Integral expression of Dirichlet L-series

Marie José BERTIN

Mahler measure 3, MOBILE, January 5-8, 2006

Introduction

Berndt and Zaharescu proved the following Ramanujan type formula. Let 0 < q < 1 then

$$q^{\frac{1}{9}} \prod_{n=1}^{\infty} (1-q^n)^{\chi_{-3}(n)n} = \exp(-C_3 - \frac{1}{9} \int_q^1 \frac{f^9(-t)}{f^3(-t^3)} \frac{dt}{t})$$

where in Ramanujan's notation,

$$f(-q) = \prod_{n=1}^{\infty} (1 - q^n)$$

and
$$C_3 = \frac{3\sqrt{3}}{4\pi} L(\chi_{-3}, 2) =: d_3.$$

The integrand is a weight 3 Eisenstein series for $\Gamma_0(3)$.

If

$$h(t) = \frac{f^9(-t)}{f^3(-t^3)}$$

and

$$-\frac{1}{9}\int_{q}^{1}h(t)\frac{dt}{t} = -\frac{1}{9}\int_{q}^{1}(h(t)-1)\frac{dt}{t} + \frac{1}{9}\log(q),$$

for q tending to 0 one gets the integral expression of $d_{\rm 3}$

$$d_3 = -\frac{1}{9} \int_0^1 (h(t) - 1) \frac{dt}{t}.$$

From Villegas, we can derive

$$\frac{1}{\pi} \int_0^1 (K - \frac{\pi}{2}) \frac{dk}{k} = \log 2 - d_4,$$

where

$$K = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}},$$

and

$$d_4 := \frac{4^{3/2}}{4\pi} L(\chi_{-4}, 2) = L'(\chi_{-4}, -1) = \frac{2G}{\pi}$$

G being the Catalan's constant,

$$G = L(\chi_{-4}, 2) = 1 - \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Another formula

$$\frac{1}{\pi} \int_0^1 K dk = d_4$$

can be also deduced.

These formulae were known long ago, cf. Byrd Friedman's book.

Recently, Benferhat proved

$$L'(\chi_{-8}, -1) = \frac{2\sqrt{2}}{\pi} \int_0^1 K(\sqrt{\frac{u^2 + 1}{2}}) du$$
$$= \frac{4\sqrt{2}}{\pi} \int_{\frac{1}{\sqrt{2}}}^1 K\frac{kdk}{\sqrt{2k^2 - 1}}$$

$$L'(\chi_{-8}, -1) = \ln(4\sqrt{2} + 6) - \frac{4\sqrt{2}}{\pi} \int_0^1 \frac{K - \pi/2}{k\sqrt{2 - k^2}} dk$$

where K denotes the real period of the Jacobi quartic

$$y^2 = (1 - x^2)(1 - k^2 x^2).$$

Benferhat's proof uses the expression of the Mahler's measure of polynomials in family, namely

$$y^{2}(x+1)^{2} + lxy + (x+1)^{2}$$

Let me explain the method for Villegas'example Consider the family of elliptic curves

$$Q_l = (X + \frac{1}{X})(Y + \frac{1}{Y}) - 4l = 0.$$

 Q_l defines the quartic E_l

$$Y^{2}(X^{2}+1) - 4lXY + (X^{2}+1) = 0$$

Completing the square, we get

 $(Y(X^2 + 1) - 2lX)^2 = 4l^2X^2 - (X^2 + 1)^2$ Now for l > 1

$$m(Q_l) :=$$

$$\frac{1}{(2\pi i)^2} \int \int_{|X|=|Y|=1} \log |(X + \frac{1}{X})(Y + \frac{1}{Y}) - 4l |\frac{dX}{X} \frac{dY}{Y}$$
 and

$$m'(l) = \frac{dm(Q_l)}{dl} =$$

$$\frac{1}{(2\pi i)^2} \int_{|X|=1} \left(\int_{|Y|=1} \frac{4}{4l - (X + \frac{1}{X})(Y + \frac{1}{Y})} \frac{dY}{Y} \right) \frac{dX}{X}$$

