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Introduction

Berndt and Zaharescu proved the following Ra-

manujan type formula. Let 0 < q < 1 then

q
1
9

∞∏

n=1

(1−qn)χ−3(n)n = exp(−C3−
1

9

∫ 1

q

f9(−t)
f3(−t3)

dt

t
)

where in Ramanujan’s notation,

f(−q) =
∞∏

n=1

(1− qn)

and

C3 =
3
√

3

4π
L(χ−3,2) =: d3.

The integrand is a weight 3 Eisenstein series

for Γ0(3).



If

h(t) =
f9(−t)
f3(−t3)

and

−1

9

∫ 1

q
h(t)

dt

t
= −1

9

∫ 1

q
(h(t)− 1)

dt

t
+

1

9
log(q),

for q tending to 0 one gets the integral expres-

sion of d3

d3 = −1

9

∫ 1

0
(h(t)− 1)

dt

t
.



From Villegas, we can derive

1
π

∫ 1
0 (K − π

2)dkk = log 2− d4,

where

K =
∫ 1

0

dx√
(1− x2)(1− k2x2)

,

and

d4 :=
43/2

4π
L(χ−4,2) = L′(χ−4,−1) =

2G

π

G being the Catalan’s constant,

G = L(χ−4,2) = 1− 1

32
+

1

52
+ ...

Another formula

1
π

∫ 1
0 Kdk = d4

can be also deduced.



These formulae were known long ago, cf. Byrd

Friedman’s book.

Recently, Benferhat proved

L′(χ−8,−1) =
2
√

2

π

∫ 1

0
K(

√
u2 + 1

2
)du

=
4
√

2

π

∫ 1

1√
2

K
kdk√

2k2 − 1

L′(χ−8,−1) = ln(4
√

2+6)−4
√

2

π

∫ 1

0

K − π/2

k
√

2− k2
dk

where K denotes the real period of the Jacobi

quartic

y2 = (1− x2)(1− k2x2).



Benferhat’s proof uses the expression of the

Mahler’s measure of polynomials in family, namely

y2(x+ 1)2 + lxy + (x+ 1)2

Let me explain the method for Villegas’example

Consider the family of elliptic curves

Ql = (X +
1

X
)(Y +

1

Y
)− 4l = 0.

Ql defines the quartic El

Y 2(X2 + 1)− 4lXY + (X2 + 1) = 0



Completing the square, we get

(Y (X2 + 1)− 2lX)2 = 4l2X2 − (X2 + 1)2

Now for l > 1

m(Ql) :=

1

(2πi)2

∫ ∫

|X|=|Y |=1
log | (X+

1

X
)(Y+

1

Y
)−4l | dX

X

dY

Y

and

m′(l) =
dm(Ql)

dl
=

1

(2πi)2

∫

|X|=1
(
∫

|Y |=1

4

4l − (X + 1
X)(Y + 1

Y )

dY

Y
)
dX

X

By residue computation

m′(l) =
1

πi

∫

|X|=1

dX√
4l2X2 − (X + 1)2

=
1

πi

∫

|X|=1

dX

Z



a period of the elliptic curve

Z2 = 4l2X2 − (X2 + 1)2

isomorphic to El hence satisfying the Picard-

Fuchs equation of the family. Instead, applying

Jensen’s formula,

m′(l) =
1

π

∫ π
0

2dφ√
4l2 − 4 cos2 φ

.

Now, if cosφ = X,

m′(l) =
2

π

∫ 1

0

dX

l

√
(1−X2)(1− X2

l2
)

=
2

π
kK(k)

if k2 = 1
l2

. So

m′(l)dl = −2

π
K
dk

k

Then,



m(l)−m(1) = −2

π

∫ k
1
K
dk

k

= −2

π

∫ k
1

(K − π
2

)
dk

k
−
∫ k

1

dk

k

Now

m(1) = 2d4 = 2 log(2)− 2

π

∫ 1

0
(K − π

2
)
dk

k

If 0 < l < 1, by applying Jensen’s formula and

a change of variables, we get

m′(l) =
2

π
K

Here k = l. Thus integrating separately

m(l)−m(0) =
2

π

∫ k
0
Kdk

and since m(0) = 0,

m(1) = 2L′(χ−4,−1) =
2

π

∫ 1

0
Kdk



Remark 1. • Since the previous integral ex-

pressions were known long ago, they can

be used to guess m(1).

• For the family Ql, we get the Weierstass

equation

y2 = x3 + (4l2 − 2)x2 − 4x− 4(4l2 − 2)

hence

J(l) = 256
(l4 − l2 + 1)3

l4(l − 1)2(l + 1)2

and the change variables used to obtain

the integral expressions are among those

leaving J invariant, namely the roots of

J(l)− J(T ) =

(T l+1)(l−T )(l+T )(T l−1)(l2T2−T2 +1)

(l2T2− l2− T2)(l2T2 + 1− l2)(l2− 1 + T2)



the group of anharmonic ratios.

