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I INTRODUCTION
The first interested in was D.H.Lehmer

" On factorization of certain cyclotomic func-
tions” (1933)

with his famous question (still unsolved): does
there exist a monic irreducible polynomial P,
non cyclotomic, with integer coefficients such
that

Q(P):= || maz(la|,1) < Q(Py) ~ 1.1762...
P(a)=0

where Fp is the Lehmer’s polynomial

X104 x9 _ x7 _x6_ x5 _Xx4_ X34+ X417



In fact
Q(P) = M(P)

the Mahler measure of P (introduced by Mahler
in 1962).

The logarithmic Mahler’'s measure of a poly-
nomial P is

and the Mahler's measure

M(P) = exp(m(P)).

By Jensen’'s formula, if P € Z[X] is monic, then

M(P) = H max(| a |, 1).
P(a)=0

The first partial answer to Lehmer’'s question
is due to Smyth (1971)

M(P)> M(X3—-X—-1)~1.32.



if P is non reciprocal. The obstruction for
Lehmer’s question is therefore the reciprocal
polynomials.

Boyd’'s limit formula (1981)

m(P(z,z")) — m(P(z,y))

IS @ hope to get small measures in one variable
from small measures in two variables.

M((z+1)y?+ (z?+z+1)y+z(z+1)) = 1.25...

M2+ (2 4+ 24 1y +2°) = 1.28..

are the smallest known measures in two vari-
ables.

At the same time Smyth obtained the first ex-
plicit Mahler measures:

m(z+y+1)=L(x_3,—1)

(e +y+z+ 1) = 2 5(3)



Deninger (1996) guessed

me+ > +y+ o+ 1) = T HL(E,2) = L'(E,0)
x Y 41

Since then, an abundant literature in this area,

three Conferences on the Mahler measure and

developments in many mathematics domains.

I want to focus on two questions.

e There are experimental relations be-
tween the Mahler measure of different
polynomials. Can we prove these rela-
tions? What they encode?

e How the geometry of the curve or the
surface is involved in the explicit ex-
pressions?



I CURVES OF GENUS O
Let me take an example.

For

P = (y%(z+1)? +2y(a? — 6z + 1) + (= + 1)?
Boyd guessed (1998)

m(P) L 41/ (x4, 1) = “L(x_4,2)

1 1
L(x-42)=1- 5+ 5+ =G

G being the Catalan’s constant.



P defines a singular elliptic curve with (1,1) as
double point.

Put =14+ X and y =1+ Y, complete the
square,
(Y(X 4+2)°4+2X2)%2 = —-16X2(X + 1).

Hence the parametrization of the two branches
of the curve

14t

r1 = — 2 Yy = _(1——15)2
1 -1t
xp = —2 Y1 = _(1——|-t)2

But,
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where



n2(2)(x,y) = log |y|diarg x — log |z|diargy

is a differential form on the variety I

= {(z,y) €C?/ (z,y) €C |z| =1, |y|=1}.

By parametrization,

m(P) = —5 ([ m(@(@11.5:(0)

I N N ORTION

21 Y2

Now 75(2) has something to do with the Bloch-
Wigner dilogarithm D

D(x) := SLis(x) + 1og |z|arg(l — x)

univalued, real analytic in P1(C)\{0, 1, o}, con-
tinuous in P1(C)

D(z) = iD(z)



dD(z) = n2(2)(z,1 — z)
Because of properties of 1n5(2)

e Mmultiplicative in each variable

e antisymetric

o if =3
t — « {1 — «
n2(2)(t —a,t — B) = 772(2)(m, 1-— m)
+n2(2)(t — a,a - 5)
+n2(2)(B — a,t — B)



SO

m(P) = —i/ 4dD(—t) — 4dD(#)
™ Jm
~ L[ _4dD(~t) + 4dD (%)
21 Jyo
= 21D - D(=OIL; + 2[D(~0) = DO;
— 17T—6D(z')
= 4d,

So for some ‘“good” genus O curves, the
Mahler measure encodes the Bloch-Wigner
dilogarithm hence the Bloch groups.



The Bloch groups
Let F' a field and define
Ro(F) C Z[P}]

1— 1—
o Il Co
—

Ro(F) == [z] + [y] + [1 — xy] + |
Ba(F) := Z[P}]/Ro(F)

1—:cy]

52
Bo(F) = N2F*

57([z]2) =z A (1 — )

The class of z in B>(F), [z]2, behaves like
a Bloch-Wigner dilogarithm.

