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Historic background and motivation

The first reference is Lehmer’s question (1933) (still unsolved):
Let P ∈ Z[X ], monic, non cyclotomic and define:

Ω(P) =
∏

P(α)=0

max(| α |, 1),

does there exist such a P satisfying

1 < Ω(P) < Ω(P0) = 1.1762 · · ·?

where

P0(X ) = X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1

is the Lehmer polynomial, in fact a Salem polynomial.
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Introduced by Mahler in 1962,
the logarithmic Mahler measure of a polynomial P is

m(P) :=
1

(2πi)n

∫
Tn

log | P(x1, · · · , xn) | dx1

x1
· · · dxn

xn

and its Mahler measure

M(P) = exp(m(P))

where
Tn = {(x1, · · · , xn) ∈ Cn/|x1| = · · · = |xn| = 1}.

By Jensen’s formula , Ω(P) = M(P) if P a one variable polynomial.
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Smyth’s result

Lehmer’s problem is still open.
A partial answer by Smyth (1971)

M(P) ≥ 1.32 · · ·

if P is non reciprocal.
Thus the focus on reciprocal polynomials.
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Boyd’s limit formula

In 1981, Boyd’s limit formula was a great hope:

m(P(x , xn))→ m(P(x , y))

since small measures in one variable could be obtained from small
measures in two variables.
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Boyd computed:

M(x +
1

x
+ y +

1

y
+

x

y
+

y

x
+ 1) = 1.25...

M(x +
1

x
+ y +

1

y
+ 1) = 1.28...

M(x +
1

x
+ y +

1

y
+ z +

1

z
+ 1) = 1.4483...Boyd or Mossinghoff (2006)

I obtained

M(x +
1

x
+ y +

1

y
+ z +

1

z
+ xy +

1

xy
+ zy +

1

zy
+ xyz +

1

xyz
+ 1) = 1.4351...

These are the smallest known measures in 2 or 3 variables.
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Smyth explicit measures (1981)

At the same time (1981) Smyth was visiting Boyd and found his first
explicit Mahler measures

m(x + y + 1) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) =: d3

d3 :=
3
√

3

4π

∑
n≥1

χ−3(n)

n2
.

m(x + y + z + 1) =
7

2π2
ζ(3)

It would be tempting to know m(x + y + z + t + 1) and
m(x + y + z + t + w + 1) but they are only conjectures by
Rodriguez-Villegas.
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The Calgary CMS Summer meeting (1996)

There, Boyd met Deninger and Deninger guessed the famous explicit
Mahler measure

m(x +
1

x
+ y +

1

y
+ 1) =

15

4π2
L(E , 2) =: L′(E , 0),

E elliptic curve,algebraic closure of the zero set of the polynomial, denoted
15a8 (Cremona’s notation), of conductor 15, defined by

Y 2 + XY + Y = X 3 + X 2

with L-series given by the modular form

f15A(z) = η(z)η(3z)η(5z)η(15z)

(Deninger’s guess was proved in 2011 by Rogers and Zudilin and again in
2013 by Zudilin.)
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It was the starting point of intensive research, first by Boyd, then by
Rodriguez-Villegas and others.
Boyd studied many pencils of elliptic curves and curves of genus 2. He
conjectured lots of explicit measures and found a necessary condition:
the polynomial P must be tempered
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Basic facts on elliptic K3-surfaces

It was very tempting to generalise the above results or conjectures to the
family

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
+ k

My own reference was, at that time “A pencil of K 3-surfaces related to
Apéry’s recurrence for ζ(3) and Fermi surfaces for potential zero” by
Peters and Stienstra (1988)
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What’s a K3-surface?

A double covering branched along a plane sextic for example defines a
K3-surface X.
In case of the Apéry-Fermi pencil

(2z + x +
1

x
+ y +

1

y
− k)2 = (x +

1

x
+ y +

1

y
− k)2 − 4
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An elliptic K 3 surface X admits a fibration π : X → P1 such that the
fiber π−1(t) is an elliptic curve for all but a finite number of t giving
the singular fibers classified by Kodaira.

