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I INTRODUCTION

The first interested in was D.H.Lehmer

” On factorization of certain cyclotomic func-

tions” (1933)

with his famous question (still unsolved): does

there exist a monic irreducible polynomial P,

non cyclotomic, with integer coefficients such

that

Ω(P ) :=
∏

P (α)=0

max(|α|,1) < Ω(P0) ' 1.1762...

where P0 is the Lehmer’s polynomial

X10 +X9−X7−X6−X5−X4−X3 +X + 1?



In fact

Ω(P ) = M(P )

the Mahler measure of P (introduced by Mahler

in 1962).

The logarithmic Mahler’s measure of a poly-

nomial P is

m(P ) :=
1

(2πi)n

∫

Tn
log | P (x1, · · · , xn) | dx1

x1
· · · dxn

xn

and the Mahler’s measure

M(P ) = exp(m(P )).

By Jensen’s formula, if P ∈ Z[X] is monic, then

M(P ) =
∏

P (α)=0

max(| α |,1).

The first partial answer to Lehmer’s question

is due to Smyth (1971)

M(P ) ≥M(X3 −X − 1) ' 1.32..



if P is non reciprocal. The obstruction for
Lehmer’s question is therefore the reciprocal
polynomials.

Boyd’s limit formula (1981)

m(P (x, xN)) −→ m(P (x, y))

is a hope to get small measures in one variable
from small measures in two variables.

M((x+1)y2+(x2+x+1)y+x(x+1)) = 1.25...

M(y2 + (x2 + x+ 1)y + x2) = 1.28..

are the smallest known measures in two vari-
ables.

At the same time Smyth obtained the first ex-
plicit Mahler measures:

m(x+ y + 1) = L′(χ−3,−1)

m(x+ y + z + 1) =
7

2π2
ζ(3)



Deninger (1996) guessed

m(x+
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E,2) = L′(E,0)

Since then, an abundant literature in this area,

three Conferences on the Mahler measure and

developments in many mathematics domains.

I want to focus on two questions.

• There are experimental relations be-

tween the Mahler measure of different

polynomials. Can we prove these rela-

tions? What they encode?

• How the geometry of the curve or the

surface is involved in the explicit ex-

pressions?



II CURVES OF GENUS 0

Let me take an example.

For

P = (y2(x+ 1)2 + 2y(x2 − 6x+ 1) + (x+ 1)2

Boyd guessed (1998)

m(P )
?
= 4L′(χ−4,−1) =

8

π
L(χ−4,2)

L(χ−4,2) = 1− 1

32
+

1

52
+ · · · = G

G being the Catalan’s constant.



P defines a singular elliptic curve with (1,1) as

double point.

Put x = 1 + X and y = 1 + Y , complete the

square,

(Y (X + 2)2 + 2X2)2 = −16X2(X + 1).

Hence the parametrization of the two branches

of the curve

x1 = −t2 y1 = −(
1 + t

1− t)
2

x2 = −t2 y1 = −(
1− t
1 + t

)2

But,

m(P ) =
1

(2πi)2

∫

|x|=1

∫

|y|=1
log |P (x, y)|dx

x

dy

y

=
1

2πi

∫

|x|=1
log(max(|y1|, |y2|))

dx

x

=
1

2πi

∫

Γ
η2(2)(x, y)

where



η2(2)(x, y) = log |y|di argx− log |x|di arg y

is a differential form on the variety Γ

Γ = {(x, y) ∈ C2/ (x, y) ∈ C |x| = 1, |y| = 1}.

By parametrization,

m(P ) = − 1

2πi
(
∫

γ1

η2(2)(x1(t), y1(t))

+
1

2πi
(
∫

γ2

η2(2)(x2(t), y2(t)))

Now η2(2) has something to do with the Bloch-

Wigner dilogarithm D

D(x) := =Li2(x) + log |x| arg(1− x)

univalued, real analytic in P1(C)\{0,1,∞}, con-

tinuous in P1(C)

D̂(x) = iD(x)



dD̂(x) = η2(2)(x,1− x)

Because of properties of η2(2)

• multiplicative in each variable

• antisymetric

• if α 6= β

η2(2)(t− α, t− β) = η2(2)(
t− α
t− β,1−

t− α
t− β)

+ η2(2)(t− α, α− β)

+ η2(2)(β − α, t− β)



so

m(P ) = − 1

2πi

∫

γ1

4dD̂(−t)− 4dD̂(t)

− 1

2πi

∫

γ2

−4dD̂(−t) + 4dD̂(t)

=
2

π
[D(t)−D(−t)]i−i +

2

π
[D(−t)−D(t)]−ii

=
16

π
D(i)

= 4d4

So for some “good” genus 0 curves, the

Mahler measure encodes the Bloch-Wigner

dilogarithm hence the Bloch groups.



