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Introduction

Introduced by Mahler in 1962,
the logarithmic Mahler measure of a polynomial P is

m(P) :=
1

(2πi)n

∫
Tn

log | P(x1, · · · , xn) | dx1

x1
· · · dxn

xn

and its Mahler measure

M(P) = exp(m(P))

where
Tn = {(x1, · · · , xn) ∈ Cn/|x1| = · · · = |xn| = 1}.
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Remarks

n = 1
By Jensen’s formula, if P ∈ Z[X ] is monic, then

M(P) =
∏

P(α)=0

max(| α |, 1).

So it is related to Lehmer’s question (1933)
Does there exist P ∈ Z[X ], monic, non cyclotomic, satisfying

1 < M(P) < M(P0) = 1.1762 · · ·?

The polynomial

P0(X ) = X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1

is the Lehmer polynomial, in fact a Salem polynomial.
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Lehmer’s problem is still open.
A partial answer by Smyth (1971)

M(P) ≥ 1.32 · · ·

if P is non reciprocal.
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The story can be explained with polynomials

x0 + x1 + x2 + · · ·+ xn.

m(x0 + x1) = 0 (by Jensen’s formula)

m(x0 + x1 + x2) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) Smyth (1980)

m(x0 + x1 + x2 + x3) =
7

2π2
ζ(3) Smyth (1980)

These are the first explicit Mahler measures.
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m(x0+x1+x2+x3+x4)
?
=

675
√

15

16π3
L(f , 4) conjectured by Villegas (2004)

f cusp form of weight 3 and conductor 15
L(f , s) is also the L-series of the K3 surface defined by

x0 + x1 + x2 + x3 + x4 = 0

1

x0
+

1

x1
+

1

x2
+

1

x3
+

1

x4
= 0
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How such a conjecture possible?
Because of deep insights of two people.

Deninger (1996) who conjectured

m(x +
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E , 2) = L′(E , 0)

E elliptic curve of conductor 15 defined by the polynomial
This conjecture was proved recently (May 2011) by Rogers and
Zudilin thanks to a previous result due to Lalin. Here the polynomial
is reciprocal.
A new proof is just posted on the arXiv (April 2013) by Zudilin.
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Maillot (2003) using a result of Darboux (1875): the Mahler measure
of P which is the integration of a differential form on a variety, when
P is non reciprocal, is in fact an integration on a smaller variety and
the expression of the Mahler measure is encoded in the cohomology
of the smaller variety.
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Examples

n = 2 The smaller variety is defined by

x0 + x1 + x2 = 0

1

x0
+

1

x1
+

1

x2
= 0
⇔ x2

1 + x2
2 + x1x2 = 0

It is a curve of genus 0. So m(x0 + x1 + x2) is expressed as a Dirichlet
L-series.

n = 3 The smaller variety is defined by

x0 + x1 + x2 + x3 = 0

1

x0
+

1

x1
+

1

x2
+

1

x3
= 0
⇔ (x1 + x2)(x1 + x3)(x2 + x3) = 0

It is the intersection of 3 planes. Thus Smyth’s result.
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n = 4 (Villegas’s Conjecture) The smaller variety is defined by

x0 + x1 + x2 + x3 + x4 = 0

1

x0
+

1

x1
+

1

x2
+

1

x3
+

1

x4
= 0

It is the modular K 3-surface studied by Peters, Top, van der Vlugt
defined by a reciprocal polynomial. Its L-series is related to f .

n = 5 (Villegas’s Conjecture again)

m(x0 + x1 + x2 + x3 + x4 + x5) = ∗ ∗ L(g , 5)

g cusp form of weight 4 and conductor 6 related to L-series of the
Barth-Nieto quintic.
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Barth-Nieto quintic

It the 3-fold compactification of the complete intersection of

x0 + x1 + x2 + x3 + x4 + x5 = 0

1

x0
+

1

x1
+

1

x2
+

1

x3
+

1

x4
+

1

x5
= 0

It has been studied by Hulek, Spandaw, Van Geemen, Van Straten in
2001. They proved that the L-function of the quintic (i.e. of their third
etale cohomology group) is modular, a fact predicted by a conjecture of
Fontaine and Mazur.
The modular form is the newform of weight 4 for Γ0(6)

f = (η(q)η(q2)η(q3)η(q6))2
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Motivation

Briefly, to guess the Mahler measure of a non reciprocal polynomial we
need results on reciprocal ones.
In particuliar, it is very important to collect many examples of Mahler
measures of K 3-hypersurfaces.
Notice that Maillot’s insight predicts only the type of formula expected.
Also Deninger’s guess comes from Beilinson’s Conjectures.
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So replace E by a surface X which is also a Calabi-Yau variety, i.e. a
K 3-surface and try to answer the questions:
What are the analog of Deninger, Boyd, R-Villegas ’s results and
conjectures?
Which type of Eisenstein-Kronecker series corresponds to L(X , 3)?
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Basic facts on K3-surfaces