• For the family Ql we can use the modular

method (Villegas)

• Modular elliptic surfaces are rare and we

need methods for computing Mahler mea-

sure for the others. The philosophy is not

a global approach but a local one.

QUESTIONS

Among the seven Boyd’s elliptic surfaces, which

are modular elliptic?

For the remaining ones can we apply the pre-

vious method?



Boyd’s elliptic surfaces

• (1.3)

y2 + y(x2 + lx+ 1) + x2 = 0

• (2.3)

y2(x+ 1) + y(x2 + lx+ 1) + x2 + x = 0

• (3.1)

y2(x2 + x+ 1) + ylx+ x2 + x+ 1 = 0

• (3.3)

y2(x2+x+1)+y(x2+(l+1)x+1)+x2+x+1 = 0

• (3s.1)

y2(x+ 1)2 + lxy + (x+ 1)2 = 0



• (3s.3)

y2(x+1)2+y(x2+(l+2)x+1)+(x+1)2 = 0

• (3s.3s)

y2(x+1)2+y(2x2+(l+4)x+2)+(x+1)2 = 0



Elliptic surfaces over P1(C)

Denote the elliptic surface by X. The el-

liptic fibration is given by

f : X → P1

Stable families of elliptic curves on P1 are

such that the corresponding elliptic surface

has at most ordinary double points. They

give semi-stable fibrations where the sin-

gular fibers are of type Ic (a polygonal line

with c rational curves as edges).



Type of singular fibers

I0 smooth elliptic curve
I1 nodal rational curve
I2 two smooth rational curves

meeting transversally at 2 points
I3 three smooth rational curves

meeting in a cycle:a triangle
IN N ≥ 3 smooth rational curves meeting

in a cycle with dual graphÃN
I∗N N + 5 smooth rational curves meeting

with dual graphD̃N+4
II a cuspidal rational curve
III two smooth rational curves

meeting at one point to order 2
IV three smooth rational curves

all meeting at one point
IV ∗ 7 smooth rational curves

meeting with dual graphẼ6
III∗ 8 smooth rational curves

meeting with dual graphẼ7
II∗ 9 smooth rational curves

meeting with dual graphẼ8



Beauville’s results

The first Beauville’s result is that a semi-

stable elliptic surface has at least four sin-

gular fibers. The second is the following

theorem.

Theorem 1. (Beauville) Let f : X → P1

a semi-stable elliptic surface with four sin-

gular fibers. Then X is isomorphic to a

modular elliptic surface associated to one

of the six modular groups Γ.



Group Γ Equation of the surface Singular fibers

Γ(3) X3 + Y 3 + Z3 + tXY Z [3,3,3,3]

Γ0
0(4) ∩ Γ(2) X(X2 + Z2 + 2ZY ) + Z(X2 − Y 2) = 0 [4,4,2,2]

Γ0
0(5) X(X − Z)(Y − Z) + tZY (X − Y ) = 0 [5,5,1,1]

Γ0
0(6) (X + Y )(Y + Z)(Z +X) + tXY Z = 0 [6,3,2,1]

Γ0(8) ∩ Γ0
0(4) (X + Y )(XY − Z2) + tXY Z = 0 [8,2,1,1]

Γ0(9) ∩ Γ0
0(3) X2Y + Y 2Z + Z2X + tXY Z = 0 [9,1,1,1]



Shioda and Nori’s results

Let X be an elliptic surface over P1(C).

The Picard number N is given by

N = r + 2 +
n∑

ν=1

(mν − 1),

where r is the rank of the divisor class

group of the associated generic curve of

genus one, mν the number of irreducible

components in the singular fiber Cν, {Cν}1≤ν≤n
denoting the singular fibers of the elliptic

surface.

In our case, the elliptic surface X has a

section over P1 so r is in fact the rank of

the Mordell-Weil group of the associated

elliptic curve over the generic point of P1,

N := dimQH
1(X,Ω1

X) ∩H2(X,Q)

h1,1 = dimCH
1(X,Ω1

X).



So

N ≤ h1,1

By Shioda, we know that for elliptic mod-

ular surfaces, one gets N = h1,1 and r =

0. Then Nori characterized elliptic sur-

faces with N = h1,1 and r = 0. We are

very much interested in them since ellip-

tic modular surfaces are nice situations for

testing the Mahler measure. Such surfaces

characterized by Nori are called extremal

by Miranda.

