibers I3 (00), IT1(0),
31, (1,j,j2), 31, , rank 4, a Weierstrass equation and sections

y/2 — 23 +u12x/2 + 2 (u/S o 1) z + w3 (7_1/3 . 1)2

P=(zp ), yp (W)) = (_ (W= 1), = 1)% (u? + o + 1))
Q= (2 () yq (W) = (= (W +2) (u? +u/ +1), 2V (u? +u' +1)°).

Also we have the points P’ with zp = jzp (ju') and Q' with zg = jzg (ju') (with 52 = 1). As
explained in the next paragraph we can compute the height matrix and show that the Mordell-Weil
lattice is generated by P, P',Q,Q’ and is equal to Ay (1) & A3 (3) .

The second example is obtained from #20 (7 — w) with the parameter n = th we obtain the fibration
#9 (12 — g) of Y5 ([3] last table)

B, :y? =23 +40*n® +nd(n +1)%2

with the following transformation

y? oo y? ’ ny
Y2 (Y —2X — %) V3 (Y —t2) (Y —2X —t?) Y
v Xt v X247 T

Notice that if n = th =3 in E,, then we have the equation of H,,. More precisely if X = tQu, the
equation becomes

— 0 +2Qu+2Qu+ Q3+t =0,
a cubic equation in @ and v with a rational point v = 1,Q = 0. Easily we obtain H,,. So in the
Weierstrass equation F,,, if we replace the parameter n by ¢ we obtain the following fibration of
Y10
) 2
(4.2) yvP=a2® +4¢9%2% + g (g + 1)2 (g2 —g+ 1) T

with singular fibers 2117 (0,00),3I4 (—1,9%> — g+1),311 (1,9* + g + 1) and rank 4. Notice the two
infinite sections with x coordinates (¢ + 1)*(t? — ¢ + 1) and —§(t — 1)2(t? — t + 1).
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4.3. Mordell-Weil group of E,. The aim of this paragraph is to construct generators of the
Mordell-Weil lattice of the previous fibration of rank 7 with Weierstrass equation

E,:Y? =X 52X +u®(u® +1)2
21 (00,0), 31 (u® + 1) ,615.

Notice that the j-invariant of E, is invariant by the two transformations u +— % and u — ju. These
automorphisms of the base P! of the fibration F, can be extended to the sections as explained
below.

Let S5 =< v,7;v3 = 1,72 = 1 > be the non abelian group of order 6 and define an action of S; on

the sections of E, by
(X (u),Y (u)) & (u4X (i) ,ulY (i))
(X (w),Y (w) & (X (ju),Y (ju)).

To obtain generators of E, following Shioda [18] we use the rational elliptic surface X+ with
oc=u+ % and a Weierstrass equation

Ey :y? :x375z2+(071)2(0+2)
Iy (00), I2 (—1) , 45

of rank 3.

The Mordell-Weil lattice of a rational elliptic surface is generated by sections of the form (a + bo +
co?,d+ eo + fo? + go®). Moreover since we have a singular fiber of type I at oo the coefficients c
and f, g are 0 [8]. So after an easy computation we find the 3 sections (with j3 =1,i% = —1).

a = (— (0 —1),ivV2(0— 1))
@2=(=jc-1),8+j)(c-1) g=(-5"(-1),8+5%)(c-1)).
These sections give the sections my, w2, w3 on E, which are fixed by 7.

T = (—u(uQ—u—Fl),iﬁuQ (uQ—u—Fl))
Ty = (—ju(uv® —u+1),3+j)u? (u® —u+1))
T3 = (—j2u(u? —u+1),(3+ %) u* (v —u+1)).

We notice p; = v (m;) and p; = % (m;) for 1 < i < 3 which give 9 rational sections with some
relations.

Moreover we have another section from the fibration Ej, of rank 1.

The point of x coordinate 1 (h? + ;%) —h — + + 2 is defined on Q (h) . Passing to E, we obtain
w =

(1 (1 —16u3 + 46ub — 16u° +u'?) 1 (u8 — 1)(1 — 24u® + 126uS — 24u° + 1))
77@ .

16 u ub

We hope to get a generator system with m;, p; and w so we have to compute the height matrix.

