Mahler measure of algebraic varieties

Marie José BERTIN

Institut Mathématique de Jussieu
Université Paris 6
175 rue du Chevaleret， 75013 PARIS
bertin＠math．jussieu．fr
June 11， 2009

Introduction

Introduced by Mahler in 1962, the logarithmic Mahler measure of a polynomial P is

$$
m(P):=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \cdots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}}
$$

and its Mahler measure

$$
M(P)=\exp (m(P))
$$

where

$$
\mathbb{T}^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n} /\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1\right\}
$$

Remarks

- $n=1$

By Jensen's formula, if $P \in \mathbb{Z}[X]$ is monic, then

$$
M(P)=\prod_{P(\alpha)=0} \max (|\alpha|, 1)
$$

So it is related to Lehmer's question (1933)
Does there exist $P \in \mathbb{Z}[X]$, monic, non cyclotomic, satisfying

$$
1<M(P)<M\left(P_{0}\right)=1.1762 \cdots ?
$$

The polynomial

$$
P_{0}(X)=X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1
$$

is the Lehmer polynomial, in fact a Salem polynomial.

Lehmer's problem is still open.
A partial answer by Smyth (1971)

$$
M(P) \geq 1.32 \cdots
$$

if P is non reciprocal.

The story can be explained with polynomials

$$
x_{0}+x_{1}+x_{2}+\cdots+x_{n} .
$$

- $m\left(x_{0}+x_{1}\right)=0$ (by Jensen's formula)

$$
\begin{gathered}
m\left(x_{0}+x_{1}+x_{2}\right)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right) \text { Smyth (1980) } \\
m\left(x_{0}+x_{1}+x_{2}+x_{3}\right)=\frac{7}{2 \pi^{2}} \zeta(3) \text { Smyth (1980) }
\end{gathered}
$$

These are the first explicit Mahler measures.
$m\left(x_{0}+x_{1}+x_{2}+x_{3}+x_{4}\right) \stackrel{?}{=} * * L(f, 3)$ conjectured by Villegas (2004)
f cusp form of weight 3 and conductor 15
$L(f, 3)$ is also the L-series of the K3 surface defined by

$$
\begin{array}{r}
x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}=0
\end{array}
$$

How such a conjecture possible?
Because of deep insights of two people.

- Deninger (1996) who conjectured

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+1\right) \stackrel{?}{=} \frac{15}{4 \pi^{2}} L(E, 2)=L^{\prime}(E, 0)
$$

E elliptic curve of conductor 15 defined by the polynomial Here the polynomial is reciprocal.

- Maillot (2003) using a result of Darboux (1875): the Mahler measure of P which is the integration of a differential form on a variety, when P is non reciprocal, is in fact an integration on a smaller variety and the expression of the Mahler measure is encoded in the cohomology of the smaller variety.
- $n=2$ The smaller variety is defined by

$$
\begin{aligned}
x_{0}+x_{1}+x_{2} & =0 \\
\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}} & =0
\end{aligned} \Leftrightarrow x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}=0
$$

It is a curve of genus 0 . So $m\left(x_{0}+x_{1}+x_{2}\right)$ is expressed as a Dirichlet L-series.

- $n=3$ The smaller variety is defined by

$$
\begin{aligned}
x_{0}+x_{1}+x_{2}+x_{3} & =0 \\
\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} & =0
\end{aligned} \Leftrightarrow\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)=0
$$

It is the intersection of 3 planes. Thus Smyth's result.

- $n=4$ (Villegas's Conjecture) The smaller variety is defined by

$$
\begin{array}{r}
x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}=0
\end{array}
$$

It is the modular K3-surface studied by Peters, Top, van der Vlugt defined by a reciprocal polynomial. Its L-series is related to f.

- $n=5$ (Villegas's Conjecture again)

$$
m\left(x_{0}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=* * L(g, 4)
$$

g cusp form of weight 4 and conductor 6 related to L-series of the Barth-Nieto quintic.

Motivation

Briefly, to guess the Mahler measure of a non reciprocal polynomial we need results on reciprocal ones.
In particuliar, it is very important to collect many examples of Mahler measures of K3-hypersurfaces.
Notice that Maillot's insight predicts only the type of formula expected. Also Deninger's guess comes from Beilinson's Conjectures.