Our results concern polynomials of the family

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining K3-surfaces Yk . What’s a K3-surface?
It is a smooth surface X satisfying

H1(X ,OX ) = 0 i.e. X simply connected

KX = 0 i.e. the canonical bundle is trivial i.e. there exists a unique,
up to scalars, holomorphic 2-form ω on X .
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Example and main properties

A double covering branched along a plane sextic for example defines a
K3-surface X.
In our case

(2z + x +
1

x
+ y +

1

y
− k)2 = (x +

1

x
+ y +

1

y
− k)2 − 4

Main properties

H2(X ,Z) is a free group of rank 22.
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Main properties (continued)

With the intersection pairing, H2(X ,Z) is a lattice and

H2(X ,Z) ' U3
2 ⊥ (−E8)2 := L

L is the K 3-lattice, U2 the hyperbolic lattice of rank 2, E8 the
unimodular lattice of rank 8.

Pic(X ) ⊂ H2(X ,Z) ' Hom(H2(X ,Z),Z)

where Pic(X ) is the group of divisors modulo linear equivalence,
parametrized by the algebraic cycles (since for K 3 surfaces linear and
algebraic equivalence are the same).

Pic(X ) ' Zρ(X )

ρ(X ) := Picard number of X

1 ≤ ρ(X ) ≤ 20
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T (X ) := (Pic(X ))⊥

is the transcendental lattice of dimension 22− ρ(X )

If {γ1, · · · , γ22} is a Z-basis of H2(X ,Z) and ω the holomorphic
2-form, ∫

γi

ω

is called a period of X and∫
γ
ω = 0 for γ ∈ Pic(X ).

If {Xz} is a family of K 3 surfaces, z ∈ P1 with generic Picard number
ρ and ωz the corresponding holomorphic 2-form, then the periods of
Xz satisfy a Picard-Fuchs differential equation of order k = 22− ρ.
For our family k = 3.
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In fact, by Morrison, a M-polarized K 3-surface, with Picard number
19 has a Shioda-Inose structure, that means

X A = E × E/CN

↘ ↙
Y = Kum(A/± 1)

If the Picard number ρ = 20, then the elliptic curve is CM.
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Mahler measure of Pk

Theorem

(B. 2005) Let k = t + 1
t and

t = (
η(τ)η(6τ)

η(2τ)η(3τ)
)6, η(τ) = e

πiτ
12

∏
n≥1

(1− e2πinτ ), q = exp 2πiτ

m(Pk) =
=τ
8π3
{
′∑

m,κ

(−4(2< 1

(mτ + κ)3(mτ̄ + κ)
+

1

(mτ + κ)2(mτ̄ + κ)2
)

+ 16(2< 1

(2mτ + κ)3(2mτ̄ + κ)
+

1

(2mτ + κ)2(2mτ̄ + κ)2
)

− 36(2< 1

(3mτ + κ)3(3mτ̄ + κ)
+

1

(3mτ + κ)2(3mτ̄ + κ)2
)

+ 144(2< 1

(6mτ + κ)3(6mτ̄ + κ)
+

1

(6mτ + κ)2(6mτ̄ + κ)2
))}
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Sketch of proof

Let

Pk = x +
1

x
+ y +

1

y
+ z +

1

z
− k

defining the family (Xk) of K 3-surfaces.

For k ∈ P1, generically ρ = 19.

The family is Mk -polarized with

Mk ' U2 ⊥ (−E8)2 ⊥ 〈−12〉

Its transcendental lattice satisfies

Tk ' U2 ⊥ 〈12〉

The Picard-Fuchs differential equation is

(k2 − 4)(k2 − 36)y ′′′ + 6k(k2 − 20)y ′′ + (7k2 − 48)y ′ + ky = 0
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The family is modular in the following sense
if k = t + 1

t , τ ∈ H and τ as in the theorem

t(
aτ + b

cτ + d
) = t(τ) ∀ (

a b
c d

) ∈ Γ1(6, 2)∗ ⊂ Γ0(12)∗ + 12

where

Γ1(6) = {(a b
c d

) ∈ Sl2(Z) / a ≡ d ≡ 1 (6) c ≡ 0 (6)}

Γ1(6, 2) = {(a b
c d

) ∈ Γ1(6) c ≡ 6b (12)}

and
Γ1(6, 2)∗ = 〈Γ1(6, 2),w6〉

.
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The P-F equation has a basis of solutions G (τ), τG (τ), τ2G (τ) with

G (τ) = η(τ)η(2τ)η(3τ)η(6τ)

satisfying

G (τ) = F (t(τ)), F (t) =
∑
n≥0

vnt2n+1, vn =
n∑

k=0

(
n

k

)2(n + k

k

)2

dm(Pk )
dk is a period, hence satisfies the P-F equation

dm(Pk)

dk
= G (τ)

dm(Pk) = −G (τ)
dt

t

1− t2

t

is a weight 4 modular form for Γ1(6, 2)∗

so can be expressed as a combination of E4(nτ) for n = 1, 2, 3, 6
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By integration you get

m(Pk) = <(−πiτ +
∑
n≥1

(
∑
d |n

d3)(4
qn

n
− 8

q2n

2n
+ 12

q3n

3n
− 24

q6n

6n
))

