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Introduction

Introduced by Mahler in 1962,
the logarithmic Mahler measure of a polynomial P is

m(P) :=
1

(2πi)n

∫
Tn

log | P(x1, · · · , xn) | dx1

x1
· · · dxn

xn

and its Mahler measure

M(P) = exp(m(P))

where
Tn = {(x1, · · · , xn) ∈ Cn/|x1| = · · · = |xn| = 1}.
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Remarks

n = 1
By Jensen’s formula, if P ∈ Z[X ] is monic, then

M(P) =
∏

P(α)=0

max(| α |, 1).

So it is related to Lehmer’s question (1933)
Does there exist P ∈ Z[X ], monic, non cyclotomic, satisfying

1 < M(P) < M(P0) = 1.1762 · · ·?

The polynomial

P0(X ) = X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1

is the Lehmer polynomial, in fact a Salem polynomial.

M.J. Bertin (IMJ and Paris 6) Mahler measure May 2022 3 / 38



Lehmer’s problem is still open.
A partial answer by Smyth (1971)

M(P) ≥ 1.32 · · ·

if P is non reciprocal.
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First explicit Mahler measures

m(x0 + x1) = 0 (by Jensen’s formula)

m(x0 + x1 + x2) =
3
√

3

4π
L(χ−3, 2) =: L′(χ−3,−1) Smyth (1980)

m(x0 + x1 + x2 + x3) =
7

2π2
ζ(3) Smyth (1980)
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Deninger (1996) conjectured

m(x +
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E , 2) =: L′(E , 0)

E elliptic curve of conductor 15 defined by the polynomial
This conjecture was proved (May 2011) by Rogers and Zudilin thanks to a
previous result due to Lalin.
Deninger’s guess comes from Beilinson’s Conjectures.
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Villegas’s results

m(x + 1/x + y + 1/y − k) =
1

2
<[−2πiτ + 4

∞∑
n=1

∑
d |n

χ(d)d2 q
n

n
]

or in terms of Eisenstein’s series

<[
16=(τ)

π2

∑
m,n∈Z

χ(n)
1

(m4τ + n)2(m4τ̄ + n)
]

where q = exp 2πiτ and χ(n) =
(
n
4

)
k2 = 1/µ(τ) µ = q − 8q2 + 44q3 − 192q4 + ...
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When k defines a CM elliptic curve, namely k = 4
√

2 defining

A : y2 = x3 − 44x + 112 with conductor 64

it follows

m(x + 1/x + y + 1/y − 4
√

2) =
64

4π2
L(A, 2)

Also, if k = 4/
√

2 defining

B : y2 = x3 + 4x with conductor 32

it follows

m(x + 1/x + y + 1/y − 4/
√

2) =
32

4π2
L(B, 2)
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Finally for k = 3
√

2 we get the modular elliptic curve X0(24) and using
Beilinson’s theorem it is possible to get a formula of the same type for the
Mahler measure.
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A similar result was proved by Benferhat (2009) (one of my former
students) concerning the family

x + 1/x + y + 1/y + x/y + y/x − k = 0

written as

1/xy [(x + y + 1)(xy + y + x)− (k + 3)xy ] = 0

Hints of proof
From Verrill we know that putting k + 3 = 1/t, it defines an elliptic
modular surface for the congruence group Γ1(6) with Picard-Fuchs
equation near 0 (satisfied by the periods)

t(t − 1)(9t − 1)f ” + (27t2 − 20t + 1)f ′ + 3(3t − 1)f = 0

with two properties
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For the Hauptmodul

t = η(6τ)8η(τ)4

η(3τ)4η(2τ)8 = q − 4q2 + 10q3 − 20q4 + 39q5 + ...

the solution near 0 is expressed as

f =
η(2τ)6η(3τ)

η(τ)3η(6τ)2

With k + 3 = 1/t it follows that

m̃′(k) =
1

2i(π)2

∫
(T)2

t

−1 + (x+y+1)(xy+y+x)
xy

dx

x

dy

y
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is a period of the elliptic curve. Hence it satisfies the Picard-Fuchs
equation; moreover it can be identified with the solution near 0. Thus

m̃′(k) = −tf dm̃′ = −f dt
t

= −f t
′(q)dq

t

−f (t)
q dt
dq

t
= 1 + L(q) + 8L(q2) L(q) =

∑
n≥1

(
∑
d |n

χ(d)d2)qn

Finally by integration we get
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m(k) = <
(
−2iπτ +

