Elliptic Fibrations on K3 surfaces

Marie José BERTIN

Institut Mathématique de Jussieu
Université Paris 6
4 Place Jussieu 75006 PARIS
bertin@math.jussieu.fr
WINEurope, October 14, 2013

Introduction

Consider the surface defined by the polynomial

$$
P=x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-2
$$

There are singular points. After solving these singularities we get a K3-surface \mathcal{Y}.

We can write the polynomial in a projective form as

$$
P=x y z(x+y+z)+t^{2}(x y+x z+y z)-2 x y z t
$$

So the line $x+y+z=0, t=0$ is on the surface \mathcal{Y}.
Cutting now \mathcal{Y} by the family of hyperplanes $x+y+z=s t$ it follows

$$
Y_{s} \quad(x+y)(x+z)(y+z)+(s-1)^{2} x y z=0
$$

So we can view \mathcal{Y} as the collection of Y_{s}. For all but a finite number of s, Y_{s} defines an elliptic curve with Weierstrass form

$$
Y^{2}-(s-1)^{2}(X+1) Y=X(X+1)\left(X+(s-1)^{2}\right)
$$

Thus is realized the elliptic fibration of \mathcal{Y}

$$
\mathcal{Y} \longrightarrow \mathbb{P}_{s}^{1}
$$

Y_{s} is a fiber of this elliptic fibration
From this Weierstrass equation, one can deduce the rank and torsion over $\mathbb{C}(s)$ of the Mordell-Weil group of Y_{s}.

For bad s, Y_{s} is no longer an elliptic curve and is called a singular fiber. Singular fibers have been classified by Kodaira.
To know the type of singular fibers of an elliptic fibration we use in general Tate's algorithm.
Thus Y_{s} has fibers I_{12} over ∞, I_{6} over $1, I_{2}$ over 0 and $2, I_{1}$ over $s=\alpha$ and $s=\beta$ roots of $(s-1)^{2}=-8$.

Reduction Type	Number of Components	Configuration (with multiplicity)
I_{0}	1	$\rightarrow 1$
I_{1}	1	
I_{n}	n	
II	1	
III	2	
IV	3	
I_{0}^{*}	5	1 1 1 1 2
$\mathrm{I}_{\mathrm{n}}^{*}$	$n+5$	$1\|1\|$
IV*	7	
III ${ }^{\text {8 }}$	8	
Π^{*}	9	

The Kodairs-Néron Classification of Special Fibers

Another elliptic fibration

The line $z=0, t=0$ is also on the surface \mathcal{Y}.
Cutting \mathcal{Y} by the family of hyperplanes $z=v t$ it follows

$$
Y_{v} \quad(x+y)\left(x y+t^{2}\right)+\left((v-1)^{2} / v\right) x y t=0
$$

So we can view \mathcal{Y} as the collection of Y_{v}, i.e. a new elliptic fibration of \mathcal{Y} with another Weierstrass equation

$$
Y^{2}-(v-1)^{2} X Y=X\left(X-v^{2}\right)
$$

Now, Y_{v} has type I_{8} over 0 and ∞, I_{4} over $1, I_{2}$ over -1 and I_{1} over the roots of $v^{2}-6 v+1$.

Question and Theorem

Question:how many elliptic fibrations does possess \mathcal{Y} ?
Answer: the following theorem (B. - Lecacheux)

Theorem

There are 30 elliptic fibrations with section, all distinct up to isomorphism, on the elliptic surface

$$
X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z}=2
$$

They are listed in the following table with the rank and torsion of their Mordell-Weil group. The list consists of 14 fibrations of rank 0, 13 fibrations of rank 1 and 3 fibrations of rank 2.

The proof uses the connection between the singular fibers and root lattices.