Theorem 2. (Nori) An elliptic surface X

over a base B with J non constant, has

N = h1,1 and r = 0 if and only if J is

ramified only over 0, 1, ∞ with ep = 1,2

or 3 when J(p) = 0, ep = 1 or 2 when

J(p) = 1 and X has no singular fibers of

type I∗0, II, III and IV .



Results and comments
Classification of Boyd’s surfaces

Theorem 3. The 2-torsion elliptic surfaces
3s.1 and 3s.3 are not elliptic modular.

Proof. Since they both have I∗0 fibers, this
derives directly from Nori’s results.

Theorem 4. The 1.3 and 2.3 surfaces are
elliptic modular. So we have the following
nice expression of the Mahler measure.

1. For 1.3 we can take the Hauptmodul as
this

t = 4 +
32

l− 4
=

η(4τ)12

η(2τ)4η(8τ)8

=
1

q
+ 4q + 2q3 − 8q5 − q7 + · · ·

2. For 2.3, The Hauptmodul may be

t =
η(6τ)8η(τ)4

η(3τ)4η(2τ)8



t =
1

l + 3

and

m(l) =<(
9
√

3y

4π2

′∑ χ(n)

(3mτ + n)2(3mτ̄ + n)
)

+ 8<(
9
√

3y

4π2

′∑ χ(n)

(6mτ + n)2(6mτ̄ + n)
)

For the three remaining surfaces, it is not
so obvious

Theorem 5. 1. The surface (3.3) is a tem-
pered realization of the 5-tuple [4,4,2,1,1]
obtained either from the modular Beauville’s
realization [4,4,2,2] or from [8,2,1,1]
by a monodromy extra permutation. It
introduces an apparent singularity in the
Picard-Fuchs equation of the surface and
so r = 1 in the previous formula. Such
a surface is thus not modular.



2. The surface (3.1) is a tempered real-

ization of the 6-tuple [4,4,1,1,1,1] ob-

tained either from the modular Beauville’s

realization [4,4,2,2] or from [8,2,1,1]

by two monodromy extra permutations.

It introduces two apparent singularities

in the Picard-Fuchs equation of the sur-

face and so r = 2 in the previous for-

mula. Such a surface is thus not mod-

ular.

3. But locally, between two maximal unipo-

tent singularities (singular fiber of type

In) with no apparent singularity between

them (no extra ramification point), one

gets a polynomial relation between k2

and l giving the change variables in the

Mahler’s measure integral expression.

Proof. For the way the monodromy group

can be altered we refer to Miranda.



In the first case, denote P the polynomial

in the l and J variables:

P = 4096l4(l + 9)(l + 1)(l − 3)2J

−(1296 + 576l − 416l2 + 64l3 + 16l4)3.

With the “poldisc” order of PARI we get

poldisc(P, l) = (J − 1728)6J8(3J − 2048).

Thus J is ramified over 0, 1728, ∞ and
2048

3 . This latter ramification point cor-

responds to l = −3. Thus −3 will be

an apparent singularity of the Picard-Fuchs

equation.

In the second case, we get

P = 4096l4(l2 − 36)(l2 − 4)J − (l2 − 12)6

poldisc(P, l) = (J − 1728)6J10

In that case, there is ramification only over

0, 1 and ∞ but over 0, the index is 6 and



not 1, 2 or 3 as expected. By Nori and

Shioda’s results such a surface is not mod-

ular. Moreover, l = ±2
√

3 are two apparent

singularities of the Picard-Fuchs equation.

Finally, it remains the surface (3s.3s).

Theorem 6. The surface (3s.3s) has h1,1 =

N and r = 0. This is a modular elliptic

surface for the congruence group Γ0(4).

This is the extremal rational elliptic sur-

face X141 in Miranda’s notation. In that

case the Hauptmodul

k2 = −16

l

is the Jacobi modulus.

Proof. We apply Nori’s theorem. If

P = l(l + 16)J − (l2 + 16l + 16)3



we get

poldisc(P, l) = (J − 1728)3J4

Since

P (1728, l) = (l + 8)2(l2 + 16l − 8)2

the index of ramification over J = 1728 is

2, 2, 2. Since

P (0, l) = (l2 + 16l + 16)3

the index of ramification over J = 0 is 3,

3. And over J = ∞ we get the fibers I1,

I4 and I∗1. So h1,1 = N and r = 0.

Corollary 7.

m(y2(x+ 1)2 + 2y(x2− 6x+ 1) + (x+ 1)2)

= L′(χ−4,−1)

Remark 2. 1. The previous formula, guessed

numerically by Boyd, was also conjec-

tured by Vandervelde.



2. The two non modular elliptic surfaces

(3s.1) and (3s.3) having both a fiber of

type I∗0 are twists of the elliptic modular

one (3s.3s). By just a change l 7→ l+ 4,

we get the same J and the same pro-

jective Picard-Fuchs equation.