∑
n≥1

(∑
d |n χ(d)d2

)
exp 2iπnτ

n

)
+8
(
<
∑

n≥1

(∑
d |n χ(d)d2

)
exp 4iπnτ

2n

)
and in terms of Eisenstein-Kronecker series

m(k) = <
(

9
√

3=τ
4π2

∑
(m,n)6=(0,0)

χ(n)
(3mτ+n)2(3mτ̄+n)

)
+8<

(
9
√

3=τ
4π2

∑
(m,n) 6=(0,0)

χ(n)
(6mτ+n)2(6mτ̄+n)

)
For k = 0 the elliptic curve is CM with conductor 36 more precisely 36a1
with j = 0, τ is imaginary quadratic and we can recover
m(0) = 2L′(E36, 2).
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CM elliptic curves and elliptic modular curves are rare in these families.
Other people Mellit, Zudilin, Brunault used other techniques.
For example Mellit obtained results on the same modular surface, that is

m(1) = b14 m(−5) = 6b14 m(10) = 10b14

(all these conjectured by Boyd.)
A new technique was elaborated by Zudilin and Brunault parametrizing
the elliptic curves with modular units. Based on regulators and modular
units I obtained (August 2015, unpublished)

m(4) = 3b20 m(−2) = 2b20

thus solving Touafek’s conjectures on regulators.
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Finally with similar techniques Brunault considered the family

y2 + kx + y − x3

and proved (arXiv 2015)

m(−1) = 2b14 m(−2) = b35 m(−3) = b54

Remark that this defines an elliptic surface with 4 singular fibers [9, 1, 1, 1]
which is precisely one of Beauville modular elliptic surface for the
congruence group Γ0(9) ∩ Γ1(3).
While preparing this talk I noticed that one of my former students Rémi

Trannoy studied experimentally this family and conjectured m(−5)
?
= 7b20,

m(6)
?
= 3b27 . Combining all the previous methods can we prove these

conjectures?
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From elliptic curves to K3 surfaces

So replace E by a surface X which is also a Calabi-Yau variety, i.e. a
K3-surface and try to answer the questions:
What are the analog of Deninger, Boyd, R-Villegas ’s results and
conjectures?
Which type of Eisenstein-Kronecker series corresponds to L(X , 3)?
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Basic facts on K3-surfaces

Our results concern polynomials of the family

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining K3-surfaces Yk . What’s a K3-surface?
It is a smooth surface X satisfying

H1(X ,OX ) = 0 i.e. X simply connected

KX = 0 i.e. the canonical bundle is trivial i.e. there exists a unique,
up to scalars, holomorphic 2-form ω on X .
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Example and main properties

A double covering branched along a plane sextic for example defines a
K3-surface X.
In our case

(2z + x +
1

x
+ y +

1

y
− k)2 = (x +

1

x
+ y +

1

y
− k)2 − 4

Main properties

H2(X ,Z) is a free group of rank 22.
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Main properties (continued)

With the intersection pairing, H2(X ,Z) is a lattice and

H2(X ,Z) ' U3
2 ⊥ (−E8)2 := L

L is the K3-lattice, U2 the hyperbolic lattice of rank 2, E8 the
unimodular lattice of rank 8.

Pic(X ) ⊂ H2(X ,Z) ' Hom(H2(X ,Z),Z)

where Pic(X ) is the group of divisors modulo linear equivalence,
parametrized by the algebraic cycles (since for K3 surfaces linear and
algebraic equivalence are the same).

Pic(X ) ' Zρ(X )

ρ(X ) := Picard number of X

1 ≤ ρ(X ) ≤ 20
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T (X ) := (Pic(X ))⊥

is the transcendental lattice of dimension 22− ρ(X )

If {γ1, · · · , γ22} is a Z-basis of H2(X ,Z) and ω the holomorphic
2-form, ∫

γi

ω

is called a period of X and∫
γ
ω = 0 for γ ∈ Pic(X ).

If {Xz} is a family of K3 surfaces, z ∈ P1 with generic Picard number
ρ and ωz the corresponding holomorphic 2-form, then the periods of
Xz satisfy a Picard-Fuchs differential equation of order k = 22− ρ.
For our family k = 3.
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In fact, by Morrison, a M-polarized K3-surface, with Picard number
19 has a Shioda-Inose structure, that means

X A = E × E/CN

↘ ↙
Y = Kum(A/± 1)

If the Picard number ρ = 20, then the elliptic curve is CM.
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Mahler measure of Pk

Theorem

(B. 2005) Let k = t + 1
t and

t = (
η(τ)η(6τ)

η(2τ)η(3τ)
)6, η(τ) = e

πiτ
12

∏
n≥1

(1− e2πinτ ), q = exp 2πiτ

m(Pk) =
=τ
8π3
{
′∑

m,κ

(−4(2< 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2
)

+ 16(2< 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2
)

− 36(2< 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2
)

+ 144(2< 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2
))}
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Sketch of proof

Let

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining the family (Xk) of K3-surfaces.