The absolute value of its determinant is %. Since the discriminant of the surface is 72, we obtain a

subgroup of index a with % X a% x 2342 =72 s0 a = 3.
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After some specializations of u € Z (for example if u = 11, E, has rank 3 on Q) we find other
sections with « coordinate of the shape (au +b) (u? —u + 1)

p=(—(u-1)(V-u+1),— (v —u+1) (v*+2u—1))

pr=(—(u—9) (v* —u+1), (u* —u+1) (5u® — 18u +27))

o = ( (u+;> (@ —ut1), ng (W~ ut1) (9u2+4u+1)> .
We deduce the relations

3u:w+ﬂ27’y(ﬂ3)+ﬂ3*72(7r2)
=w+ 2wy + v (m2) + 73 — 7y (73)

so, the Mordell-Weil lattice is generated by 7;, p; = (m;) for 1 < j < 3 and p with Gram matrix
1 -3 0 0 0 0 0
— % 1 0 0 0 0 0
o 0 1 -3 0 0 3%
0o 0 -3 1 0 0 0
0 0 0 0 1 —% %
0 0 0 0 —% 1 _71
1 1“0 -1
0 0 5 0 5 5 2

4.4. A fibration for Theorem 3.2. From the previous fibration F, we construct by a 2-neighbour
method a fibration with a 2-torsion section used in Theorem 3.2.
We start from the Weierstrass equation (4.1)

Y2 = X%~ 5u2X% 4 ? (u® +1)°

and obtain another elliptic fibration with the parameter m = W, which gives the Weierstrass
equation
(4.3) Ep :y? =2° — (m® +5m® - 2) m2+(m3+1)2x

with singular fibers I} (c0), 314 (m3 + 1), I, (0), 41, ( , 37m —4m — 4) and rank 4.
Remark 4.4. From this fibration with the parameter ¢ = -2~ we recover the fibration H.,.
4.5. 3-isogenies from Yig.

Theorem 4.5. Consider the two K3 surfaces of discriminant 72 and of transcendental lattice
[4 0 18l or[2 0 36]. There exist elliptic fibrations of Y19 with a 3-torsion section inducing by
3-isogeny elliptic fibrations of one or the other previous surface.

Proof. In Bertin and Lecacheux [4] we observe that the fibration numbered 89 of rank 0 has a
3-torsion section. A Weierstrass equation for the 3-isogenous fibration is

V24 (=27t — 18t +27) Y X + 27 (4t +3) (5t — 3)° YV = X°

with singular fibers Iy (0c0) , I (%) Iy, (0), I3 (—%) 214

From singular fibers, torsion and rank we see in Shimada and Zhang table [17] that it is the n°48
case. So the transcendental lattice of the surface is (¢ ).

In Bertin and Lecacheux [4] is given also a rank 2 elliptic fibration of Y79 numbered (11) with a
3-torsion section. We shall prove that this 3-torsion section induces by 3-isogeny an elliptic fibration

of the K3 surface with transcendental lattice [4 0 18].
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Starting with the Weierstrass equation given in [4], after a translation to put the 3-torsion section
in (0,0) we obtain the following Weierstrass equation and p; and ps generators of the Mordell-Weil
lattice

B Y24 (2 -4)YX +2 (22 -3)Y = X3
(4.4) p1 = (6t2,27t%),  po = (6i\/3t — 3t2,27t?)
215 (00,0), 2[5 (26> —3), 2 (1), 2I(8).

We see that the 3-isogenous elliptic fibration has a Weierstrass equation, generators of Mordell-Weil
lattice and singular fibers

Hy Y2 =3 —4)YX - (2 -1)* (1 —64) Y = X3
2Ig (1), 2I3(£8), 2I5(00,0), 2I (2t> —3) of rank 2.

Notice the two sections

T = (—i(tQ—l) (t2—64),;(t—8)(t—1)(t+1)2(t+8)2)

w= (=72 =1)*,490 (1 = 1)")  where 49a% + 200 +7 = 0.

