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Introduction

Consider the surface defined by the polynomial

P = x +
1

x
+ y +

1

y
+ z +

1

z
− 2

There are singular points. After solving these singularities we get a
K3-surface Y.
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We can write the polynomial in a projective form as

P = xyz(x + y + z) + t2(xy + xz + yz)− 2xyzt

So the line x+y+z=0, t=0 is on the surface Y.
Cutting now Y by the family of hyperplanes x+y+z=st it follows

Ys (x + y)(x + z)(y + z) + (s − 1)2xyz = 0

So we can view Y as the collection of Ys . For all but a finite number of s,
Ys defines an elliptic curve with Weierstrass form

Y 2 − (s − 1)2(X + 1)Y = X (X + 1)(X + (s − 1)2).

Thus is realized the elliptic fibration of Y

Y −→ P1
s .

Ys is a fiber of this elliptic fibration
From this Weierstrass equation, one can deduce the rank and torsion over
C(s) of the Mordell-Weil group of Ys .
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For bad s, Ys is no longer an elliptic curve and is called a singular fiber.
Singular fibers have been classified by Kodaira.
To know the type of singular fibers of an elliptic fibration we use in general
Tate’s algorithm.
ThusYs has fibers I12 over ∞, I6 over 1, I2 over 0 and 2, I1 over s = α and
s = β roots of (s − 1)2 = −8.
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Another elliptic fibration

The line z=0, t=0 is also on the surface Y.
Cutting Y by the family of hyperplanes z=vt it follows

Yv (x + y)(xy + t2) + ((v − 1)2/v)xyt = 0.

So we can view Y as the collection of Yv , i.e. a new elliptic fibration of Y
with another Weierstrass equation

Y 2 − (v − 1)2XY = X (X − v 2).

Now, Yv has type I8 over 0 and ∞, I4 over 1, I2 over −1 and I1 over the
roots of v 2 − 6v + 1.
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Question and Theorem

Question:how many elliptic fibrations does possess Y?
Answer: the following theorem (B. - Lecacheux)

Theorem

There are 30 elliptic fibrations with section, all distinct up to isomorphism,
on the elliptic surface

X +
1

X
+ Y +

1

Y
+ Z +

1

Z
= 2.

They are listed in the following table with the rank and torsion of their
Mordell-Weil group. The list consists of 14 fibrations of rank 0, 13
fibrations of rank 1 and 3 fibrations of rank 2.
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The proof uses the connection between the singular fibers and root lattices.

M.J. Bertin (IMJ and Paris 6) Elliptic Fibrations on K3 October 2013 8 / 22



Root lattices

Let L be a negative-definite even lattice.
e ∈ L is a root if qL(e) = −2. Define the root lattice

Lroot := 〈∆(L) := {e ∈ L/qL(e) = −2}〉 ⊂ L.

Every root lattice is a direct sum of irreducible ones An, Dl , Ep.
The root lattices An = 〈a1, a2, . . . , an〉 (n ≥ 1), Dl = 〈d1, d2, . . . , dl〉
(l ≥ 4), Ep = 〈e1, e2, . . . , ep〉 (p = 6, 7, 8) are defined by the following
Dynkin diagrams. All the vertices aj , dk , el are roots and two vertices aj

and a′j are joined by a line if and only if b(aj , a
′
j) = 1.
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Dynkin diagrams of root lattices

An = 〈a1, a2, . . . , an〉 a1 a2 a3 an

Dl = 〈d1, d2, . . . , dl〉

dl dl−2 dl−3 d1

dl−1

Ep = 〈e1, e2, . . . , ep〉
e1 e3 e4 ep

e2
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Singular fibers and Dynkin diagrams

Considering the dual of each model of singular fibers (One rational
component corresponding to a point; two points in the dual joined by a
line if the corresponding components intersect in one point), we get the
following correspondance between the Kodaira type of singular fibers and
the extended Dynkin diagrams Ãn, D̃l , Ẽp.
Deleting the zero component, i.e. the component meeting the zero
section, gives the Dynkin diagram graph An, Dl , Ep.
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Extended Dynkin diagrams

1 1 1 1

1

Ãn(In+1)

1 2 2 1

1 1

D̃l(I ∗l−4)

1 2 3 2 1

2
1

Ẽ6(IV ∗)

1 2 3 4 3 2 1

2

Ẽ7(III ∗)
2 4 6 5 4 3 2 1

3

Ẽ8(II ∗)
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The elliptic fibrations of Y

Fibers Rank Torsion

E7A3E8 0 (0)

A1E8E8 1 (0)

E7D11 0 (0)

A1D16 1 Z/2Z
A3A1D14 0 Z/2Z
E8A1D9 0 (0)

E7D6D5 0 Z/2Z
D6A1D10 1 (0)

E7D10 1 Z/2Z
E7E7A1A3 0 Z/2Z
A1A1D8E7 1 Z/2Z
A17 1 Z/3Z
A1A15 2 (0)

A1D17 0 (0)

A1D10D7 0 Z/2Z
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The elliptic fibrations of Y (continued)

Fibers Rank Torsion

A1D5D12 0 Z/2Z
A1D6A3D8 0 (Z/2)2

A1D8D8 1 Z/2Z
A1A1A1A15 0 Z/4Z
D4A13 1 (0)

A5E6E6 1 Z/3Z
A5A1A1A11 0 Z/6Z
A9A1A1E6 1 (0)

A11E6A1 0 Z/3Z
A9D7 2 (0)

A11A1D5 1 Z/4Z
A1D4D6D6 1 (Z/2)2

A7A9 2 (0)

A1A3A7A7 0 Z/8Z
D5A5A7 1 (0)
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Basic facts on K3-surfaces

A K 3-surface is a smooth surface X satisfying

H1(X ,OX ) = 0 i.e. X simply connected

KX = 0 i.e. the canonical bundle is trivial i.e. there exists a unique,
up to scalars, holomorphic 2-form ω on X .
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Example and main properties

A double covering branched along a plane sextic for example defines a
K3-surface X.
In our previous example

(2z + x +
1

x
+ y +

1

y
− k)2 = (x +

1

x
+ y +

1

y
− k)2 − 4

Main properties

If X is K 3, H2(X ,Z) is a free group of rank 22.