Given an elliptic surface as

y 2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t)

you recognise an elliptic fibration on a K 3 surface if the degree of
polynomials ai is ≤ 2i and is exactly 2i for one i .

How to get an elliptic fibration on the Apéry-Fermi pencil?
First, as did Peters and van Vglut, in cutting by a pencil of planes
X + Y + Z = t. This gives the elliptic fibration:

y 2 − xy(t2 − kt + 1) = x(x − 1)(x + t2 − tk)

t is called an elliptic parameter
But, if we want to obtain all the elliptic fibrations of the pencil, we
must use the technique of Elkies’s neighbors. (see our recent preprint
B. and Lecacheux (2018)).
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There is a unique holomorphic 2-form ω on X up to a scalar.

H2(X ,Z) is a free group of rank 22.

With the intersection pairing, H2(X ,Z) is a lattice and

H2(X ,Z) ' U3
2 ⊥ (−E8)2 := L

L is the K 3-lattice, U2 the hyperbolic lattice of rank 2, E8 the
unimodular lattice of rank 8.

Pic(X ) ⊂ H2(X ,Z) ' Hom(H2(X ,Z),Z)

where Pic(X ) is the group of divisors modulo linear equivalence,
parametrized by the algebraic cycles.

Pic(X ) ' Zρ(X )

ρ(X ) := Picard number of X

1 ≤ ρ(X ) ≤ 20
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T (X ) := (Pic(X ))⊥

is the transcendental lattice of dimension 22− ρ(X )

If {γ1, · · · , γ22} is a Z-basis of H2(X ,Z) and ω the holomorphic
2-form, ∫

γi

ω

is called a period of X and∫
γ
ω = 0 for γ ∈ Pic(X ).

If {Xz} is a family of K 3 surfaces, z ∈ P1 with generic Picard number
ρ and ωz the corresponding holomorphic 2-form, then the periods of
Xz satisfy a Picard-Fuchs differential equation of order k = 22− ρ.
For our family k = 3.
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In fact, by Morrison, a M-polarized K 3-surface, with Picard number
19 or 20 has a Shioda-Inose structure, that means

X A = E × E/CN

↘ ↙
Y = Kum(A/± 1)

If the Picard number ρ = 20, then the elliptic curve is CM.
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Mahler measure of Pk

Theorem

(B. 2005) Let k = t + 1
t and

t = (
η(τ)η(6τ)

η(2τ)η(3τ)
)6, η(τ) = e

πiτ
12

∏
n≥1

(1− e2πinτ ), q = exp 2πiτ

m(Pk) =
=τ
8π3
{
′∑

m,κ

(−4(2< 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2
)

+ 16(2< 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2
)

− 36(2< 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2
)

+ 144(2< 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2
))}
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Sketch of proof

Let

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining the family (Yk) of K 3-surfaces.

For k ∈ P1, generically ρ = 19.

The family is Mk -polarized with

Mk ' U2 ⊥ (−E8)2 ⊥ 〈−12〉

Its transcendental lattice satisfies

Tk ' U2 ⊥ 〈12〉

The Picard-Fuchs differential equation is

(k2 − 4)(k2 − 36)y ′′′ + 6k(k2 − 20)y ′′ + (7k2 − 48)y ′ + ky = 0
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The family is modular in the following sense
if k = t + 1

t , τ ∈ H and τ as in the theorem

t(
aτ + b

cτ + d
) = t(τ) ∀ (

a b
c d

) ∈ Γ1(6, 2)∗ ⊂ Γ0(12)∗ + 12

where

Γ1(6) = {(a b
c d

) ∈ Sl2(Z) / a ≡ d ≡ 1 (6) c ≡ 0 (6)}

Γ1(6, 2) = {(a b
c d

) ∈ Γ1(6) c ≡ 6b (12)}

and
Γ1(6, 2)∗ = 〈Γ1(6, 2),w6〉

.
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The P-F equation has a basis of solutions G (τ), τG (τ), τ2G (τ) with