So, computing the height matrix of m; and w, we see the discriminant is 72.
For each reducible fiber at ¢ = ¢ we denote (X;,Y;) the singular point of Hy;

t=+41 t=48 t=0 t =00
(X41=0,Y11 =0) (Xo=-16,Y5=064) (2o = 1,900 =—1)
(X4g =0,Y+5 =0)

where if ¢ = oo we substitute ¢t = %, z = T*X,y = T%Y. We notice also 0;,; the j-th component
of the reducible fiber at ¢t = i. A section M = (X, Y)) intersects the component 6; ¢ if and only
if (Xar,Yar) # (X;,Y;) mod (¢ — 7). Using the additivity on the component, we deduce that w does
not intersect 6; ¢, 2w intersects 6, o and so w intersects 6; 3 for ¢ = 1. Also w intersects ;¢ for
i =28 ,7=0 and oco.

For m; we compute km; with 2 < k < 6. For ¢ = £1, only 67 intersects 6; ¢ so m; intersects 6; ;.
(this choice 1, not 5, fixes the numbering of components). For ¢ = £8, only 37 intersects 6; o, so
7; intersects 6; 1. Modulo ¢, we get m = (—16,64), so 7 intersects 6y 1, and 71 intersects O 0.

As for the 3-torsion section s3 = (0,0), s3 intersects 6; o or 8, 4 if i = +1. Computing 2m; — s3, we
see that s3 intersects 6, o and 0_ 4.

For ¢ = £8, we compute m — s3, for ¢ = 8 and show that s3 intersects fg 2 and _g ;. For t = 0 and
t = oo s3 intersects the 0 component.

So we can compute the relation between the section s3 and the 6; ; and find that 3s3 ~ —26; ; —
4019 — 3013 — 2014 — 01 5. Thus, we can choose the following base of the Néron-Severi lattice
ordered as So,F, Ql,jv with 1 < _] < 4, 5370—1,k with 1 < k < 5708,k7k = 1,2, 0—8,ka k= 172 and 00,1,
900,1 y W, 1.
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The last remark is that only the two sections w and m; intersect. So we can write the Gram matrix
NS of the Néron-Severi lattice,

-210 0 0 0 0 0OOO O O O O O0O 0 0 0 0O
100 0 0 0 1 0 O O O O O O O O 0 0 1 1
00-21 0 0 0 0OOO O OO O OO OO O0 1
o0o01-21 0 1 0 0O OO OO O0OO0OO0O OO0 O0 O
000 1-21 0 0 0 O OO OO O0OO0OO0OO0OT1T O
o000 0 1 -20 0 0 0 0O 0 0O O 0O O0O O0OO0OO0OO0
0101 0 0-20 0 01 0 0 1 1 0 0 0 0 O
o000 0 0O O 0O-21 0 0 0 0 0 0 0 0 0 0 1
ooo0o o0 0 O0O0O1-21 0 00 0 0 0 O0O0 0 O
o000 o0 0 0 0 0 1-21 0 0 0 0 0 0 0 1 O0
ooo0o o0 o0 01 0 0 1-21 0 00 0 0 0 0 O
oo0oo0o o0 0 o0 0 O0O0O 0O 1-20 0000 0 00
o000 0 0O OO OOUOOO=-21 0 0 0 0 01
oo0oo0o o0 0 01 0 0 0O O0O O 1-20 020 000
o000 o0 0 0 1 0 0O 0O O OO O=21 0 0 0 1
o000 0 0 0O O OO0OO0OO0OO0OO0OO0O 1 -20 000
o000 0 0 0O 0O OO O O0OO0OO0OO0OO0O O0-20 01
o000 o0 0O O OOOOOOOOO0OO0O O0O-200
o010 0 1 0 0 0 0O 1 0 O O O O O O O0-21
011 0 0 0 01 O 0 OO 1 0 1 0 1 0 1 =2

According to Shimada’s lemma 2.1, Gyg = Z/2Z & Z/36Z is generated by the vectors L; and Lo
satisfying qr, = —%, qr, = %, and b(Ly, Ly) = %

Moreover the following generators of the discriminant group of the lattice with Gram matrix Mg =
(6 1) namely f1 = (0, %)7 2= (%a %) verify gy, = %a df, = *% and b(f1, f2) = *é

So the Gram matrix of the transcendental lattice of the surface is M;sg.