By residue computation

$$m'(l) = \frac{1}{\pi i} \int_{|X|=1} \frac{dX}{\sqrt{4l^2 X^2 - (X+1)^2}} = \frac{1}{\pi i} \int_{|X|=1} \frac{dX}{Z}$$

a period of the elliptic curve

$$Z^2 = 4l^2 X^2 - (X^2 + 1)^2$$

isomorphic to E_l hence satisfying the Picard-Fuchs equation of the family. Instead, applying Jensen's formula,

$$m'(l) = \frac{1}{\pi} \int_0^{\pi} \frac{2d\phi}{\sqrt{4l^2 - 4\cos^2\phi}}.$$

Now, if $\cos \phi = X$,

$$m'(l) = \frac{2}{\pi} \int_0^1 \frac{dX}{l\sqrt{(1 - X^2)(1 - \frac{X^2}{l^2})}} = \frac{2}{\pi} kK(k)$$

if $k^2 = \frac{1}{l^2}$. So

$$m'(l)dl = -\frac{2}{\pi}K\frac{dk}{k}$$

Then,

$$m(l) - m(1) = -\frac{2}{\pi} \int_{1}^{k} K \frac{dk}{k}$$
$$= -\frac{2}{\pi} \int_{1}^{k} (K - \frac{\pi}{2}) \frac{dk}{k} - \int_{1}^{k} \frac{dk}{k}$$

Now

$$m(1) = 2d_4 = 2\log(2) - \frac{2}{\pi} \int_0^1 (K - \frac{\pi}{2}) \frac{dk}{k}$$

If 0 < l < 1, by applying Jensen's formula and a change of variables, we get

$$m'(l) = \frac{2}{\pi}K$$

Here k = l. Thus integrating separately

$$m(l) - m(0) = \frac{2}{\pi} \int_0^k K dk$$

and since m(0) = 0,

$$m(1) = 2L'(\chi_{-4}, -1) = \frac{2}{\pi} \int_0^1 K dk$$

- **Remark 1.** Since the previous integral expressions were known long ago, they can be used to guess m(1).
 - For the family Q_l , we get the Weierstass equation

$$y^{2} = x^{3} + (4l^{2} - 2)x^{2} - 4x - 4(4l^{2} - 2)$$

hence

$$J(l) = 256 \frac{(l^4 - l^2 + 1)^3}{l^4(l-1)^2(l+1)^2}$$

and the change variables used to obtain the integral expressions are among those leaving J invariant, namely the roots of

$$J(l) - J(T) =$$

 $(Tl+1)(l-T)(l+T)(Tl-1)(l^2T^2 - T^2 + 1)$ $(l^2T^2 - l^2 - T^2)(l^2T^2 + 1 - l^2)(l^2 - 1 + T^2)$

the group of anharmonic ratios.

- For the family Q_l we can use the modular method (Villegas)
- Modular elliptic surfaces are rare and we need methods for computing Mahler measure for the others. The philosophy is not a global approach but a local one.

QUESTIONS

Among the seven Boyd's elliptic surfaces, which are modular elliptic?

For the remaining ones can we apply the previous method?

Boyd's elliptic surfaces

• (1.3)

$$y^{2} + y(x^{2} + lx + 1) + x^{2} = 0$$
• (2.3)

$$y^{2}(x + 1) + y(x^{2} + lx + 1) + x^{2} + x = 0$$
• (3.1)

$$y^{2}(x^{2} + x + 1) + ylx + x^{2} + x + 1 = 0$$

• (3.3)
$$y^{2}(x^{2}+x+1)+y(x^{2}+(l+1)x+1)+x^{2}+x+1=0$$

• (3s.1)
$$y^{2}(x+1)^{2} + lxy + (x+1)^{2} = 0$$

- (3s.3) $y^{2}(x+1)^{2}+y(x^{2}+(l+2)x+1)+(x+1)^{2}=0$
- (3s.3s) $y^{2}(x+1)^{2} + y(2x^{2} + (l+4)x + 2) + (x+1)^{2} = 0$

Elliptic surfaces over $P^1(\mathbb{C})$

Denote the elliptic surface by X. The elliptic fibration is given by

$$f: X \to \mathbb{P}^1$$

Stable families of elliptic curves on \mathbb{P}^1 are such that the corresponding elliptic surface has at most ordinary double points. They give semi-stable fibrations where the singular fibers are of type I_c (a polygonal line with c rational curves as edges).