Root lattices

Let L be a negative-definite even lattice.
$e \in L$ is a root if $q_{L}(e)=-2$. Define the root lattice

$$
L_{\text {root }}:=\left\langle\Delta(L):=\left\{e \in L / q_{L}(e)=-2\right\}\right\rangle \subset L .
$$

Every root lattice is a direct sum of irreducible ones A_{n}, D_{l}, E_{p}. The root lattices $A_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle(n \geq 1), D_{l}=\left\langle d_{1}, d_{2}, \ldots, d_{l}\right\rangle$ $(I \geq 4), E_{p}=\left\langle e_{1}, e_{2}, \ldots, e_{p}\right\rangle(p=6,7,8)$ are defined by the following Dynkin diagrams. All the vertices a_{j}, d_{k}, e_{l} are roots and two vertices a_{j} and a_{j}^{\prime} are joined by a line if and only if $b\left(a_{j}, a_{j}^{\prime}\right)=1$.

Dynkin diagrams of root lattices

$A_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

$D_{I}=\left\langle d_{1}, d_{2}, \ldots, d_{l}\right\rangle$

$\stackrel{\rightharpoonup}{d}_{1}$

$$
E_{p}=\left\langle e_{1}, e_{2}, \ldots, e_{p}\right\rangle
$$

Singular fibers and Dynkin diagrams

Considering the dual of each model of singular fibers (One rational component corresponding to a point; two points in the dual joined by a line if the corresponding components intersect in one point), we get the following correspondance between the Kodaira type of singular fibers and the extended Dynkin diagrams $\tilde{A}_{n}, \tilde{D}_{l}, \tilde{E}_{p}$.
Deleting the zero component, i.e. the component meeting the zero section, gives the Dynkin diagram graph A_{n}, D_{l}, E_{p}.

Extended Dynkin diagrams

The elliptic fibrations of \mathcal{Y}

Fibers	Rank	Torsion
$E_{7} A_{3} E_{8}$	0	(0)
$A_{1} E_{8} E_{8}$	1	(0)
$E_{7} D_{11}$	0	(0)
$A_{1} D_{16}$	1	$\mathbb{Z} / 2 \mathbb{Z}$
$A_{3} A_{1} D_{14}$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$E_{8} A_{1} D_{9}$	0	(0)
$E_{7} D_{6} D_{5}$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$D_{6} A_{1} D_{10}$	1	(0)
$E_{7} D_{10}$	1	$\mathbb{Z} / 2 \mathbb{Z}$
$E_{7} E_{7} A_{1} A_{3}$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$A_{1} A_{1} D_{8} E_{7}$	1	$\mathbb{Z} / 2 \mathbb{Z}$
A_{17}	1	$\mathbb{Z} / 3 \mathbb{Z}$
$A_{1} A_{15}$	2	(0)
$A_{1} D_{17}$	0	(0)
$A_{1} D_{10} D_{7}$	0	$\mathbb{Z} / 2 \mathbb{Z}$

The elliptic fibrations of \mathcal{Y} (continued)

Fibers	Rank	Torsion
$A_{1} D_{5} D_{12}$	0	$\mathbb{Z} / 2 \mathbb{Z}$
$A_{1} D_{6} A_{3} D_{8}$	0	$(\mathbb{Z} / 2)^{2}$
$A_{1} D_{8} D_{8}$	1	$\mathbb{Z} / 2 \mathbb{Z}$
$A_{1} A_{1} A_{1} A_{15}$	0	$\mathbb{Z} / 4 \mathbb{Z}$
$D_{4} A_{13}$	1	(0)
$A_{5} E_{6} E_{6}$	1	$\mathbb{Z} / 3 \mathbb{Z}$
$A_{5} A_{1} A_{1} A_{11}$	0	$\mathbb{Z} / 6 \mathbb{Z}$
$A_{9} A_{1} A_{1} E_{6}$	1	(0)
$A_{11} E_{6} A_{1}$	0	$\mathbb{Z} / 3 \mathbb{Z}$
$A_{9} D_{7}$	2	(0)
$A_{11} A_{1} D_{5}$	1	$\mathbb{Z} / 4 \mathbb{Z}$
$A_{1} D_{4} D_{6} D_{6}$	1	$(\mathbb{Z} / 2)^{2}$
$A_{7} A_{9}$	2	(0)
$A_{1} A_{3} A_{7} A_{7}$	0	$\mathbb{Z} / 8 \mathbb{Z}$
$D_{5} A_{5} A_{7}$	1	(0)