A 3-isogeny between two elliptic fibrations of Y19 and the K3 surface with transcendental lattice
[2 0 36] can also be obtained. We have shown in remark 4.2 that H. has a (Z/3Z)2- torsion
group and exhibited a 3-isogeny between some elliptic fibrations of Y7o and Ys. Notice that with the
Weierstrass equation H, the point o3 of X coordinate — (02 +c+ 7) (02 —c+ 7) defines a 3-torsion
section. After a translation to put this point in (0,0) and scaling, we obtain a Weierstrass equation

Y2 (2 +1)Y'X — (2 +t+ T -t + 7)Y = X,
The 3-isogenous curve of kernel < o3 > has a Weierstrass equation
v +3 +11) zy + (£ +2)3y =3,
with singular fibers I (c0), 21y (t2 + 2), 41 (t4 + 132 + 49) .
The section P, = (—i (2 +1), -2t —5)° (¢ +j2)3> where j = ’1%“/5, of infinite order,
generates the Mordell-Weil lattice.
We consider the components of the reducible fibers in the following order 6, 5 I <1<8, 03k

1<k<8, 6s1.
The 3-torsion section s3 = (0,0) and the previous components are linked by the relation

383 ~ _972\/5,8 + Zamﬂi,j.

So we can replace, in the previous ordered sequence of components, the element 6, 5 ¢ by s3. We

notice that (s3.P.) = 2, (Pc‘eiiﬂ,0> = 1land (Pc.0x,0) = 1, so the Gram matrix of the Néron-Severi
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lattice NS is

210 0 0 0 0 000 O0O0O0O0UO0UO OO OO0 0 O
100000 0O0OT1O0O0O 0O 00O 00 0 1
00-2100000O0O0O0O0O0O0O0O0O0O0 0
001 -210000000O0O0O0O0O0O0 0 O
000 1 -21 0001 000O0O0O0O0O0O0 0
000 0 1L -21 00000000000 0 0
000 00 1-2100000O0O0O0UO0O0 0 O
000 00O 1-212020000000O0 0 0
000 00O0O01-200702000O00O0 0 0
0100 1 000O0-200T7120T0TO0T0O0 0 2
000 0 0O0O0O0UO0OUO O-212020200200 0 0
000 00O0O0DO0UOOT1-210020T0T020 0
0000 0O0O0O0UOT1O0T1-21020T200 0 0
000 0O0O0O0O0UOO OGO OTL-2100020 0
0000 O0O0O0DO0UOO OO OGO 1L -210020 0
000 0 0O0O0O0UO0OUOO0O0UO0UO01-210 200
000 00O0O0DO0UOOGO® O O0GOGO O 1-21200
000 0 0O0O0O0UO0OO OO OUO0UO0O0O0 1-20 0
000 0O0O0O0O0UOO OO OUOTOO OO OO0 0 —20
01000O0O0O0UO0Z220000O0O0 00 0 —2
Its determinant is —72. According to Shlmadas lemma 2.1, Gys = Z/27Z ® 7./36 is generated by
1

the vectors Ly and Lo satisfying qr,, = ,qL2 = 55 and b(Ll, Lo)
Moreover the following generators of the dlscrlmmant group of the lattlce with Gram matrlx Mz =

(0 306)7 namely fl = (27 )7 f2 = ( 217 367) Verlfy qf, = 27 qfs = _% and b(f17f2) =
So the transcendental lattice is M3z = ( 20 ) .

0 36

5. ISOGENIES AND L-SERIES OF SINGULAR K3 SURFACES

We notice that, along all the previous computations, the discriminants of the K3 surface Y5 (resp.
Y10) and their 2 or 3 -isogenous K3 surfaces are the same up to square. It is indeed a corollary of
the following theorem about the L-series of a singular K3 surface and some of its 2-or 3-isogenous.
Let us recall first the following results.

Theorem 5.1 (Tate’s isogeny theorem). [23] The fact that two elliptic curves Ey and Ey defined
over F, are isogenous is equivalent to the fact they have the same number of Fy points.