For k ∈ P1, generically ρ = 19.

The family is Mk -polarized with

Mk ' U2 ⊥ (−E8)2 ⊥ 〈−12〉

Its transcendental lattice satisfies

Tk ' U2 ⊥ 〈12〉

The Picard-Fuchs differential equation is

(k2 − 4)(k2 − 36)y ′′′ + 6k(k2 − 20)y ′′ + (7k2 − 48)y ′ + ky = 0

M.J. Bertin (IMJ and Paris 6) Mahler measure May 2022 23 / 38



The family is modular in the following sense
if k = t + 1

t , τ ∈ H and τ as in the theorem

t(
aτ + b

cτ + d
) = t(τ) ∀ (

a b
c d

) ∈ Γ1(6, 2)∗ ⊂ Γ0(12)∗ + 12

where

Γ1(6) = {(a b
c d

) ∈ Sl2(Z) / a ≡ d ≡ 1 (6) c ≡ 0 (6)}

Γ1(6, 2) = {(a b
c d

) ∈ Γ1(6) c ≡ 6b (12)}

and
Γ1(6, 2)∗ = 〈Γ1(6, 2),w6〉

.
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The P-F equation has a basis of solutions G (τ), τG (τ), τ2G (τ) with

G (τ) = η(τ)η(2τ)η(3τ)η(6τ)

satisfying

G (τ) = F (t(τ)), F (t) =
∑
n≥0

vnt
2n+1, vn =

n∑
k=0

(
n

k

)2(n + k

k

)2

dm(Pk )
dk is a period, hence satisfies the P-F equation

dm(Pk)

dk
= G (τ)

dm(Pk) = −G (τ)
dt

t

1− t2

t

is a weight 4 modular form for Γ1(6, 2)∗

so can be expressed as a combination of E4(nτ) for n = 1, 2, 3, 6
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By integration you get

m(Pk) = <(−πiτ +
∑
n≥1

(
∑
d |n

d3)(4
qn

n
− 8

q2n

2n
+ 12

q3n

3n
− 24

q6n

6n
))

Then using a Fourier development one deduces the expression of the
Mahler measure in terms of an Eisenstein-Kronecker series
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The singular K3 surfaces of the Apéry-Fermi’s family (Yk) correspond to
imaginary quadratic τ such that

t =

(
η(τ)η(6τ)

η(2τη(3τ)

)6

, k = t +
1

t
.

They have been computed by Boyd.
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k τ Equation of τ

0 −3+
√
−3

6 3τ2 + 3τ + 1 = 0

2 −2+
√
−2

6 6τ2 + 4τ + 1 = 0

3 −3+
√
−15

12 6τ2 + 3τ + 1 = 0

6
√
−6
6 6τ2 + 1 = 0

10
√
−2
2 2τ2 + 1 = 0

18
√
−30
6 6τ2 + 5 = 0

102
√
−6×13

6 6τ2 + 13 = 0

198
√
−17×6

6 6τ2 + 17 = 0

2
√

5 −1+
√
−5

6 6τ2 + 2τ + 1 = 0

3
√

6
√
−3
3 3τ2 + 1 = 0

2
√
−3 −1+

√
−1

2 2τ2 + 2τ + 1 = 0

3
√
−5 −3+

√
−15

6 3τ2 + 3τ + 2 = 0
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Livné’s modularity theorem

Theorem

Let S be a K3-surface defined over Q, with Picard number 20 and
discriminant N. Its transcendental lattice T (S) is a dimension 2
Gal(Q̄/Q)-module thus defines a L series, L(T (S), s).
There exists a weight 3 modular form , f , CM over Q(

√
−N) satisfying

L(T (S), s)
.