The complex
52
Br(2) @ Q : Ba(F)g = (AN°F*)g

has a cohomology related to K-theory by
Matsumoto’'s theorem

H?(Bp(2)) ~ Ka(F)



The first Smyth's result can be treated in
that context (Lalin).

There are ‘‘good” curves for this method
(Vandervelde).

For them, the Mahler measure are diloga-
rithms of algebraic numbers plus eventually
a term in (g (2).

One of the “good’” condition for a polyno-
mial is to be‘'tempered’.

Definition A polynomial in two variables is
tempered if the polynomials of the faces of
its Newton polygon has only roots of unity.

v +y+a®+a+1

IS tempered

But

P := (z?4z—1)y*+(z°+5z+1)y—z°+az+1



IS not tempered.

Boyd guessed for m(P) the formula
? 2

1
A= P) == —1lo —d
m(P) 3 go+ cd1s
dis = L'(x_15,1)

where x_15 IS the odd primitive character
of conductor 15.

By Bloch's formula,

1

“L'(x_15,—1
c (x-15,—1)

5
= _[D(Gs + D((Fs) + D(CTs) + D(CTs)]
Using some parametrization, I got

2 1—-+5 1 -5
A=Zloge— D(—j° 2f> — D(j QI

_ D(_j%\/g) _ D(ﬂ%\/g

)

)



Numerically

1—+/5 1—+5

C=-D(=j°——5—) = DG~ )
p(— 2R pt Y,

-

B Z[D(cls + D(c35) + D(¢hs) + D(cBY)]

So, even if the polynomial is not ‘tem-
pered”, there is underneath a relation be-
tween dilogarithms hence the objects are
living in a Bloch group.

And by Galois descent in the Bloch group,
C and E live in Bo2(Q(v—15).

I have not yet guessed to which element in
B>(Q(v—15)q, C and E are equal.



III CURVES OF GENUS 1
Let

P=E+1)y+L1)(@+y+1)+azy
and
Q=y"?— (2% +22 - 1)y + 2"
Theorem (B. (2004))

7Tm(Q) = 5m(P)

Why?

If P defines a "good"” curve of genus 1,
such an equality encodes the K-theory of
an elliptic curve.



T he elliptic regulator

Let K be a field. By Matsumoto, K>(K)
can be described in terms of symbols {f, g},
f and g € K* and relations.

The relations are

—{fifa, 9} ={f1,9} + {f2, 9}
— {f,9192} = {f, 91} +{f 92}

For example, if v is a discrete valuation on
K with maximal ideal M and residual field
k, Tate's tame symbol

v(y)
(CC,y)fU p— (_1)’0(5[3)’0(’3])@ (mOdM)
Yy

defines a homomorphism



Let E be an elliptic curve on Q and Q(F) its
rational function field. To any P € E(Q) is
associated a valuation on Q(FE) that gives
the homomorphism

Ap i K2(Q(E)) — Q(P)”

and the exact sequence

0 — K2(E) ® Q — K2(Q(E)) ® Q 2

| QP)'®2Q—--

PeE(Q)
By definition K»(FE) is modulo torsion

Ky(E) ~kerA=nNpkerAp C K>(Q(F)).
By a theorem due to Villegas, under some

hypothesis, if P € @[azi, yi] defines a smooth
curve C', we get

{z,y} € K2(C).

In particuliar, if

Plz,y) = (z+y+ 1)+ 1+ 1) +azy



we get

{z,y} € Ko(E).
Let f et g dans Q(FE)* and define

n(f,g) =109 | f | dargg —log | g | dargf.
Definition The elliptic regulator r of E is
given by

r: Ko(FE) — R
{f.9y  — 5=Jn(f9)

for a suitable loop v generating H1(E,Z)~ C
H{(FE,Z) where the complex conjugation
acts by —1.

The elliptic dilogarithm DE(P)

E(C) ~ C/Z+TZ—>(C*/QZ
(P(’U/), Pl(u)) — U(T)’LOd}\) —> 627Tiu = z
Define

E — T n
DP(P)= Y. D(g"2)

n——oo



for P € E(C) and D the Bloch-Wigner dilog-
arithm.

DY can be extended to divisors on E(C)
and is also related to the elliptic regulator.