Many Deninger like or Smyth like formulae:

- experimental (Boyd, R-Villegas)
- rare proofs (Smyth, R-Villegas, Lalin, Rogers, Brunault)

Attempt to answer the questions:
Which type of polynomial defining an elliptic curve give a Mahler measure expressed in terms of the L-series of the elliptic curve Why two types of results?
Let

$$
P(x, y)=a_{d}(x) y^{d}+\ldots+a_{0}(x)=a_{d}(x) \prod_{n=1}^{d}\left(y-\alpha_{n}(x)\right)
$$

By Jensen's formula

$$
\begin{aligned}
m(P) & =m\left(a_{d}\right)+\frac{1}{2 \pi i} \sum_{n=1}^{d} \int_{\mathbb{T}_{1}} \log ^{+}\left|\alpha_{n}(x)\right| \frac{d x}{x} \\
& =m\left(P^{*}\right)-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
\end{aligned}
$$

$$
\eta(x, y):=\log |x| d \arg y-\log |y| d \arg x
$$

is the regulator defined on
$C=\{P(x, y)=0\} \backslash$ ensemble des zéros et pôles de $x \quad$ et $\quad y$ γ is the union of paths on C where $|x|=1$ and $|y| \geq 1$

$$
\partial \gamma=\{P(x, y)=0\} \cap\{|x|=|y|=1\}
$$

Now, if $n=2$, two cases

- η is exact and $\partial \gamma \neq 0$ (the integration is made using Stokes) case of Smyth's formula.
- η is not exact and $\partial \gamma=0$ (the integral is computed with residues's formula) Deninger's case

Bloch (1981) did computations to compare

$$
K_{2}(E) \leadsto L(E, 2)
$$

and

$$
K_{2}(E) \longleftrightarrow K_{1}(0, \alpha, 2)=\sum^{\prime} \frac{\chi(w)}{w^{2} \bar{w}}
$$

W is the lattice corresponding to E
$\chi(w)=\exp \left(A^{-1}(\bar{\alpha} w-\alpha \bar{w})\right)$, additive character depending on the image of α in \mathbb{C} / W
Precisely, Bloch was looking for relations

$$
c . L(E, 2)+\sum_{\alpha \in E(\mathbb{Q})_{\text {tors }}} c_{\alpha} \sum^{\prime}(\Im \tau)^{2} \frac{\chi(w)}{w^{2} \bar{w}}=0
$$

Curves of genus 2

An example (Boyd (1996))

$$
P_{k}=\left(x^{2}+x+1\right) y^{2}+k x(x+1) y+x\left(x^{2}+x+1\right)
$$

defines generically an hyperelliptic curve Z_{k} of genus 2. Its Jacobian $J\left(Z_{k}\right)$ is isogenous to the product of elliptic curves $E_{k} \times F_{k}$.
For $1 \leq k \leq 33, k \neq 3$,

$$
\begin{gathered}
m\left(P_{k}\right) \stackrel{?}{=} r_{k} L^{\prime}\left(E_{k}, 0\right) \\
E_{k}: \quad y^{2}=x^{3}+\left(k^{2}-24\right) x^{2}-16\left(k^{2}-9\right) x
\end{gathered}
$$

But, in fact, we can prove
The derivative of the Mahler measure with respect to k is a period of the elliptic curve E_{k} (main ingredient for families of elliptic curves)
No example when the Jacobian is not split.
So, probably, the most interesting results for $\mathrm{n}=2$ concern elliptic curves. And elliptic curves are Calabi-Yau varieties.

So replace E by a surface X which is also a Calabi-Yau variety, i.e. a K3-surface and try to answer the questions:
What are the analog of Deninger, Boyd, R-Villegas 's results and conjectures?
Which type of Eisenstein-Kronecker series correspond to $L(X, 3)$?

Basic facts on K3-surfaces

Our results concern polynomials of the family

$$
P_{k}=x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-k
$$

defining K3-surfaces Y_{k}. What's a K3-surface?