Lemma 5.1. [1] Let Y an elliptic K3-surface defined over Q by a Weierstrass equation Y (t).
If rank (Y (t)) = r and the r infinite sections generating the Mordell-Weil lattice are defined respec-

tively over Q(\/d;), i = 1,...,7, then

Ay =— S ap(t) ) 0= (%)

tePL(F,), Y(t) smooth tePL(F,), Y(t) singular i=1
where
ap(t) =p+1—#Y(t)(Fp)
and ep(z) defined by

0,  if the reduction of Y (t) is additive
ep(t) =1 1,  if the reduction of Y (t) is split multiplicative

—1, if the reduction of Y (t) is non split multiplicative

Theorem 5.2. The L-series of the transcendental lattice of a singular K3 surface Y defined over
Q is inchanged by a 2 or a 3-isogeny whose kernel is defined over Q(t) and obtained from an elliptic
fibration whose infinite sections (if any) are defined on Q or on a quadratic number field.
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Proof. Denote Y (t) (resp. Y (t)) a Weierstrass equation of a singular K3 surface (resp. of its 2 or 3
isogenous curve).

The coefficients of the newform associated to the L-series of the K3 surface are given in the previous
lemma. -

1) Suppose Y (t) is the Weierstrass equation of its 2-isogenous.

We get

(Y1) 3 =2*+a(t)a?+b(t)x V@) Y?=X%—2a(t)X% + (a(t)? — 4b(t))X

and , ,
x* +a(t)r +b(t) b(t)—zx

(x,y) = (R0 MO 2,

Hence, since the ranks of Y (¢) and its 2-isogenous are the same, if Y'(¢) has r infinite sections defined

on Q(+/d;) it is similar for Y (t).
If t € P1(F,) satisfies Y (t) smooth, ¢ is not a root of A = 16b*(a® — 4b) and also not a root of

A = 256b(a? — 4b)?; hence Y (t) is also smooth. For these ¢, using Tate’s isogeny theorem, we find

—_—

ap(t) = ap(t).

Suppose Y (tg) singular i.e. either b(tg) = 0 or a(tg)? = 4b(to) (in these cases the reduction of Y (ty)
is multiplicative).

Suppose b(tg) = 0, we get

—_~—

(Y(to)  y*=a*(z +a(to)) (Y(to))  Y?=(X —a(t)’X =U*(U + alto))-

Hence Y (t9) and Y () have the same multiplicatice reduction, either split if a(tg) is a square modulo
p or non split if a(ty) is not a square modulo p.
Suppose now a(tg)? = 4b(to), we get

(Y(to))  y*=a(x+alto)/2)* = U*(U - alty) /2) (Y(to))  Y?=X*(X —2a(ty)).
Similarly, if —a(tp)/2 or equivalently —2a(tp) is a square (resp. not a square) modulo p, the reduction

is split (resp. non split) multiplicative. Thus Y (¢9) and Y (o) have the same type of multiplicative
reduction. o
Finally when both a(tp) = 0 and b(tg) = 0, the reduction of Y (¢g) and Y (o) is additive.

Thus we have proved that A, = A, that is the 2-isogenous K3 surface has the same transcendental
L-series as Y.

2) Suppose Y (t) is the Weierstrass equation of its 3-isogenous.

Since we want to apply Tate’s isogeny theorem we need a 3-isogeny defined over @Q whose kernel is
defined over Q(¢). Using the formulae of 2.5.1, we get

Y1)  v*+alt)ry +b(t)y = 2*

(Y1)  Y?+at)XY +3b(t)Y = X® — 6a(t)b(t)X — b(t)(a(t)® + 9b(t))

and
v z? 4 a(t)bx(z)x + b(t)?
v — y(z3 — a(t)b(t)x — 2b(t)?) — b(t) (2 + a(t)?2? + 2a(t)b(t)x + b(t)?)
x3 ’

Hence, since the ranks of Y'(¢) and its 3-isogenous curve are the same, if Y () has r infinite sections
defined on Q(+/d;) it is similar for Y (¢).
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If t € PY(F,) satisfies Y (¢) smooth, ¢ is not a root of A = b3(a® — 27b) and also not a root of

A = b(a® — 27b)3/16; hence Y (t) is also smooth. For these t, using Tate’s isogeny theorem, we find
ap(t) = ayld).

Suppose Y (tp) singular i.e. either b(tg) = 0 or a(tg)® = 27b(to) (in these cases the reduction of Y (to)
is multiplicative).

Suppose b(ty) = 0. We get

e~

(Y(to)  v° +alto)ry = 2 (Y(to))  Y*+alto) XY = X°.