Now
1 dx
m(P) = ——/ lO —
1 / ( )
n(x
27r Y

But o generates H{(E,Z), soO

m(P) = +r({z,y})

For the same reasons,

m(Q) = £r({z’,y'})

Comparing these regulators with the regu-
lator of the isomorphic elliptic curve X1(11)

Y24+Y -—X34+X2=0

one gets



7r({X,Y}) +r({z,y}) =0
—5r({X,Y}H) +r{z,y}) =0
that is
5m(P) = 7m(Q)

Moreover, you get more, the proof of an
“exotic” relation suspected by Bloch and
Grayson

3D (pP) = 2D (2P)
if P=(0,0) is a 5-torsion point of X7(11).



SURFACES
Consider the family of Laurent polynomials
_ 1 1 1
Qu=X+5x+Y+¢++2+
1 1 1
XY+—+72Y+—4+ XY+ ———k.
T +XY+ +ZY+ +XYZ
and the relation guessed by Boyd
?
2m(Q—_36) = 4m(Q_p) + m(Qo)
What is under?

Computations possible thanks to the fol-
lowing result



Theorem 1. (B. 2005) Let k = —(t+7)—2
and
_ n(3r)*n(127)%n(27)1?

L A @n)En(en) iz




(@) = 5s{ X

"
(mt + /<c1)3(m7_' + k)
+ (m7 + k)2(mT + /4:)2)
_32(2% L

(2mt + k)3(2mT + K)
1

(2mT + k)2(2mT + 143)2)

—18(2R T
(3mt + k)3(3MmT + k)

1
(3mT + k)2(3mT + /1)2)
1 288(2R -

2(2%R

_|_

_I_

(6mT + k)3 (6mT + K)

1
(6mT + k)2(6mT + Ii)Q))}

_|_



Brief comments

— More geometry is necessary since ;. de-
fine K3-surfaces X;.

— Since X, is K3, there is on X, a unique
(up to scalars) holomorphic 2-form

— Since X is K3, one can define periods

— The family of periods satisfy a P.F. dif-
ferential equation of order 3.

_ dm(Py) i
—— > is a period of X

— The family is modular, so the previous
formulae.

— For some X, the singular ones, m(P;)
IS related to the L-series of the variety.



— One of the most important result on
K 3-surfaces is a theorem of Morrison:

A K3-surface, M-polarized, with Picard
number 19, has a Shioda-Inose struc-
ture, that is

X A:EXE/CN
N
Y = Kum(A/+)

where C)py is a cyclic group of isogeny
and X/(.) is birationally isomorphic to
Y.

— If X is singular (Picard number 20), then
E has complex multiplication.

Now we get the theorem



Theorem 2. (B. 2005)

Let Q(v/-3) and R = (1,2y/-3) C R =
(1,/—3) two orders of discriminants —48
(resp. —12), with class numbers 2 (resp.

1).

Let dp (resp. @) the Hecke Grossencharacter
of weight 3:

dp(aR) =a’ dp(P)=-3 P=(3,2v/=3)

® p(BR) = 57
T hen the relation
2m(Q_36) = 4m(Q_p) + m(Qo)
is equivalent to

— 3kK2
Q Z m2 _|_ 3,432)3

Z/: — 3K2 12m2 — K2
o 4m2 + 3/12)3 (12m?2 + k2)3




e/Zagier proved that this is in fact a relation
between the L-series of weight 3 modular
forms for Mp(4)

(1 + 2 X 41_8)L(f7 S) — L(f17 S) + L(f27 S)

where f = [01,03], f1 = [01,012] and f> =
[04, 03] are Rankin-Cohen brackets.

9@ — Z qan2

nez
RC(g,h) = [g,h] = kgh' —ld'h

is @ modular form of weight k4+142 if g
is of weight k and h of weight [.



Final remarks

Using Zagier-Goncharov trilogarithm, Lalin
generalized the wedge product to 3 vari-
ables, explaining for instance the second
Smyth’s relation and also

m((+a+y )~ (At e+y)2) = 2 5(3)
(Smyth)

m((142) 149) (1) (1-1)2)) = 2 5((3)
(Lalin)

For all these examples the surfaces are ra-
tional of a certain type.

What are the explicit formulae for rational
elliptic surfaces such as

z(z — 1)y —1) = zy(z —y),

the rational elliptic modular surface asso-
Ciated to Ng(6)7?