- A double covering branched along a plane sextic for example defines a K3-surface X.
In our case

$$
\left(2 z+x+\frac{1}{x}+y+\frac{1}{y}-k\right)^{2}=\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right)^{2}-4
$$

- There is a unique holomorphic 2-form ω on X up to a scalar.
- $H_{2}(X, \mathbb{Z})$ is a free group of rank 22 .
- With the intersection pairing, $\mathrm{H}_{2}(X, \mathbb{Z})$ is a lattice and

$$
H_{2}(X, \mathbb{Z}) \simeq U_{2}^{3} \perp\left(-E_{8}\right)^{2}:=\mathcal{L}
$$

\mathcal{L} is the K 3-lattice, U_{2} the hyperbolic lattice of rank $2, E_{8}$ the unimodular lattice of rank 8.

$$
\operatorname{Pic}(X) \subset H_{2}(X, \mathbb{Z}) \simeq \operatorname{Hom}\left(H^{2}(X, \mathbb{Z}), \mathbb{Z}\right)
$$

where $\operatorname{Pic}(X)$ is the group of divisors modulo linear equivalence, parametrized by the algebraic cycles.

$$
\begin{gathered}
\operatorname{Pic}(X) \simeq \mathbb{Z}^{\rho(X)} \\
\rho(X):=\text { Picard number of } X \\
1 \leq \rho(X) \leq 20
\end{gathered}
$$

$$
T(X):=(\operatorname{Pic}(X))^{\perp}
$$

is the transcendental lattice of dimension $22-\rho(X)$

- If $\left\{\gamma_{1}, \cdots, \gamma_{22}\right\}$ is a \mathbb{Z}-basis of $H_{2}(X, \mathbb{Z})$ and ω the holomorphic 2-form,

$$
\int_{\gamma_{i}} \omega
$$

is called a period of X and

$$
\int_{\gamma} \omega=0 \text { for } \gamma \in \operatorname{Pic}(X)
$$

- If $\left\{X_{z}\right\}$ is a family of $K 3$ surfaces, $z \in \mathbb{P}^{1}$ with generic Picard number ρ and ω_{z} the corresponding holomorphic 2-form, then the periods of X_{z} satisfy a Picard-Fuchs differential equation of order $k=22-\rho$.
For our family $k=3$.
- In fact, by Morrison, a \mathcal{M}-polarized K3-surface, with Picard number 19 has a Shioda-Inose structure, that means

- If the Picard number $\rho=20$, then the elliptic curve is CM .

Mahler measure of P_{k}

Theorem

(B. 2005) Let $k=t+\frac{1}{t}$ and

$$
t=\left(\frac{\eta(\tau) \eta(6 \tau)}{\eta(2 \tau) \eta(3 \tau)}\right)^{6}, \eta(\tau)=e^{\frac{\pi i \tau}{12}} \prod_{n \geq 1}\left(1-e^{2 \pi i n \tau}\right), q=\exp 2 \pi i \tau
$$

$$
\begin{aligned}
m\left(P_{k}\right)= & \frac{\Im \tau}{8 \pi^{3}}\left\{\sum _ { m , \kappa } ^ { \prime } \left(-4\left(2 \Re \frac{1}{(m \tau+\kappa)^{3}(m \bar{\tau}+\kappa)}+\frac{1}{(m \tau+\kappa)^{2}(m \bar{\tau}+\kappa)^{2}}\right)\right.\right. \\
& +16\left(2 \Re \frac{1}{(2 m \tau+\kappa)^{3}(2 m \bar{\tau}+\kappa)}+\frac{1}{(2 m \tau+\kappa)^{2}(2 m \bar{\tau}+\kappa)^{2}}\right) \\
& -36\left(2 \Re \frac{1}{(3 m \tau+\kappa)^{3}(3 m \bar{\tau}+\kappa)}+\frac{1}{(3 m \tau+\kappa)^{2}(3 m \bar{\tau}+\kappa)^{2}}\right) \\
& \left.\left.+144\left(2 \Re \frac{1}{(6 m \tau+\kappa)^{3}(6 m \bar{\tau}+\kappa)}+\frac{1}{(6 m \tau+\kappa)^{2}(6 m \bar{\tau}+\kappa)^{2}}\right)\right)\right\}
\end{aligned}
$$

Sketch of proof

Let

$$
P_{k}=x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-k
$$

defining the family $\left(X_{k}\right)$ of $K 3$-surfaces.

