Elliptic Fibrations on K3 surfaces

Marie José BERTIN

Institut Mathématique de Jussieu Université Paris 6 4 Place Jussieu 75006 PARIS

bertin@math.jussieu.fr

WINEurope, October 14, 2013

Consider the surface defined by the polynomial

$$P = x + \frac{1}{x} + y + \frac{1}{y} + z + \frac{1}{z} - 2$$

There are singular points. After solving these singularities we get a K3-surface $\mathcal{Y}.$

We can write the polynomial in a projective form as

$$P = xyz(x + y + z) + t^{2}(xy + xz + yz) - 2xyzt$$

So the line x+y+z=0, t=0 is on the surface \mathcal{Y} .

Cutting now \mathcal{Y} by the family of hyperplanes x+y+z=st it follows

$$Y_s$$
 $(x + y)(x + z)(y + z) + (s - 1)^2 xyz = 0$

So we can view \mathcal{Y} as the collection of Y_s . For all but a finite number of s, Y_s defines an elliptic curve with Weierstrass form

$$Y^{2} - (s - 1)^{2}(X + 1)Y = X(X + 1)(X + (s - 1)^{2}).$$

Thus is realized the elliptic fibration of ${\mathcal Y}$

$$\mathcal{Y} \longrightarrow \mathbb{P}^1_s.$$

Y_s is a fiber of this elliptic fibration

From this Weierstrass equation, one can deduce the rank and torsion over $\mathbb{C}(s)$ of the Mordell-Weil group of Y_s .

M.J. Bertin (IMJ and Paris 6)

For bad s, Y_s is no longer an elliptic curve and is called a singular fiber. Singular fibers have been classified by Kodaira.

To know the type of singular fibers of an elliptic fibration we use in general Tate's algorithm.

Thus Y_s has fibers I_{12} over ∞ , I_6 over 1, I_2 over 0 and 2, I_1 over $s = \alpha$ and $s = \beta$ roots of $(s - 1)^2 = -8$.

IV. The Néron Model

Reduction Type	Number of Components	Configuration (with multiplicity)	
I ₀	1		
I_1	1		
In	n		
Ш	1	\prec	
III	2		
IV	3		
$I_{\rm e}^0$	5		
\mathbb{I}_n^*	n + 5		
IV^*	7		
Ш*	8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
П*	9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

354

The Kodaira-Néron Classification of Special Fibers

イロン イヨン イヨン イヨン

The line z=0, t=0 is also on the surface \mathcal{Y} . Cutting \mathcal{Y} by the family of hyperplanes z=vt it follows

$$Y_{v}$$
 $(x+y)(xy+t^{2})+((v-1)^{2}/v)xyt=0.$

So we can view \mathcal{Y} as the collection of Y_v , i.e. a new elliptic fibration of \mathcal{Y} with another Weierstrass equation

$$Y^{2} - (v - 1)^{2}XY = X(X - v^{2}).$$

Now, Y_{ν} has type I_8 over 0 and ∞ , I_4 over 1, I_2 over -1 and I_1 over the roots of $\nu^2 - 6\nu + 1$.

Question:how many elliptic fibrations does possess \mathcal{Y} ? Answer: the following theorem (B. - Lecacheux)

Theorem

There are 30 elliptic fibrations with section, all distinct up to isomorphism, on the elliptic surface

$$X + \frac{1}{X} + Y + \frac{1}{Y} + Z + \frac{1}{Z} = 2.$$

They are listed in the following table with the rank and torsion of their Mordell-Weil group. The list consists of 14 fibrations of rank 0, 13 fibrations of rank 1 and 3 fibrations of rank 2.

The proof uses the connection between the singular fibers and root lattices.

Let L be a negative-definite even lattice.

 $e \in L$ is a **root** if $q_L(e) = -2$. Define the root lattice

$$L_{\text{root}} := \langle \Delta(L) := \{ e \in L/q_L(e) = -2 \} \rangle \subset L.$$

Every root lattice is a direct sum of irreducible ones A_n , D_l , E_p . The root lattices $A_n = \langle a_1, a_2, \ldots, a_n \rangle$ $(n \ge 1)$, $D_l = \langle d_1, d_2, \ldots, d_l \rangle$ $(l \ge 4)$, $E_p = \langle e_1, e_2, \ldots, e_p \rangle$ (p = 6, 7, 8) are defined by the following Dynkin diagrams. All the vertices a_j , d_k , e_l are roots and two vertices a_j and a'_i are joined by a line if and only if $b(a_j, a'_i) = 1$.

Considering the dual of each model of singular fibers (One rational component corresponding to a point; two points in the dual joined by a line if the corresponding components intersect in one point), we get the following correspondance between the Kodaira type of singular fibers and the extended Dynkin diagrams \tilde{A}_n , \tilde{D}_l , \tilde{E}_p . Deleting the zero component, i.e. the component meeting the zero section, gives the Dynkin diagram graph A_n , D_l , E_p .