Basic facts on K3-surfaces

A K3-surface is a smooth surface X satisfying

- $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ i.e. X simply connected
- $K_{X}=0$ i.e. the canonical bundle is trivial i.e. there exists a unique, up to scalars, holomorphic 2-form ω on X.

Example and main properties

- A double covering branched along a plane sextic for example defines a K3-surface X.
In our previous example

$$
\left(2 z+x+\frac{1}{x}+y+\frac{1}{y}-k\right)^{2}=\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right)^{2}-4
$$

Main properties

- If X is $K 3, H^{2}(X, \mathbb{Z})$ is a free group of rank 22.
- With the cup product, $H^{2}(X, \mathbb{Z})$ has a structure of even lattice of signature $(3,19)$ (by Hodge index theorem).
- By Poincaré duality, $H^{2}(X, \mathbb{Z})$ is unimodular and

$$
H^{2}(X, \mathbb{Z})=U^{3} \oplus E_{8}[-1]^{2}:=\mathcal{L}
$$

\mathcal{L} is the $K 3$-lattice, U the hyperbolic lattice of rank $2, E_{8}$ the unimodular lattice of rank 8.

Main properties (continued)

- The Néron-Severi group $N S(X)$, i.e. the group of line bundles modulo algebraic equivalence, with the intersection pairing, is a lattice of signature $(1, \rho(X)-1)$.

$$
\begin{gathered}
N S(X) \simeq \mathbb{Z}^{\rho(X)} \\
\rho(X):=\text { Picard number of } X \\
1 \leq \rho(X) \leq 20
\end{gathered}
$$

- The natural embedding

$$
N S(X) \hookrightarrow H^{2}(X, \mathbb{Z})
$$

is a primitive embedding of lattices.

More definitions

- The trivial lattice $T(X)$ inside $N S(X)$ is the orthogonal sum

$$
T(X)=<\bar{O}, F>\oplus_{v \in S} T_{v}
$$

where \bar{O} denotes the zero section, F the general fiber, S the points of \mathbb{P}^{1} corresponding to the reducible singular fibers and T_{v} the lattice generated by the fiber components except the zero component.

- From Shioda's results on height pairing, we can define a positive-definite lattice structure on the Mordell-Weil lattice

$$
M W L(X):=E\left(K\left(\mathbb{P}^{1}\right)\right) / E\left(K\left(\mathbb{P}^{1}\right)\right)_{\text {tor }}
$$

- The frame $W(X)$

$$
W(X)=\langle\bar{O}, F\rangle^{\perp} \subset N S(X)
$$

is a negative-definite even lattice of rank $\rho(X)-2$.

The frame and the singular fibers

- One can read off, the Mordell-Weil lattice, the torsion in the Mordell-Weil group MW and the type of singular fibers from $W(X)$ by

$$
M W L(X)=W(X) / \overline{W(X})_{\text {root }} \quad(M W)_{\text {tors }}=\overline{W(X)}_{\text {root }} / W(X)_{\text {root }}
$$

$$
T(X)=U \oplus W(X)_{\mathrm{root}}
$$

Nishiyama's method

A $K 3$ surface may admit more than one elliptic fibration, but up to isomorphism, there is only a finite number of elliptic fibrations. Nishiyama embeds the frames of all elliptic fibrations into a Niemeier lattice, one of 24 positive definite even unimodular lattices of rank 24. For this purpose, he determines an even negative-definite lattice M such that

