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Introduction

Consider the surface defined by the polynomial

1 1 1
P=x+—-+4+y+-+z+—--2
X y z

There are singular points. After solving these singularities we get a
K3-surface V.
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We can write the polynomial in a projective form as

P = xyz(x + y + z) + t3(xy + xz + yz) — 2xyzt

So the line x+y+z=0, t=0 is on the surface ).

Cutting now ) by the family of hyperplanes x+y-+z=st it follows
Ys (x+y)x+2)(y+2)+(s—1)>2xyz=0

So we can view Y as the collection of Ys. For all but a finite number of s,
Ys defines an elliptic curve with Weierstrass form

Y2 - (s =13 (X +1)Y =X(X+1)(X+ (s —1)2).
Thus is realized the elliptic fibration of )
Yy — PL

Ys is a fiber of this elliptic fibration
From this Weierstrass equation, one can deduce the rank and torsion over
C(s) of the Mordell-Weil group of Ys.
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For bad s, Y5 is no longer an elliptic curve and is called a singular fiber.
Singular fibers have been classified by Kodaira.
To know the type of singular fibers of an elliptic fibration we use in general

Tate's algorithm.
ThusYs has fibers 1 over oo, I over 1, l» over 0 and 2, /1 over s = « and

s = (3 roots of (s — 1) = —8.
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IV. The Néron Model

Number of

Configuration
) iplicity)
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Another elliptic fibration

The line z=0, t=0 is also on the surface ).
Cutting ) by the family of hyperplanes z=vt it follows
Yo (x+y)0y+ )+ ((v—1)*/v)xyt =0.

So we can view ) as the collection of Y., i.e. a new elliptic fibration of )/
with another Weierstrass equation

Y2 — (v —1)°XY = X(X —v?).

Now, Y, has type I over 0 and oo, I5 over 1, I over —1 and /; over the
roots of v2 — 6v + 1.
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Question and Theorem

Question:how many elliptic fibrations does possess )7
Answer: the following theorem (B. - Lecacheux)

Theorem

There are 30 elliptic fibrations with section, all distinct up to isomorphism,
on the elliptic surface
1 1 1
X+=+Y+—+2Z2+==2.

+txt Yo HZ+3
They are listed in the following table with the rank and torsion of their
Mordell-Weil group. The list consists of 14 fibrations of rank 0, 13
fibrations of rank 1 and 3 fibrations of rank 2.
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The proof uses the connection between the singular fibers and root lattices.
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Root lattices

Let L be a negative-definite even lattice.
e € Lisaroot if g (e) = —2. Define the root lattice

Lroot := (A(L) := {e € L/qu(e) = —2}) C L.

Every root lattice is a direct sum of irreducible ones A,, D), E.

The root lattices A, = (a1,a2,...,a) (n>1), D; = (dh,da,...,d))
(I>4), E, = (e1,e,...,6) (p=16,7,8) are defined by the following
Dynkin diagrams. All the vertices aj, di, € are roots and two vertices a;
and a; are joined by a line if and only if b(aj,a}) = 1.
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Dynkin diagrams of root lattices

A, = <31,32,.. .,an> ai a5 P ﬁn
di—1
DI:<d17d27...’dl> {
d di_» dr p
€2
Ep:<€1,62,...,ep> [
“ s es jp
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Singular fibers and Dynkin diagrams

Considering the dual of each model of singular fibers (One rational
component corresponding to a point; two points in the dual joined by a
line if the corresponding components intersect in one point), we get the
following correspondance between the Kodaira type of singular fibers and
the extended Dynkin diagrams A,, D, E .

Deleting the zero component, i.e. the component meeting the zero
section, gives the Dynkin diagram graph A,, D;, E,
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Extended Dynkin diagrams

_ T 7
1 1 1 1 1 2 2 1
An(ln+1) DI(I/—4)
1
2} N % 0
EERE 12§4§21 246534*321

M.J. Bertin (IMJ and Paris 6) Elliptic Fibrations on K3 October 2013 12 / 22



The elliptic fibrations of

Fibers Rank Torsion
E;AsEg 0 (0)
A1 EgEg 1 (0)
E; D14 0 (0)
A1D1g 1 7./27
A3zA1D14 0 7./27
EgA1Dq 0 (0)
E;DgDsg 0 Z7)27
DeA1D1g 1 (0)
E; D1 1 Z)27
E;E7A1A;3 0 7./27
A1A1DgE7 1 7./27
A7 1 Z7]3Z
A1A1s 2 (0)
A1Dq7 0 (0)
A1D10D7 0 7/27
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The elliptic fibrations of ) (continued)

Fibers Rank Torsion
A1Ds D1 0 727
A1 DgA3Dg 0 (Z./2)?
A1DgDg 1 7./2Z
AlAIAIAs | 0 L4
DsA13 1 (0)

As EoEs 1 7./3Z
AsA1A1A11 0 YL/
AgA1A; Es 1 (0)
A11EsAq 0 7./37
Ag D7 2 (0)
A11A1 Ds 1 7./47
A1 D4 Dg Dg 1 (Z./2)?
A7 A 2 (0)
A1A3A7 A7 0 7./8Z
DsAs A7 1 (0)
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Basic facts on K3-surfaces

A K3-surface is a smooth surface X satisfying
e H(X,Ox) =0i.e. X simply connected

@ Kx = 0 i.e. the canonical bundle is trivial i.e. there exists a unique,
up to scalars, holomorphic 2-form w on X.
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Example and main properties

@ A double covering branched along a plane sextic for example defines a
K3-surface X.