Type of singular fibers

Ι _Ο	smooth elliptic curve
I_1	nodal rational curve
I_2	two smooth rational curves
	meeting transversally at 2 points
I3	three smooth rational curves
	meeting in a cycle:a triangle
I_N	$N \ge 3$ smooth rational curves meeting
	in a cycle with dual graph $ ilde{A}_N$
I_N^*	N + 5 smooth rational curves meeting
	with dual graph $ ilde{D}_{N+4}$
II	a cuspidal rational curve
III	two smooth rational curves
	meeting at one point to order 2
IV	three smooth rational curves
	all meeting at one point
IV^*	7 smooth rational curves
	meeting with dual graph $ ilde{E}_{f 6}$
III^*	8 smooth rational curves
	meeting with dual graph $ ilde{E}_7$
II^*	9 smooth rational curves
	meeting with dual graph $ ilde{E}_{\sf 8}$

Beauville's results

The first Beauville's result is that a semistable elliptic surface has at least four singular fibers. The second is the following theorem.

Theorem 1. (Beauville) Let $f : X \to \mathbb{P}^1$ a semi-stable elliptic surface with four singular fibers. Then X is isomorphic to a modular elliptic surface associated to one of the six modular groups Γ . Group Γ Equation of the surface $\Gamma(3)$ $X^3 + Y^3 + Z^3 + tXYZ$ $\Gamma_0^0(4) \cap \Gamma(2)$ $X(X^2 + Z^2 + 2ZY) + Z(X^2 - Y^2)$ $\Gamma_0^0(5)$ X(X - Z)(Y - Z) + tZY(X - Y) = $\Gamma_0^0(6)$ (X + Y)(Y + Z)(Z + X) + tXYZ = $\Gamma_0(8) \cap \Gamma_0^0(4)$ $(X + Y)(XY - Z^2) + tXYZ = 0$ $\Gamma_0(9) \cap \Gamma_0^0(3)$ $X^2Y + Y^2Z + Z^2X + tXYZ = 0$

Shioda and Nori's results

Let X be an elliptic surface over $\mathbb{P}^1(\mathbb{C})$. The Picard number N is given by

$$N = r + 2 + \sum_{\nu=1}^{n} (m_{\nu} - 1),$$

where r is the rank of the divisor class group of the associated generic curve of genus one, m_{ν} the number of irreducible components in the singular fiber C_{ν} , $\{C_{\nu}\}_{1 \leq \nu \leq n}$ denoting the singular fibers of the elliptic surface.

In our case, the elliptic surface X has a section over \mathbb{P}^1 so r is in fact the rank of the Mordell-Weil group of the associated elliptic curve over the generic point of \mathbb{P}^1 ,

$$N := \dim_{\mathbb{Q}} H^{1}(X, \Omega^{1}_{X}) \cap H^{2}(X, \mathbb{Q})$$
$$h^{1,1} = \dim_{\mathbb{C}} H^{1}(X, \Omega^{1}_{X}).$$

$$N \le h^{1,1}$$

By Shioda, we know that for elliptic modular surfaces, one gets $N = h^{1,1}$ and r = 0. Then Nori characterized elliptic surfaces with $N = h^{1,1}$ and r = 0. We are very much interested in them since elliptic modular surfaces are nice situations for testing the Mahler measure. Such surfaces characterized by Nori are called extremal by Miranda.

Theorem 2. (Nori) An elliptic surface X over a base B with J non constant, has $N = h^{1,1}$ and r = 0 if and only if J is ramified only over 0, 1, ∞ with $e_p = 1,2$ or 3 when J(p) = 0, $e_p = 1$ or 2 when J(p) = 1 and X has no singular fibers of type I_0^* , II, III and IV.