G (τ) = η(τ)η(2τ)η(3τ)η(6τ)

satisfying

G (τ) = F (t(τ)), F (t) =
∑
n≥0

vnt2n+1, vn =
n∑

k=0

(
n

k

)2(n + k

k

)2

dm(Pk )
dk is a period, hence satisfies the P-F equation

dm(Pk)

dk
= G (τ)

dm(Pk) = −G (τ)
dt

t

1− t2

t

is a weight 4 modular form for Γ1(6, 2)∗

so can be expressed as a combination of E4(nτ) for n = 1, 2, 3, 6
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By integration you get

m(Pk) = <(−πiτ +
∑
n≥1

(
∑
d |n

d3)(4
qn

n
− 8

q2n

n
+ 12

q3n

n
− 24

6n

n
))

Then using a Fourier development one deduces the expression of the
Mahler measure in terms of an Eisenstein-Kronecker series
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For some values of k , the corresponding τ is imaginary quadratic.
For example

k 0 2 3 6 10 18

τ −3+
√
−3

6
−2+

√
−2

6
−3+

√
−15

12

√
−6
6

√
−2
2

√
−5
6

For these quadratic τ called “singular moduli”, the corresponding
K3-surface is singular, that means its Picard number is ρ = 20 and the
elliptic curve E of the Shioda-Inose is CM
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Mahler measure and L-series of the K3-hypersurfaces

Theorem

Let Yk the K 3 hypersurface associated to the polynomial Pk , and TYk
its

transcendental lattice. Then,

m(P0) =
3
√

3

4π
L(χ−3, 2) m(P2) =

| det T (Y2) |3/2

π3
L(Y2, 3) =

8
√

8

π3
L(f8, 3)

m(P3) =
15
√

15

2π3
L(f15, 3) =

15
√

15

2π3
L(Y3, 3)

m(P6) =
| det T (Y6) |3/2

2π3
L(Y6, 3) =

24
√

24

2π3
L(f24, 3)

m(P10) =
| det T (Y10) |3/2

9π3
L(Y10, 3) + 2d3 =

72
√

72

9π3
L(f8, 3) + 2d3

m(P18) =
| det T (Y18) |3/2

9π3
L(Y18, 3) +

14

5
d3 =

120
√

120

9π3
L(f120, 3) +

14

5
d3
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L-series of a singular K3-hypersurface

L∗(X , s) :=
∗∏

p-N

Z (X |Fp, p
−s) =

∑
n≥1

A(n)

ns

N is the determinant of the transcendental lattice. Giving a suitable value
to the local factors, the L-series of the surface X can be expressed in
terms of the Mellin transform of a modular form.
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Livné’s modularity theorem

Main ingredient: Livné’s modularity theorem

Theorem

Let S be a K 3-surface defined over Q, with Picard number 20 and
discriminant N. Its transcendental lattice T (S) is a dimension 2
Gal(Q̄/Q)-module thus defines a L series, L(T (S), s).
There exists a weight 3 modular form , f , CM over Q(

√
−N) satisfying

L(T (S), s)
.

= L(f , s).

Moreover, if NS(S) is generated by divisors defined over Q,

L(S , s)
.

= ζ(s − 1)20L(f , s).
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Schütt’s classification of CM-newforms of weight 3

Theorem

Consider the following classifications of singular K 3 surfaces over Q:

1 by the discriminant d of the transcendental lattice of the surface up
to squares,

2 by the associated newform up to twisting,

3 by the level of the associated newform up to squares,

4 by the CM-field Q(
√
−d) of the associated newform.