In our previous example

1 1 1 1
(z+x+ = PRE — k)2 = (x+ - PRE —k)? -
Main properties
o If X is K3, H3(X,Z) is a free group of rank 22.

e With the cup product, H?(X,Z) has a structure of even lattice of
signature (3,19) (by Hodge index theorem).

e By Poincaré duality, H*(X,Z) is unimodular and

H3*(X,Z) = U* & Eg[-1)* =L

L is the K3-lattice, U the hyperbolic lattice of rank 2, Eg the
unimodular lattice of rank 8.
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Main properties (continued)

@ The Néron-Severi group NS(X), i.e. the group of line bundles modulo
algebraic equivalence, with the intersection pairing, is a lattice of
signature (1, p(X) —1).

NS(X) ~ 7/X)
p(X) := Picard number of X
1<p(X)<20

@ The natural embedding

NS(X) — H*(X,Z)

is a primitive embedding of lattices.
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More definitions

@ The trivial lattice T(X) inside NS(X) is the orthogonal sum

T(X) =< Ov F> Dves T,

where O denotes the zero section, F the general fiber, S the points of
P! corresponding to the reducible singular fibers and T, the lattice
generated by the fiber components except the zero component.

@ From Shioda’s results on height pairing, we can define a
positive-definite lattice structure on the Mordell-Weil lattice

MWL(X) = E(K(PY))/E(K(P))sor

@ The frame W/(X)
W(X) = (0, F)* c NS(X).

is a negative-definite even lattice of rank p(X) — 2.
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The frame and the singular fibers

@ One can read off, the Mordell-Weil lattice, the torsion in the
Mordell-Weil group MW and the type of singular fibers from W(X) by

MWL(X) = W(X)/W(X)root (MW)tors = W(X)root/W(X)root

T(X)=U® W(X)root-
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Nishiyama's method

A K3 surface may admit more than one elliptic fibration, but up to
isomorphism, there is only a finite number of elliptic fibrations.

Nishiyama embeds the frames of all elliptic fibrations into a Niemeier
lattice, one of 24 positive definite even unimodular lattices of rank 24. For
this purpose, he determines an even negative-definite lattice M such that

am = —qns(x), rank(M) + p(X) = 26.

By Nikulin's results, M & W/(X) has a Niemeier lattice L as an overlattice
for each frame W/(X) of an elliptic fibration on X.

Thus one is bound to determine the (inequivalent) primitive embeddings
of M into Niemeier lattices L.

An embedding i : S — S’ is called primitive if S’'/i(S) is a free group.
The orthogonal complement of M into L gives the corresponding frame
W(X).
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Niemeier lattices

The 24 Niemeier lattices are listed below.

Lroot L/Lroot Lroot L/Lroot
[= (0) | D20 AT? | Z/AZ @ /8L
Es @ Dig Z)27 | A3? Z/37 & Z)9Z
ES? @ Dig (Z.)27)% | A 757
E7 ® A1z Z/67 | ALY Z./13Z
D4 Z)27 | Dy° (z./27.)°
D2 (Z)27)? | Dy AY* | Z/2Z & (Z/6Z)?
D3 (z)2z2)% | AP* (2.)727.)?
Dy © Ass Z/8Z | AP (7./57.)3
ES* (z/37)% | AS® (z/47)*
Es ® D7 @ A1y 7/127 | AST (7./37.)°
D¢t (z)27)* | AT* (2./27,)*?
D @ Ag”? 7/27. & 7./10Z | 0 Nog

Table: Niemeier lattices
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How to find M: the trancendental lattice

@ The transcendental lattice of X, T(X), is the orthogonal complement
of NS(X) in H2(X,Z) with respect to the cup-product,

T(X) = NS(X)* ¢ H?(X,Z).

@ In general, T(X) is an even lattice of rank r =22 — p(X) and
signature (2,20 — p(X)).

@ Let t = r — 2. By Nikulin's results, T(X)[—1] admits a primitive
embedding into the following indefinite unimodular lattice:

T(X)[-1] — U' & Es.

@ Then define M as the orthogonal complement of T(X)[—1] in
Ut @ Eg. By construction, M is a negative-definite lattice of rank
2t+8—r=r+4=26— p(X). One can prove that M takes exactly
the shape required for Nishiyama's technique.
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