= L(f , s) =
∑
n≥1

An

ns
.
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How to compute the An of the L-series

Lemma

Let Y an elliptic K3-surface defined over Q by a Weierstrass equation
Y (t). If rank (Y (t)) = r and the r infinite sections generating the
Mordell-Weil lattice are defined respectively over Q(

√
di ) ,i = 1, ..., r , then

Ap = −
∑

t∈P1(Fp), Y (t) smooth

ap(t)−
∑

t∈P1(Fp), Y (t) singular

εp(t)−
r∑

i=1

(
di
p

)
p

where
ap(t) = p + 1−#Y (t)(Fp)

and εp(x) defined by

εp(t) =


0, if the reduction of Y (t) is additive

1, if the reduction of Y (t) is split multiplicative

−1, if the reduction of Y (t) is non split multiplicative

.
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Theorem

(Schütt’s classification) Consider the following classification of singular
K3-surfaces over Q

1 by the discriminant d of the transcendental lattice of the surface up
to squares,

2 by the associated newform up to twisting,

3 by the level of the associated newform up to squares,

4 by the CM-field Q(
√
−d) of the associated newform.

Then, all these classifications are equivalent. In particuliar, Q(
√
−d) has

exponent 1 or 2.
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Let
Pk = x2yz + xy2z + xyz2 + t2(xy + xz + yz)− kxyzt.

Yk is the desingularization of the set of zeroes of Pk .
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Computation of the discriminant N

Different methods allow us to obtain the transcendental lattice, hence its
determinant equal to N, of the singular K3 lattice. (see Bertin and
Lecacheux,arxiv 2022)

Y0 [4 2 4]
Y2 [2 0 4]
Y3 [2 1 8]
Y6 [2 0 12]
Y10 [6 0 12]
Y18 [10 0 12]
Y102 [12 0 26]
Y198 [12 0 34]
Yk2=20 [2 0 10]
Yk2=54 [4 0 12]
Yk2=−12 [6 0 6]
Yk2=−45 [8 2 8]
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From the expression of the Mahler measure in terms of Eisenstein
Kronecker series depending of quadratic imaginary τ it follows the
Mahler measure as the L-series of a modular form (modular part) plus
eventually a Dirichlet L-series.

m(P0) = d3 Boyd, Bertin (2005)

m(P2) = 8
√

8
π3 L(f8, 3) B 2009

m(P3) = 15
√

15
2π3 L(f15, 3) (BFFLM)

m(P6) = 24
√

24
2π3 L(f24, 3) (BFFLM)

m(P10) = 72
√

72
9π3 L(f8, 3) + 2d3 (B)

m(P18) = 120
√

120
9π3 L(f120, 3) + 14

5 d3 (BFFLM)

m(Pk2=20) = 2 20
√

20
4π3 L(f20 ⊗ χ5, 3) (B)

m(Pk2=−45) = 6
5

15
√

15
2π3 L(f15 ⊗ χ5, 3) + d15

10 (B)

m(Pk2=−12) = 36
pi3

L(f36, 3) + 4
3d3 (B)
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The L-series of Yk2=−45 and Yk2=−12

(1) L(Yk2=−45, 3) = L(f15 ⊗ χ5, 3)

(2) L(Yk2=−12, 3) = L(f36 ⊗ χ3, 3)
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To compute these L-series we apply the lemma. Thus we need

an elliptic fibration with Weierstrass equation defined over Q;

the r infinite sections generating the Mordell-Weil lattice

For both Weierstrass equations defining Yk2=−45 and Yk2=−12 we get
r = 2. For both, from results of Bertin and Lecacheux, we obtain one
infinite section.
In the first case, Yk2=−45 is the Kummer surface of another surface Z−3

since TZ−3 = [4 1 4]. Thus there exists a 2-isogeny between the surface
and its Kummer.
Since Z−3 has an elliptic fibration with r = 0 its L-series can be easily
computed and gives (1).
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Proof of (2)

Yk2=−12 has an elliptic fibration with Weierstrass equation

y2 = x3 − (t3 + 3t2 − 6t + 4)x2 + t3x

with two infinite sections

(1, (t − 1)
√
−3) from(B-L),(

(
t − 4

t + 2

)2

,
3(t2 − 16)t(t − 1)

(t + 2)3
)(Sage)

One infinite section defined over Q(
√
−3) and the other over Q.

The A(p) are computed using the Pari order

A(p) = −sum(t = 2, p − 1, ellak(e(t), p))− kronecker(−3, p)p

-p-kronecker(-1,p)
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Proof of (2)

Now we must compare to the α(p) given by the CM newform of level 36
and weight 3 (36.3.d.a in LMFDB)

f36(q) = q−2q2+4q4+8q5−8q8−16q10−10q13+16q16+32q20+39q25+...
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