- For $k \in \mathbb{P}^{1}$, generically $\rho=19$.
- The family is \mathcal{M}_{k}-polarized with

$$
\mathcal{M}_{k} \simeq U_{2} \perp\left(-E_{8}\right)^{2} \perp\langle-12\rangle
$$

- Its transcendental lattice satisfies

$$
T_{k} \simeq U_{2} \perp\langle 12\rangle
$$

- The Picard-Fuchs differential equation is

$$
\left(k^{2}-4\right)\left(k^{2}-36\right) y^{\prime \prime \prime}+6 k\left(k^{2}-20\right) y^{\prime \prime}+\left(7 k^{2}-48\right) y^{\prime}+k y=0
$$

- The family is modular in the following sense if $k=t+\frac{1}{t}, \tau \in \mathcal{H}$ and τ as in the theorem

$$
t\left(\frac{a \tau+b}{c \tau+d}\right)=t(\tau) \forall\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{1}(6,2)^{*} \subset \Gamma_{0}(12)^{*}+12
$$

where

$$
\begin{gathered}
\Gamma_{1}(6)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S l_{2}(\mathbb{Z}) / a \equiv d \equiv 1(6) c \equiv 0(6)\right\} \\
\Gamma_{1}(6,2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{1}(6) c \equiv 6 b(12)\right\}
\end{gathered}
$$

and

$$
\Gamma_{1}(6,2)^{*}=\left\langle\Gamma_{1}(6,2), w_{6}\right\rangle
$$

- The P-F equation has a basis of solutions $G(\tau), \tau G(\tau), \tau^{2} G(\tau)$ with

$$
G(\tau)=\eta(\tau) \eta(2 \tau) \eta(3 \tau) \eta(6 \tau)
$$

satisfying

$$
G(\tau)=F(t(\tau)), \quad F(t)=\sum_{n \geq 0} v_{n} t^{2 n+1}, \quad v_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

- $\frac{d m\left(P_{k}\right)}{d k}$ is a period, hence satisfies the P-F equation

$$
\begin{gathered}
\frac{d m\left(P_{k}\right)}{d k}=G(\tau) \\
d m\left(P_{k}\right)=-G(\tau) \frac{d t}{t} \frac{1-t^{2}}{t}
\end{gathered}
$$

is a weight 4 modular form for $\Gamma_{1}(6,2)^{*}$

- so can be expressed as a combination of $E_{4}(n \tau)$ for $n=1,2,3,6$
- By integration you get

$$
m\left(P_{k}\right)=\Re\left(-\pi i \tau+\sum_{n \geq 1}\left(\sum_{d \mid n} d^{3}\right)\left(4 \frac{q^{n}}{n}-8 \frac{q^{2 n}}{n}+12 \frac{q^{3 n}}{n}-24 \frac{6 n}{n}\right)\right)
$$

- Then using a Fourier development one deduces the expression of the Mahler measure in terms of an Eisenstein-Kronecker series

For some values of k, the corresponding τ is imaginary quadratic. For example

k	0	2	3	6	10	18
τ	$\frac{-3+\sqrt{-3}}{6}$	$\frac{-2+\sqrt{-2}}{6}$	$\frac{-3+\sqrt{-15}}{12}$	$\frac{\sqrt{-6}}{6}$	$\frac{\sqrt{-2}}{2}$	$\sqrt{\frac{-5}{6}}$

For these quadratic τ called "singular moduli", the corresponding K3-surface is singular, that means its Picard number is $\rho=20$ and the elliptic curve E of the Shioda-Inose is CM
So, an expression of the Mahler measure in terms of Hecke L-series (arithmetic aspect) and perhaps in terms of the L-series of the hypersurface K3 (geometric aspect).