With the cup product, H2(X ,Z) has a structure of even lattice of
signature (3, 19) (by Hodge index theorem).

By Poincaré duality, H2(X ,Z) is unimodular and

H2(X ,Z) = U3 ⊕ E8[−1]2 := L

L is the K 3-lattice, U the hyperbolic lattice of rank 2, E8 the
unimodular lattice of rank 8.
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Main properties (continued)

The Néron-Severi group NS(X ), i.e. the group of line bundles modulo
algebraic equivalence, with the intersection pairing, is a lattice of
signature (1, ρ(X )− 1).

NS(X ) ' Zρ(X )

ρ(X ) := Picard number of X

1 ≤ ρ(X ) ≤ 20

The natural embedding

NS(X ) ↪→ H2(X ,Z)

is a primitive embedding of lattices.
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More definitions

The trivial lattice T (X ) inside NS(X ) is the orthogonal sum

T (X ) =< Ō,F > ⊕v∈STv

where Ō denotes the zero section, F the general fiber, S the points of
P1 corresponding to the reducible singular fibers and Tv the lattice
generated by the fiber components except the zero component.

From Shioda’s results on height pairing, we can define a
positive-definite lattice structure on the Mordell-Weil lattice

MWL(X ) := E (K (P1))/E (K (P1))tor

The frame W (X )

W (X ) = 〈Ō,F 〉⊥ ⊂ NS(X ).

is a negative-definite even lattice of rank ρ(X )− 2.
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The frame and the singular fibers

One can read off, the Mordell-Weil lattice, the torsion in the
Mordell-Weil group MW and the type of singular fibers from W (X ) by

MWL(X ) = W (X )/W (X )root (MW )tors = W (X )root/W (X )root

T (X ) = U ⊕W (X )root.
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Nishiyama’s method

A K 3 surface may admit more than one elliptic fibration, but up to
isomorphism, there is only a finite number of elliptic fibrations.
Nishiyama embeds the frames of all elliptic fibrations into a Niemeier
lattice, one of 24 positive definite even unimodular lattices of rank 24. For
this purpose, he determines an even negative-definite lattice M such that

qM = −qNS(X ), rank(M) + ρ(X ) = 26.

By Nikulin’s results, M ⊕W (X ) has a Niemeier lattice L as an overlattice
for each frame W (X ) of an elliptic fibration on X .
Thus one is bound to determine the (inequivalent) primitive embeddings
of M into Niemeier lattices L.
An embedding i : S → S ′ is called primitive if S ′/i(S) is a free group.
The orthogonal complement of M into L gives the corresponding frame
W (X ).
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Niemeier lattices

The 24 Niemeier lattices are listed below.

Lroot L/Lroot Lroot L/Lroot
E 3

8 (0) D⊕2
5 ⊕ A⊕2

7 Z/4Z⊕ Z/8Z
E8 ⊕ D16 Z/2Z A⊕3

8 Z/3Z⊕ Z/9Z
E⊕2

7 ⊕ D10 (Z/2Z)2 A24 Z/5Z
E7 ⊕ A17 Z/6Z A⊕2

12 Z/13Z
D24 Z/2Z D⊕6

4 (Z/2Z)6

D⊕2
12 (Z/2Z)2 D4 ⊕ A⊕4

5 Z/2Z⊕ (Z/6Z)2

D⊕3
8 (Z/2Z)3 A⊕4

6 (Z/7Z)2

D9 ⊕ A15 Z/8Z A⊕6
4 (Z/5Z)3

E⊕4
6 (Z/3Z)2 A⊕8

3 (Z/4Z)4

E6 ⊕ D7 ⊕ A11 Z/12Z A⊕12
2 (Z/3Z)6

D⊕4
6 (Z/2Z)4 A⊕24

1 (Z/2Z)12

D6 ⊕ A⊕2
9 Z/2Z⊕ Z/10Z 0 Λ24

Table: Niemeier lattices
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How to find M : the trancendental lattice

The transcendental lattice of X , T(X ), is the orthogonal complement
of NS(X ) in H2(X ,Z) with respect to the cup-product,

T(X ) = NS(X )⊥ ⊂ H2(X ,Z).

In general, T(X ) is an even lattice of rank r = 22− ρ(X ) and
signature (2, 20− ρ(X )).

Let t = r − 2. By Nikulin’s results, T(X )[−1] admits a primitive
embedding into the following indefinite unimodular lattice:

T(X )[−1] ↪→ Ut ⊕ E8.

Then define M as the orthogonal complement of T(X )[−1] in
Ut ⊕ E8. By construction, M is a negative-definite lattice of rank
2t + 8− r = r + 4 = 26− ρ(X ). One can prove that M takes exactly
the shape required for Nishiyama’s technique.
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