The Bloch groups

Let F a field and define

R2(F ) ⊂ Z[P1
F ]

R2(F ) := [x] + [y] + [1− xy] + [
1− x

1− xy] + [
1− y

1− xy]

B2(F ) := Z[P1
F ]/R2(F )

B2(F )
δ2

1→ Λ2F ∗

δ2
1([x]2) = x ∧ (1− x)

The class of x in B2(F ), [x]2, behaves like
a Bloch-Wigner dilogarithm.

The complex

BF (2)
⊗
Q : B2(F )Q

δ2
1→ (Λ2F ∗)Q

has a cohomology related to K-theory by
Matsumoto’s theorem

H2(BF (2)) ' K2(F )



The first Smyth’s result can be treated in
that context (Lalin).

There are “good” curves for this method
(Vandervelde).

For them, the Mahler measure are diloga-
rithms of algebraic numbers plus eventually
a term in ζF (2).

One of the “good” condition for a polyno-
mial is to be“tempered”.

Definition A polynomial in two variables is
tempered if the polynomials of the faces of
its Newton polygon has only roots of unity.

y2 + y + x2 + x+ 1

is tempered

But

P := (x2+x−1)y2+(x2+5x+1)y−x2+x+1



is not tempered.

Boyd guessed for m(P ) the formula

A := m(P ) =
?
=

2

3
logφ+

1

6
d15

d15 = L′(χ−15,1)

where χ−15 is the odd primitive character

of conductor 15.

By Bloch’s formula,

1

6
L′(χ−15,−1)

=
5

4π
[D(ζ15 +D(ζ2

15) +D(ζ4
15) +D(ζ8

15)]

Using some parametrization, I got

A =
2

3
logφ−D(−j21−

√
5

2
)−D(j

1−
√

5

2
)

−D(−j1 +
√

5

2
)−D(j21 +

√
5

2
)



Numerically

C := −D(−j21−
√

5

2
)−D(j

1−
√

5

2
)

−D(−j1 +
√

5

2
)−D(j21 +

√
5

2
)

?
=

E :=
5

4
[D(ζ15 +D(ζ2

15) +D(ζ4
15) +D(ζ8

15)]

So, even if the polynomial is not “tem-

pered”, there is underneath a relation be-

tween dilogarithms hence the objects are

living in a Bloch group.

And by Galois descent in the Bloch group,

C and E live in B2(Q(
√−15)Q.

I have not yet guessed to which element in

B2(Q(
√−15)Q, C and E are equal.



III CURVES OF GENUS 1

Let

P = (x+ 1)(y + 1)(x+ y + 1) + xy

and

Q = y′2 − (x′2 + 2x′ − 1)y′+ x′3

Theorem (B. (2004))

7m(Q) = 5m(P )

Why?

If P defines a ”good” curve of genus 1,

such an equality encodes the K-theory of

an elliptic curve.



The elliptic regulator

Let K be a field. By Matsumoto, K2(K)
can be described in terms of symbols {f, g},
f and g ∈ K∗ and relations.

The relations are

– {f1f2, g} = {f1, g}+ {f2, g}

– {f, g1g2} = {f, g1}+ {f, g2}

– {1− f, f} = 0

For example, if v is a discrete valuation on
K with maximal ideal M and residual field
k, Tate’s tame symbol

(x, y)v ≡ (−1)v(x)v(y)x
v(y)

yv(x)
(modM)

defines a homomorphism

λv : K2(F )→ k∗.



Let E be an elliptic curve on Q and Q(E) its
rational function field. To any P ∈ E(Q̄) is
associated a valuation on Q(E) that gives
the homomorphism

λP : K2(Q(E))→ Q(P )∗

and the exact sequence

0→ K2(E)⊗Q→ K2(Q(E))⊗Q λ−→
⊔

P∈E(Q̄)

Q(P )∗ ⊗Q→ · · · .

By definition K2(E) is modulo torsion

K2(E) ' ker λ = ∩P ker λP ⊂ K2(Q(E)).

By a theorem due to Villegas, under some
hypothesis, if P ∈ Q[x±, y±] defines a smooth
curve C, we get

{x, y} ∈ K2(C).

In particuliar, if

P (x, y) = (x+ y + 1)(x+ 1)(y + 1) + xy



we get

{x, y} ∈ K2(E).

Let f et g dans Q(E)∗ and define

η(f, g) = log | f | dargg − log | g | dargf.

Definition The elliptic regulator r of E is
given by

r : K2(E) → R
{f, g} 7→ 1

2π

∫
γ η(f, g)

for a suitable loop γ generating H1(E,Z)− ⊂
H1(E,Z) where the complex conjugation
acts by −1.

The elliptic dilogarithm DE(P )

E(C) ' C/Z+ τZ→ C∗/qZ

(P(u),P ′(u))→ u(mod.λ) 7→ e2πiu = z

Define

DE(P ) =
+∞∑

n=−∞
D(qnz)



for P ∈ E(C) and D the Bloch-Wigner dilog-

arithm.

DE can be extended to divisors on E(C)

and is also related to the elliptic regulator.