Extended Dynkin diagrams

The elliptic fibrations of ${\mathcal Y}$

Fibers	Rank	Torsion
$E_7A_3E_8$	0	(0)
$A_1E_8E_8$	1	(0)
$E_7 D_{11}$	0	(0)
A_1D_{16}	1	$\mathbb{Z}/2\mathbb{Z}$
$A_3A_1D_{14}$	0	$\mathbb{Z}/2\mathbb{Z}$
$E_8A_1D_9$	0	(0)
$E_7 D_6 D_5$	0	$\mathbb{Z}/2\mathbb{Z}$
$D_6 A_1 D_{10}$	1	(0)
$E_7 D_{10}$	1	$\mathbb{Z}/2\mathbb{Z}$
$E_7 E_7 A_1 A_3$	0	$\mathbb{Z}/2\mathbb{Z}$
$A_1A_1D_8E_7$	1	$\mathbb{Z}/2\mathbb{Z}$
A ₁₇	1	$\mathbb{Z}/3\mathbb{Z}$
$A_1 A_{15}$	2	(0)
A_1D_{17}	0	(0)
$A_1 D_{10} D_7$	0	$\mathbb{Z}/2\mathbb{Z}$

M.J. Bertin (IMJ and Paris 6)

October 2013 13 / 22

The elliptic fibrations of \mathcal{Y} (continued)

Fibers	Rank	Torsion	
$A_1 D_5 D_{12}$	0	$\mathbb{Z}/2\mathbb{Z}$	
$A_1 D_6 A_3 D_8$	0	$(Z/2)^2$	
$A_1 D_8 D_8$	1	$\mathbb{Z}/2\mathbb{Z}$	
$A_1A_1A_1A_{15}$	0	$\mathbb{Z}/4\mathbb{Z}$	
D_4A_{13}	1	(0)	
$A_5 E_6 E_6$	1	$\mathbb{Z}/3\mathbb{Z}$	
$A_5 A_1 A_1 A_{11}$	0	$\mathbb{Z}/6\mathbb{Z}$	
$A_9A_1A_1E_6$	1	(0)	
$A_{11}E_6A_1$	0	$\mathbb{Z}/3\mathbb{Z}$	
A_9D_7	2	(0)	
$A_{11}A_1D_5$	1	$\mathbb{Z}/4\mathbb{Z}$	
$A_1 D_4 D_6 D_6$	1	$(Z/2)^2$	
A_7A_9	2	(0)	
$A_1A_3A_7A_7$	0	$\mathbb{Z}/8\mathbb{Z}$	
$D_5A_5A_7$	1		

M.J. Bertin (IMJ and Paris 6)

October 2013 14 / 22

- A K3-surface is a smooth surface X satisfying
 - $H^1(X, \mathcal{O}_X) = 0$ i.e. X simply connected
 - $K_X = 0$ i.e. the canonical bundle is trivial i.e. there exists a unique, up to scalars, holomorphic 2-form ω on X.

Example and main properties

• A double covering branched along a plane sextic for example defines a K3-surface X.

In our previous example

$$(2z + x + \frac{1}{x} + y + \frac{1}{y} - k)^2 = (x + \frac{1}{x} + y + \frac{1}{y} - k)^2 - 4$$

Main properties

- If X is K3, $H^2(X, \mathbb{Z})$ is a free group of rank 22.
- With the cup product, H²(X, ℤ) has a structure of even lattice of signature (3, 19) (by Hodge index theorem).
- By Poincaré duality, $H^2(X,\mathbb{Z})$ is unimodular and

$$H^2(X,\mathbb{Z}) = U^3 \oplus E_8[-1]^2 := \mathcal{L}$$

 \mathcal{L} is the K3-lattice, U the hyperbolic lattice of rank 2, E_8 the unimodular lattice of rank 8.

M.J. Bertin (IMJ and Paris 6)

• The Néron-Severi group NS(X), i.e. the group of line bundles modulo algebraic equivalence, with the intersection pairing, is a lattice of signature $(1, \rho(X) - 1)$.

$${\it NS}(X)\simeq \mathbb{Z}^{
ho(X)}$$
 $ho(X):=$ Picard number of X
 $1\leq
ho(X)\leq 20$

The natural embedding

$$NS(X) \hookrightarrow H^2(X,\mathbb{Z})$$

is a primitive embedding of lattices.

۵

• The trivial lattice T(X) inside NS(X) is the orthogonal sum

$$T(X) = <\bar{O}, F > \oplus_{v \in S} T_v$$

where \overline{O} denotes the zero section, F the general fiber, S the points of \mathbb{P}^1 corresponding to the reducible singular fibers and T_v the lattice generated by the fiber components except the zero component.

• From Shioda's results on height pairing, we can define a positive-definite lattice structure on the Mordell-Weil lattice

 $\mathit{MWL}(X) := \mathit{E}(\mathit{K}(\mathbb{P}^1)) / \mathit{E}(\mathit{K}(\mathbb{P}^1))_{\mathit{tor}}$

• The frame W(X)

$$W(X) = \langle \overline{O}, F \rangle^{\perp} \subset NS(X).$$

is a negative-definite even lattice of rank $\rho(X) - 2$.