Mahler measure and Hecke L-series

$K=\mathbb{Q}(\sqrt{d})$ an imaginary quadratic field, O_{K} its ring of integers, D its discriminant
Definition A Hecke "Grössencharacter" of weight $k, k \geq 2$, and conductor Λ, Λ being an ideal of O_{K}, is an homomorphism ϕ

$$
\phi: I(\Lambda) \rightarrow \mathbb{C}^{*}
$$

such that

$$
\phi\left(\alpha O_{K}\right)=\alpha^{k-1} \quad \text { if } \quad \alpha \equiv 1(\Lambda)
$$

The corresponding Hecke L-series is defined by

$$
L(\phi, s):=\sum_{P} \frac{\phi(P)}{N(P)^{s}}=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

the summation being on the prime ideals $P \subset O_{K}$ prime to Λ. Replacing O_{K} by an order R, you get a similar definition.

$$
m\left(P_{0}\right)=d_{3}:=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=\frac{2 \sqrt{3}}{\pi^{3}} \sum_{m, k}^{\prime} \frac{1}{\left(m^{2}+3 k^{2}\right)^{2}}
$$

$m\left(P_{2}\right)=\frac{16 \sqrt{2}}{\pi^{3}} L_{\mathbb{Q}(\sqrt{-2})}(\phi, 3) m\left(P_{3}\right)=\frac{15 \sqrt{15}}{2 \pi^{3}} L_{\mathbb{Q}(\sqrt{-15)}}\left(\phi_{1}, 3\right)$ where $_{1}(P)=$ $-\omega$ if $P=(2, \omega)$ and $\omega=\frac{1+\sqrt{-15}}{2}, P$ being a representative of the second ideal class of the number field $\mathbb{Q}(\sqrt{-15})$ of class number 2 .

$$
m\left(P_{6}\right)=\frac{24 \sqrt{6}}{\pi^{3}} L_{\mathbb{Q}(\sqrt{-6})}\left(\phi_{2}, 3\right)
$$

where $\phi_{2}(P)=-2$ if $P=(2, \sqrt{-6}), P$ being a representative of the second ideal class of the number field $\mathbb{Q}(\sqrt{-6})$ of class number 2 .

$$
m\left(P_{10}\right)=2 d_{3}+3 \frac{16 \sqrt{2}}{\pi^{3}} L_{\mathbb{Q}(\sqrt{ }-2)}(\phi, 3)
$$

Mahler measure and L-series of the K3-hypersurfaces

Theorem

Let Y_{k} the $K 3$ hypersurface associated to the polynomial $P_{k}, L\left(Y_{k}, s\right)$ its L-series and T_{Y} its transcendental lattice. Then,

$$
\begin{gathered}
m\left(P_{0}\right)=d_{3}:=\frac{3 \sqrt{3}}{4 \pi} L(\chi-3,2) \\
m\left(P_{2}\right)=\frac{\left|\operatorname{det} T\left(Y_{2}\right)\right|^{3 / 2}}{\pi^{3}} L\left(Y_{2}, 3\right)=\frac{8 \sqrt{8}}{\pi^{3}} L\left(f_{8}, 3\right) \\
m\left(P_{6}\right)=\frac{\left|\operatorname{det} T\left(Y_{6}\right)\right|^{3 / 2}}{2 \pi^{3}} L\left(Y_{6}, 3\right)=\frac{24 \sqrt{24}}{2 \pi^{3}} L\left(f_{24}, 3\right) \\
m\left(P_{10}\right)=\frac{\left|\operatorname{det} T\left(Y_{10}\right)\right|^{3 / 2}}{9 \pi^{3}} L\left(Y_{10}, 3\right)+2 d_{3}=\frac{72 \sqrt{72}}{9 \pi^{3}} L\left(f_{8}, 3\right)+2 d_{3} \\
m\left(P_{18}\right)=\frac{\left|\operatorname{det} T\left(Y_{18}\right)\right|^{3 / 2}}{9 \pi^{3}} L\left(Y_{18}, 3\right)+\frac{14}{5} d_{3}=\frac{120 \sqrt{120}}{9 \pi^{3}} L\left(f_{120}, 3\right)+\frac{14}{5} d_{3}
\end{gathered}
$$