Then using a Fourier development one deduces the expression of the
Mahler measure in terms of an Eisenstein-Kronecker series
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For some values of k , the corresponding τ is imaginary quadratic.
For example

k 0 2 3 6 10 18

τ −3+
√
−3

6
−2+

√
−2

6
−3+

√
−15

12

√
−6
6

√
−2
2

√
−5
6

For these quadratic τ called “singular moduli”, the corresponding
K3-surface is singular, that means its Picard number is ρ = 20 and the
elliptic curve E of the Shioda-Inose is CM
So, an expression of the Mahler measure in terms of Hecke L-series
(arithmetic aspect) and perhaps in terms of the L-series of the
hypersurface K3 (geometric aspect).
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Mahler measure and L-series of K3-hypersurfaces

Theorem

Let Yk the K 3 hypersurface associated to the polynomial Pk , L(Yk , s) its
L-series, TY its transcendental lattice and fN the unique, up to twist,
CM-newform, CM by Q(

√
−N), of weight 3 and level N with rational

coefficients. . Then
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Mahler measure and L-series of K3-hypersurfaces

Theorem

m(P0) = d3 :=
3
√

3

4π
L(χ−3, 2) (B.2005)

m(P2) =
| det T (Y2) |3/2

π3
L(Y2, 3) =

8
√

8

π3
L(f8, 3) (B. 2005)

m(P10) =
| det T (Y10) |3/2

9π3
L(Y10, 3)+2d3 =

72
√

72

9π3
L(f8, 3)+2d3 (B. 2009)

m(P3) = 2
| det T (Y3)|3/2

4π3
L(T (Y3), 3) =

15
√

15

2π3
L(f15, 3) (BFFLM 2013)

m(P6) =
| det T (Y6) |3/2

2π3
L(Y6, 3) =

24
√

24

2π3
L(f24, 3) (BFFLM 2013)

m(P18) =
1

5

| det T (Y18) |3/2

4π3
L(Y18, 3)+

14

5
d3 =

120
√

120

20π3
L(f120, 3)+

14

5
d3

(BFFLM 2013)
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L-functions

Let Y be a surface. The zeta function is defined by

Z (Y , u) = exp

( ∞∑
n=1

Nn(Y )
un

n

)
, |u| < 1

p
,

where Nn(Y ) denotes the number of points on Y in Fpn .
If Y is a K 3-surface defined over Q, then Y gives a K 3-surface over Fp

for almost all p and

Z (Y , u) =
1

(1− u)(1− p2u)P2(u)
,

where deg P2(u) = 22. In fact,

P2(u) = Qp(u)Rp(u),

where the polynomial Rp(u) comes from the algebraic cycles and Qp(u)
comes from the transcendental cycles. Hence, for a singular K 3-surface,
deg Qp = 2 and deg Rp = 20.
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L-functions (continued)

Finally, we will work with the part of the L-function of Y coming from the
transcendental lattice, which is given by

L(T (Y ), s) = (∗)
∏

p good

1

Qp(p−s)
=
∞∑

n=1

An

ns
,

where (∗) represents finite factors coming from the primes of bad
reduction.
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Strategy of the proof

Understand the transcendental lattice and the group of sections.

Relate the Mahler measure m(Pk) to the L-function of a modular
form.

Relate the L-function of the surface Yk to the L-function of that
same modular form.
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Ingredient: Livné’s modularity theorem

Theorem

Let S be a K 3-surface defined over Q, with Picard number 20 and
discriminant N. Its transcendental lattice T (S) is a dimension 2
Gal(Q̄/Q)-module thus defines a L series, L(T (S), s).
There exists a weight 3 modular form , f , CM over Q(

√
−N) satisfying

L(T (S), s)
.

= L(f , s).

Moreover, if NS(S) is generated by divisors defined over Q,

L(S , s)
.

= ζ(s − 1)20L(f , s).
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The last ingredient:Schütt’s classification of CM-newforms
of weight 3

Theorem

Consider the following classifications of singular K 3 surfaces over Q:

by the discriminant d of the transcendental lattice of the surface up
to squares,

by the associated newform up to twisting,

by the level of the associated newform up to squares,

by the CM-field Q(
√
−d) of the associated newform.

Then, all these classifications are equivalent. In particuliar, Q(
√
−d) has

exponent 1 or 2.

M.J. Bertin (IMJ and Paris 6) Mahler measure June 2013 31 / 37



(BFFLM) Marie-José Bertin, Amy Feaver, Jenny Fuselier, Matilde Lalin
and Michelle Manes, Mahler measure of some singular K3-surfaces, to
appear in Proceedings of WIN2—Women in Numbers 2 CRM Proceedings
and Lecture Notes (refereed), arXiv:1208.6240, math.NT
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Bertin, M. J. Fonction zêta d’Epstein et dilogarithme de
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