Now

m(P ) = − 1

2πi

∫

|x|=1
log |y1|

dx

x

=
1

2π

∫

σ
η(x, y)

But σ generates H1(E,Z)−, so

m(P ) = ±r({x, y})
For the same reasons,

m(Q) = ±r({x′, y′})
Comparing these regulators with the regu-

lator of the isomorphic elliptic curve X1(11)

Y 2 + Y −X3 +X2 = 0

one gets



7r({X,Y }) + r({x, y}) = 0

−5r({X,Y }) + r({x′, y′}) = 0

that is

5m(P ) = 7m(Q)

Moreover, you get more, the proof of an

“exotic” relation suspected by Bloch and

Grayson

3DE(P ) = 2DE(2P )

if P = (0,0) is a 5-torsion point of X1(11).



SURFACES

Consider the family of Laurent polynomials

Qk = X + 1
X + Y + 1

Y + Z + 1
Z

+XY +
1

XY
+ZY +

1

ZY
+XY Z+

1

XY Z
−k.

and the relation guessed by Boyd

2m(Q−36)
?
= 4m(Q−6) +m(Q0)

What is under?

Computations possible thanks to the fol-

lowing result



Theorem 1. (B. 2005) Let k = −(t+ 1
t )−2

and

t =
η(3τ)4η(12τ)8η(2τ)12

η(τ)4η(4τ)8η(6τ)12
.



m(Qk) =
=τ
8π3
{
′∑

m,κ
(

2(2< 1

(mτ + κ)3(mτ̄ + κ)

+
1

(mτ + κ)2(mτ̄ + κ)2
)

− 32(2< 1

(2mτ + κ)3(2mτ̄ + κ)

+
1

(2mτ + κ)2(2mτ̄ + κ)2
)

− 18(2< 1

(3mτ + κ)3(3mτ̄ + κ)

+
1

(3mτ + κ)2(3mτ̄ + κ)2
)

+ 288(2< 1

(6mτ + κ)3(6mτ̄ + κ)

+
1

(6mτ + κ)2(6mτ̄ + κ)2
))}



Brief comments

– More geometry is necessary since Qk de-

fine K3-surfaces Xk.

– Since Xk is K3, there is on Xk a unique

(up to scalars) holomorphic 2-form

– Since Xk is K3, one can define periods

– The family of periods satisfy a P.F. dif-

ferential equation of order 3.

– dm(Pk)
dk is a period of Xk

– The family is modular, so the previous

formulae.

– For some Xk, the singular ones, m(Pk)

is related to the L-series of the variety.



– One of the most important result on

K3-surfaces is a theorem of Morrison:

A K3-surface, M-polarized, with Picard

number 19, has a Shioda-Inose struc-

ture, that is

X A = E × E/CN
ι
↘↙
Y = Kum(A/±)

where CN is a cyclic group of isogeny

and X/〈ι〉 is birationally isomorphic to

Y .

– If X is singular (Picard number 20), then

E has complex multiplication.

Now we get the theorem



Theorem 2. (B. 2005)

Let Q(
√−3) and R = (1,2

√−3) ⊂ R′ =
(1,
√−3) two orders of discriminants −48

(resp. −12), with class numbers 2 (resp.
1).

Let ΦR (resp. ΦR′) the Hecke Grössencharacter
of weight 3:

ΦR(αR) = α2 ΦR(P ) = −3 P = (3,2
√
−3)

ΦR′(βR
′) = β2

Then the relation

2m(Q−36) = 4m(Q−6) +m(Q0)

is equivalent to

9

8

′∑

m,κ

m2 − 3κ2

(m2 + 3κ2)3

=
′∑

m,κ
(

4m2 − 3κ2

(4m2 + 3κ2)3
− 12m2 − κ2

(12m2 + κ2)3



•Zagier proved that this is in fact a relation

between the L-series of weight 3 modular

forms for Γ0(4)

(1 + 2× 41−s)L(f, s) = L(f1, s) + L(f2, s)

where f = [θ1, θ3], f1 = [θ1, θ12] and f2 =

[θ4, θ3] are Rankin-Cohen brackets.

θa =
∑

n∈Z
qan

2

RC(g, h) = [g, h] = kgh′ − lg′h
is a modular form of weight k + l + 2 if g

is of weight k and h of weight l.



Final remarks

Using Zagier-Goncharov trilogarithm, Lalin
generalized the wedge product to 3 vari-
ables, explaining for instance the second
Smyth’s relation and also

m((1 + x+ y−1)− (1 + x+ y)z) =
14

3π2
ζ(3)

(Smyth)

m((1+x)(1+y)−(1−x)(1−y)z)) =
7

3π2
ζ(3)

(Lalin)

For all these examples the surfaces are ra-
tional of a certain type.

What are the explicit formulae for rational
elliptic surfaces such as

x(x− 1)(y − 1) = zy(x− y),

the rational elliptic modular surface asso-
ciated to Γ0(6)?