Then, all these classifications are equivalent. In particuliar, Q(
√
−d) has

exponent 1 or 2.
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Computing L∗(X , s)

Lemma

Let X be a singular elliptic K3 surface defined over Q. If a Weierstrass
model E of an elliptic fibration of X has rank 1 and possess an infinite
section defined over Q(

√
d), then

Ap = −
∑

x∈P1(Fp), Ex smooth

ap(x)−
∑

x∈P1(Fp), Ex singular

εp(x)−
(

d

p

)
p

with ap(x) = p − 1−#Ex(Fp) and εp(x) such that

εp(x) =


0, if Ex has additive reduction

1, si Ex has split multiplicative reduction

−1, si Ex has non split multiplicative reduction

.
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New results

Theorem

m(P2
√

5) = 2.
20
√

20

4π3
L(f20 ⊗ χ5, 3)

L(Y2
√

5, 3) = L(f20, 3)

m(P3
√
−5) =

6

5

15
√

15

2π3
L(f15, 3) +

d15

10

If E3
√
−5 defined by

y 2 = x3 + (270t + 2025t4 + 1755t2 − 3− 4050t3)x2 + 720xt(t − 1)

has an infinite section defined over Q(
√
−15)

L(Y3
√
−5, 3) = L(f15, 3)
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Remarks

The K 3-surfaces Y2 and Y10 have the same L-series L(f8, s) and
transcendental lattices:

TY2 = [2 0 4] TY10 = [6 0 12]

in Shimada-Zhang notation. So, by Tate’s conjecture an algebraic relation
is suspected between the two K 3-surfaces.
Indeed, there is an 3-isogeny between Y2 and Y10 (B. and Lecacheux).
The K 3-surfaces Y3 and Y3

√
−5 have the same L-series L(f15, 3) but

transcendental lattices:

TY3 = [2 1 8] TY3
√
−5

= [8 2 8].

(! a wrong computation in BFFLM where is written TY3 = [2 3 12]) There
is no algebraic relation between them but Y3

√
−5 is the Kummer surface of

Z−3 which is a K 3-surface of the family Qk

Qk = (x + y + z + 1)(xy + xz + yz + xyz)− (k + 4)xyz

since TZ−3 = [4 1 4]. However, m(Q−3) = 8
5 d3 (B.) but

L(Z−3, 3) = L(f15 ⊗ χ, 3) (Peters and van Vlugt).
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Results concerning the family Qk

m(Z0) and m(Z12) (B. 2006), m(Z−3) (B. 2012)
Based on a Rogers’s result, Samart deduced in his paper (arXiv 2013) the
following:

m(Q−36) = 2(4L′(g , 0) + L′(χ−4,−1))

m(Q−6) =
1

2
(7L′(g , 0) + 2L′(χ−4,−1))

g = η(2τ)3η(6τ)3
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If interested in the link between the Mahler measure and the L-series of
the K 3-surface, we need a good Weierstrass model for the family.
By chance, quite recently, O. Lecacheux found such a model for the family
Qk , namely

(Fk) y 2 = x3−((−k2+24)t2−2(k−2)(k+4)2t−k(k+4)3)x2−16t4(t+k+3)x

I explain

k -36 -12 -4 -6 -3 0 4 12 60

rk(MWk) 1 1 -1 1 0 0 1 0 1

We recover easily my previous results with Shioda’s formula.
F0 has singular fibers III ∗, I ∗4 , I3, I2, 2-torsion hence
|detT0| = 2×4×3×2

22 = 12
F12 has singular fibers III ∗, I8, I3, I2, I2, 2-torsion hence
|detT12| = 2×8×3×4

22 = 12× 4
No algebraic relation between Z0 and Z12 since T0 = [2 0 6] and
T12 = [2 0 24].

M.J. Bertin (IMJ and Paris 6) Mahler measure August 2018 30 / 31



With similar arguments, but not so simple, I have just proved

m(Q4) =
20
√

2

π3

′∑ k2 − 2m2

(k2 + 2m2)3
=

20
√

2

π3
× 2× L(f8, 3)

L(Z4, 3) = L(f8, 3)

Moreover det(TZ4) = 8× 4.
Z4 may be the Kummer of Y2?
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