Some ingredients in the proof

Here f_{N} denotes the unique, up to twist, $C M$-newform, $C M$ by $\mathbb{Q}(\sqrt{-N})$, of weight 3 and level N with rational coefficients.

$$
\begin{gathered}
L^{*}(X, s):=\prod_{p \nmid N}^{*} Z\left(X \mid \mathbb{F}_{p}, p^{-s}\right)=\sum_{n \geq 1} \frac{a(n)}{n^{s}} \\
Z\left(X \mid \mathbb{F}_{p}, t\right):=\exp \left(\sum_{s=1}^{\infty} N_{p^{n}} \frac{t^{s}}{s}\right)=\frac{1}{(1-t)\left(1-p^{2} t\right) P_{2}(t)}
\end{gathered}
$$

N is the determinant of the transcendental lattice

$$
P_{2}(t)=\operatorname{det}\left(1-t F_{p} \mid H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)\right)
$$

is a degree 22 polynomial

$$
\left.\left.\left.H_{\mathrm{et}}^{2}\left(X, \mathbb{Q}_{l}\right)\right)=H_{\mathrm{alg}}^{2}\left(X, \mathbb{Q}_{l}\right)\right)+H_{\mathrm{tr}}^{2}\left(X, \mathbb{Q}_{l}\right)\right)
$$

$$
N_{p}=\# X\left(\mathbb{F}_{p}\right)
$$

(1)
(2)

$$
N_{p}=1+p^{2}+\overbrace{\left.\operatorname{Tr} H_{\mathrm{alg}}^{2}\left(X, \mathbb{Q}_{I}\right)\right)}+\overbrace{\left.\operatorname{Tr} H_{\operatorname{tr}}^{2}\left(X, \mathbb{Q}_{I}\right)\right)}
$$

(1) corresponds to algebraic cycles and depends on whether they are defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}}$
(2) corresponds to transcendental cycles

For example, suppose X singular and the 20 generators of the Néron-Severi defined over \mathbb{F}_{p} (case of Y_{2} and Y_{6})

$$
\begin{gathered}
P_{2}(t)=(1-p t)^{20}(1-\beta t)\left(1-\beta^{\prime} t\right) \\
N_{p}=1+p^{2}+20 p+\beta+\beta^{\prime}
\end{gathered}
$$

Serre-Livné 's criterion

Lemma

Let $\rho_{I}, \rho_{l}^{\prime}: G_{\mathbb{Q}} \rightarrow$ Aut V_{I} two rational I-adic representations with $\operatorname{Tr} F_{p, \rho_{l}}=\operatorname{Tr} F_{p, \rho_{!}^{\prime}}$ for a set of primes p of density one (i.e. for all but finitely many primes). If ρ_{l} and ρ_{l}^{\prime} fit into two strictly compatible systems, the L-functions associated to these systems are the same.

Then the great idea is to replace this set of primes of density one by a finite set.

Definition

A finite set T of primes is said to be an effective test set for a rational Galois representation $\rho_{l}: G_{\mathbb{Q}} \rightarrow$ Aut V_{l} if the previous lemma holds with the set of density one replaced by T.

Definition

Let \mathcal{P} denote the set of primes, S a finite subset of \mathcal{P} with r elements, $S^{\prime}=S \cup\{-1\}$. Define for each $t \in \mathcal{P}, t \neq 2$ and each $s \in S^{\prime}$ the function

$$
f_{s}(t):=\frac{1}{2}\left(1+\left(\frac{s}{t}\right)\right)
$$

and if $T \subset \mathcal{P}, T \cap S=\emptyset$,

$$
f: T \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{r+1}
$$

such that

$$
f(t)=\left(f_{s}(t)\right)_{s \in S^{\prime}}
$$

Theorem

(Serre-Livné's criterion) Let ρ and ρ^{\prime} be two 2-adic $G_{\mathbb{Q}}$-representations which are unramified outside a finite set S of primes, satisfying

$$
\operatorname{Tr} F_{p, \rho} \equiv \operatorname{Tr} F_{p, \rho^{\prime}} \equiv 0(\bmod 2)
$$

and

$$
\operatorname{det} F_{p, \rho} \equiv \operatorname{det} F_{p, \rho^{\prime}}(\bmod 2)
$$

for all $p \notin S \cup\{2\}$.
Any finite set T of rational primes disjoint from S with $f(T)=(\mathbb{Z} / 2 \mathbb{Z})^{r+1} \backslash\{0\}$ is an effective test set for ρ with respect to ρ^{\prime}.