 One can read off, the Mordell-Weil lattice, the torsion in the Mordell-Weil group MW and the type of singular fibers from W(X) by

 $MWL(X) = W(X)/\overline{W(X)}_{root}$ $(MW)_{tors} = \overline{W(X)}_{root}/W(X)_{root}$

 $T(X) = U \oplus W(X)_{root}.$

A K3 surface may admit more than one elliptic fibration, but up to isomorphism, there is only a finite number of elliptic fibrations. Nishiyama embeds the frames of all elliptic fibrations into a Niemeier lattice, one of 24 positive definite even unimodular lattices of rank 24. For this purpose, he determines an even negative-definite lattice M such that

$$q_M = -q_{NS(X)}, \quad \operatorname{rank}(M) + \rho(X) = 26.$$

By Nikulin's results, $M \oplus W(X)$ has a Niemeier lattice L as an overlattice for each frame W(X) of an elliptic fibration on X.

Thus one is bound to determine the (inequivalent) primitive embeddings of M into Niemeier lattices L.

An embedding $i: S \to S'$ is called primitive if S'/i(S) is a free group. The orthogonal complement of M into L gives the corresponding frame W(X).

Niemeier lattices

The 24 Niemeier lattices are listed below.

L _{root}	L/L _{root}	L _{root}	L/L _{root}
E_{8}^{3}	(0)	$\begin{array}{c} D_5^{\oplus 2} \oplus A_7^{\oplus 2} \\ A_8^{\oplus 3} \end{array}$	$\mathbb{Z}/4\mathbb{Z}\oplus\mathbb{Z}/8\mathbb{Z}$
$E_8 \oplus D_{16}$	$\mathbb{Z}/2\mathbb{Z}$	$A_8^{\oplus 3}$	$\mathbb{Z}/3\mathbb{Z}\oplus\mathbb{Z}/9\mathbb{Z}$
$E_7^{\oplus 2} \oplus D_{10}$	$(\mathbb{Z}/2\mathbb{Z})^2$	A ₂₄	$\mathbb{Z}/5\mathbb{Z}$
$E_7 \oplus A_{17}$	$\mathbb{Z}/6\mathbb{Z}$	$A_{12}^{\oplus 2}$	$\mathbb{Z}/13\mathbb{Z}$
D ₂₄	$\mathbb{Z}/2\mathbb{Z}$	D4 ^{⊕6}	$(\mathbb{Z}/2\mathbb{Z})^6$
$\begin{array}{c} D_{12}^{\oplus 2} \\ D_8^{\oplus 3} \end{array}$	$(\mathbb{Z}/2\mathbb{Z})^2$	$D_4 \oplus A_{\scriptscriptstyle \sf E}^{\oplus 4}$	$\mathbb{Z}/2\mathbb{Z}\oplus (\mathbb{Z}/6\mathbb{Z})^2$
$D_8^{\oplus 3}$	$(\mathbb{Z}/2\mathbb{Z})^3$	$A_6^{\oplus 4}$	$(\mathbb{Z}/7\mathbb{Z})^2$
$D_9 \oplus A_{15}$	$\mathbb{Z}/8\mathbb{Z}$	A ^{⊕6}	$(\mathbb{Z}/5\mathbb{Z})^3$
$E_6^{\oplus 4}$	$(\mathbb{Z}/3\mathbb{Z})^2$	$A_3^{\oplus 8}$	$(\mathbb{Z}/4\mathbb{Z})^4$
$E_6 \oplus D_7 \oplus A_{11}$	$\mathbb{Z}/12\mathbb{Z}$	$A_2^{\oplus 12}$	$(\mathbb{Z}/3\mathbb{Z})^6$
$D_6^{\oplus 4}$	$(\mathbb{Z}/2\mathbb{Z})^4$	$A_1^{\oplus 24}$	$(\mathbb{Z}/2\mathbb{Z})^{12}$
$D_6 \oplus A_9^{\oplus 2}$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/10\mathbb{Z}$	0	Λ ₂₄

Table: Niemeier lattices

How to find M: the trancendental lattice

 The transcendental lattice of X, T(X), is the orthogonal complement of NS(X) in H²(X, ℤ) with respect to the cup-product,

 $\mathbb{T}(X) = \mathsf{NS}(X)^{\perp} \subset H^2(X, \mathbb{Z}).$

- In general, $\mathbb{T}(X)$ is an even lattice of rank $r = 22 \rho(X)$ and signature $(2, 20 \rho(X))$.
- Let t = r 2. By Nikulin's results, $\mathbb{T}(X)[-1]$ admits a primitive embedding into the following indefinite unimodular lattice:

$$\mathbb{T}(X)[-1] \hookrightarrow U^t \oplus E_8.$$

• Then define M as the orthogonal complement of $\mathbb{T}(X)[-1]$ in $U^t \oplus E_8$. By construction, M is a negative-definite lattice of rank $2t + 8 - r = r + 4 = 26 - \rho(X)$. One can prove that M takes exactly the shape required for Nishiyama's technique.

M.J. Bertin (IMJ and Paris 6)