Hence the two curves have the same multiplicative reduction.

Suppose b(to) = a(ty)®/27. Putting at the origin the singular point (—%;)2, %) of Y(to) (resp.

—~—

(—alto)® alto)y of Y (1,), it follows

(Y(to)) 9 +alto)zriyr =i —a(to)’x?/3  ((Y(to)) v + alto)zays = 23 — alto)?3.
Since their respective discriminants are x2(4z; — a(to)?/3) and z3(4xy — 3a(to)?), the two curves
have the same multiplicative reduction.

Thus we have proved that A, = :4;, that is the 3-isogenous K3 surface has the same transcendental

L-series as Y.
O

Corollary 5.1. A singular K3 surface Y as in Theorem 5.2 and its 2 or 3-isogenous surface have
their discriminants equal up to square.

Proof. This is a consequence of a Schiitt’s theorem.

Theorem 5.3. (Schiitt’s classification) [15] Consider the following classification of singular K3-
surfaces over Q

(1) by the discriminant d of the transcendental lattice of the surface up to squares,

(2) by the associated newform up to twisting,

(8) by the level of the associated newform up to squares,

(4) by the CM-field Q(v/—d) of the associated newform.
Then, all these classifications are equivalent. In particuliar, Q(v/—d) has exponent 1 or 2.

O

5.1. Isogenies as isometries of the rational transcendental lattice. Denoting the rational
transcendental lattice T'(X)g := T(X) ® Q, we recall that T'(X)g and T(Y)q are isometric if they
define congruent lattices, that is if there exists M € Gl,,(Q) satisfying T'(X)g =* MT (Y )oM.
Bessiere, Sarti and Veniani proved the following theorem [5].

Theorem 5.4. [5] Let v: X — Y be a p-isogeny between complex projective K3 surfaces X and Y .
Then rk(T'(Y)q) = k(T (X)g) =: r and
(1) If r is odd, there is no isometry between T(Y )g and T(X)g.
(2) If r is even, there exists an isometry between T(Y)g and T(X)q if and only if T(Y)q is
isometric to T(Y )g(p). This property is equivalent to the following:
a) If p = 2, for every prime number q congruent to 3 or 5 modulo 8, the g-adic valuation
vy(det T(Y)) is even.
b) If p > 2, for every prime number ¢ > 2, q # p, such that p is not a square in F,, the
number vq(det(Ty) is even and the following equation holds in F}/(F5)?

resy(det(T,) = (—1) 25 +vp(det(Tx)
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where res,(det(Ty)) = %.

This theorem allows us to find 2-isogenies as self isogenies on Y and Yig. In a previous paper
we gave all the 2-isogenies of Y5 and exhibited self isogenies on Y5. In section 3 we also exhibited
2-isogenies as self isogenies on Y7g.

In section 4 we proved that all the 3- isogenies on Y5 are between Y and Yjo and some 3-isogenies
on Yy are between Y7o and other K3 surfaces with dicriminant 72, namely [4 0 18Jor[2 0 36].
These results illustrate Bessiere, Sarti, Veniani’s theorem. Indeed det(T(Y2)) = 8, hence res3(8) = 8
which is congruent modulo 3 to (—1)% and det(T(Y10)) = 8 x 9, hence res3(8 x 9) = 8 which is
congruent modulo 3 to (—1)3*2. And, since

TQ(YZ)@ (1)) TQ(YN)(g g) To(d 0 18])(3) g) To(l2 0 36})(3

we find, as expected, these matrices are isometric since

G3) -GG G060 0

Some remarks

As a consequence of Bessiere, Sarti and Veniani’s theorem, there could be 2 or 3-self (either PF or
EF) elliptic fibrations on Y2 and on Yjy. Indeed we found 2-self isogenies on both Y3 and Yiq. As
for 3-isogenies, there is no self-isogeny on Y2 and also probably none on Yjy. Concerning rank 0
elliptic fibrations, using Shimada and Zhang’s table [17], we recover easily all our results without
using Weierstrass equations. We have only to know the transform by a 2- or a 3-isogeny of a type
of singular fiber. This can be obtained using Tate’s algorithm [24] and an analog of Dockchitzer’s
remark [7].
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