Another ingredient: Livné's modularity theorem

Theorem

Let S be a K3-surface defined over \mathbb{Q}, with Picard number 20 and discriminant N. Its transcendental lattice $T(S)$ is a dimension 2
$G a l(\overline{\mathbb{Q}} / \mathbb{Q})$-module thus defines a L series, $L(T(S), s)$.
There exists a weight 3 modular form, f, CM over $\mathbb{Q}(\sqrt{-N})$ satisfying

$$
L(T(S), s) \doteq L(f, s)
$$

Moreover, if $N S(S)$ is generated by divisors defined over \mathbb{Q},

$$
L(S, s) \doteq \zeta(s-1)^{20} L(f, s)
$$

The last ingredient:Schütt's classification of CM-newforms of weight 3

Theorem

Consider the following classifications of singular K3 surfaces over \mathbb{Q} :
(1) by the discriminant d of the transcendental lattice of the surface up to squares,
(2) by the associated newform up to twisting,
(3) by the level of the associated newform up to squares,
(9) by the CM-field $\mathbb{Q}(\sqrt{-d})$ of the associated newform.

Then, all these classifications are equivalent. In particuliar, $\mathbb{Q}(\sqrt{-d})$ has exponent 1 or 2.

Let

$$
P_{k}=x^{2} y z+x y^{2} z+x y z^{2}+t^{2}(x y+x z+y z)-k x y z t .
$$

- Y_{k} is the desingularization of the set of zeroes of P_{k}.
- With some fibration, Y_{k} is an elliptic surface with singular fibers of type I_{n}.
- Use Shioda's theorems on elliptic surfaces to compute the determinant of $N S\left(Y_{k}\right)$, in particular, the formula

$$
\rho_{k}=r_{k}+2+\sum_{\nu}\left(m_{\nu, k}-1\right)
$$

where r_{k} is the rank of $\operatorname{MW}\left(Y_{k}\right)$.

Some ingredients in the proof (continued)

- If $k=2$, since $\rho_{2}=20$ and fibers are of type $I_{12}, I_{6}, l_{2}, l_{2}, I_{1}, l_{1}$, $r_{2}=0$ (easy case).
- So,

$$
\left|\operatorname{det} N S\left(Y_{2}\right)\right|=\frac{\prod m_{\nu, 2}}{\text { Torsion }}=8
$$

- If $k=10$, since $\rho_{2}=20$ and fibers are of type $I_{12}, I_{3}, I_{3}, I_{2}, I_{2}, I_{1}, I_{1}$, $r_{10}=1$ (difficult case).
- So, have to guess an infinite section,
- have to use Néron's desingularization.

Some ingredients in the proof (continued)

- The value of det $N S\left(Y_{10}\right)$ gives the CM -field of the elliptic curve in the Shioda-Inose structure.
- Have to count the number of points of the reduction of Y_{k} modulo q $\left(q=p^{r}\right)$.
- In case Y_{k} modular this allows to determine which modular form gives the equality

$$
L\left(Y_{k}, s\right)=L(f, s)
$$

- Compare to the expression of the Mahler measure and conclude.

Remarks

- We have

$$
\begin{aligned}
\operatorname{det} N S\left(Y_{2}\right) & =-8 \\
\operatorname{det} N S\left(Y_{10}\right) & =-72
\end{aligned}
$$

so the underlying elliptic curves E_{2} and E_{10} are both $C M$ on $\mathbb{Q}(\sqrt{-2})$.

- Since

$$
L\left(Y_{2}, s\right)=L\left(Y_{10}, s\right)=L(f, s)
$$

by Tate's conjecture, Y_{2} and Y_{10} are related by an algebraic correspondance.