$$
q_{M}=-q_{N S(X)}, \quad \operatorname{rank}(M)+\rho(X)=26
$$

By Nikulin's results, $M \oplus W(X)$ has a Niemeier lattice L as an overlattice for each frame $W(X)$ of an elliptic fibration on X.
Thus one is bound to determine the (inequivalent) primitive embeddings of M into Niemeier lattices L.
An embedding $i: S \rightarrow S^{\prime}$ is called primitive if $S^{\prime} / i(S)$ is a free group. The orthogonal complement of M into L gives the corresponding frame $W(X)$.

Niemeier lattices

The 24 Niemeier lattices are listed below.

$L_{\text {root }}$	$L / L_{\text {root }}$	$L_{\text {root }}$	$L / L_{\text {root }}$
E_{8}^{3}	(0)	$D_{5}^{\oplus 2} \oplus A_{7}^{\oplus 2}$	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$
$E_{8} \oplus D_{16}$	$\mathbb{Z} / 2 \mathbb{Z}$	$A_{8}^{\oplus 3}$	$\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z}$
$E_{7}^{\oplus 2} \oplus D_{10}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	A_{24}	$\mathbb{Z} / 5 \mathbb{Z}$
$E_{7} \oplus A_{17}$	$\mathbb{Z} / 6 \mathbb{Z}$	$A_{12}^{\oplus 2}$	$\mathbb{Z} / 13 \mathbb{Z}$
D_{24}	$\mathbb{Z} / 2 \mathbb{Z}$	$D_{4}^{\oplus 6}$	$(\mathbb{Z} / 2 \mathbb{Z})^{6}$
$D_{12}^{\oplus 2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$D_{4} \oplus A_{5}^{\oplus 4}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{Z} / 6 \mathbb{Z})^{2}$
$D_{8}^{\oplus 3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$A_{6}^{\oplus 4}$	$(\mathbb{Z} / 7 \mathbb{Z})^{2}$
$D_{9} \oplus A_{15}$	$\mathbb{Z} / 8 \mathbb{Z}$	$A_{4}^{\oplus 6}$	$(\mathbb{Z} / 5 \mathbb{Z})^{3}$
$E_{6}^{\oplus 4}$	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	$A_{3}^{\oplus 8}$	$(\mathbb{Z} / 4 \mathbb{Z})^{4}$
$E_{6} \oplus D_{7} \oplus A_{11}$	$\mathbb{Z} / 12 \mathbb{Z}$	$A_{2}^{\oplus 12}$	$(\mathbb{Z} / 3 \mathbb{Z})^{6}$
$D_{6}^{\oplus 4}$	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	$A_{1}^{\oplus 24}$	$(\mathbb{Z} / 2 \mathbb{Z})^{12}$
$D_{6} \oplus A_{9}^{\oplus 2}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z}$	0	Λ_{24}

Table: Niemeier lattices

How to find M : the trancendental lattice

- The transcendental lattice of $X, \mathbb{T}(X)$, is the orthogonal complement of $N S(X)$ in $H^{2}(X, \mathbb{Z})$ with respect to the cup-product,

$$
\mathbb{T}(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})
$$

- In general, $\mathbb{T}(X)$ is an even lattice of rank $r=22-\rho(X)$ and signature $(2,20-\rho(X))$.
- Let $t=r-2$. By Nikulin's results, $\mathbb{T}(X)[-1]$ admits a primitive embedding into the following indefinite unimodular lattice:

$$
\mathbb{T}(X)[-1] \hookrightarrow U^{t} \oplus E_{8}
$$

- Then define M as the orthogonal complement of $\mathbb{T}(X)[-1]$ in $U^{t} \oplus E_{8}$. By construction, M is a negative-definite lattice of rank $2 t+8-r=r+4=26-\rho(X)$. One can prove that M takes exactly the shape required for Nishiyama's technique.