Results and comments Classification of Boyd's surfaces

Theorem 3. The 2-torsion elliptic surfaces 3s.1 and 3s.3 are not elliptic modular.

Proof. Since they both have I_0^* fibers, this derives directly from Nori's results.

Theorem 4. The 1.3 and 2.3 surfaces are elliptic modular. So we have the following nice expression of the Mahler measure.

1. For 1.3 we can take the Hauptmodul as this

$$t = 4 + \frac{32}{l-4} = \frac{\eta(4\tau)^{12}}{\eta(2\tau)^4 \eta(8\tau)^8}$$
$$= \frac{1}{q} + 4q + 2q^3 - 8q^5 - q^7 + \cdots$$

2. For 2.3, The Hauptmodul may be

$$t = \frac{\eta (6\tau)^8 \eta(\tau)^4}{\eta (3\tau)^4 \eta (2\tau)^8}$$

$$t = \frac{1}{l+3}$$

and

$$m(l) = \Re(\frac{9\sqrt{3}y}{4\pi^2} \sum_{n=1}^{l} \frac{\chi(n)}{(3m\tau + n)^2 (3m\bar{\tau} + n)})$$

$$+8\Re(\frac{9\sqrt{3}y}{4\pi^2}\sum'\frac{\chi(n)}{(6m\tau+n)^2(6m\bar{\tau}+n)})$$

For the three remaining surfaces, it is not so obvious

Theorem 5. 1. The surface (3.3) is a tempered realization of the 5-tuple [4, 4, 2, 1, 1]obtained either from the modular Beauville's realization [4, 4, 2, 2] or from [8, 2, 1, 1]by a monodromy extra permutation. It introduces an apparent singularity in the Picard-Fuchs equation of the surface and so r = 1 in the previous formula. Such a surface is thus not modular.

- 2. The surface (3.1) is a tempered realization of the 6-tuple [4,4,1,1,1,1] obtained either from the modular Beauville's realization [4,4,2,2] or from [8,2,1,1]by two monodromy extra permutations. It introduces two apparent singularities in the Picard-Fuchs equation of the surface and so r = 2 in the previous formula. Such a surface is thus not modular.
- 3. But locally, between two maximal unipotent singularities (singular fiber of type I_n) with no apparent singularity between them (no extra ramification point), one gets a polynomial relation between k^2 and l giving the change variables in the Mahler's measure integral expression.

Proof. For the way the monodromy group can be altered we refer to Miranda.

In the first case, denote P the polynomial in the l and J variables:

 $P = 4096l^4(l+9)(l+1)(l-3)^2 J$ $-(1296 + 576l - 416l^2 + 64l^3 + 16l^4)^3.$ With the "poldisc" order of PARI we get $poldisc(P,l) = (J - 1728)^6 J^8(3J - 2048).$ Thus J is ramified over 0, 1728, ∞ and $\frac{2048}{3}$ This latter ramification point corresponds to l = -3. Thus -3 will be an apparent singularity of the Picard-Fuchs equation.

In the second case, we get

$$P = 4096l^4(l^2 - 36)(l^2 - 4)J - (l^2 - 12)^6$$
$$poldisc(P, l) = (J - 1728)^6 J^{10}$$

In that case, there is ramification only over 0, 1 and ∞ but over 0, the index is 6 and

not 1, 2 or 3 as expected. By Nori and Shioda's results such a surface is not modular. Moreover, $l = \pm 2\sqrt{3}$ are two apparent singularities of the Picard-Fuchs equation.

Finally, it remains the surface (3s.3s).

Theorem 6. The surface (3s.3s) has $h^{1,1} = N$ and r = 0. This is a modular elliptic surface for the congruence group $\Gamma^0(4)$. This is the extremal rational elliptic surface X_{141} in Miranda's notation. In that case the Hauptmodul

$$k^2 = -\frac{16}{l}$$

is the Jacobi modulus.

Proof. We apply Nori's theorem. If

$$P = l(l+16)J - (l^2 + 16l + 16)^3$$

we get

$$poldisc(P,l) = (J - 1728)^3 J^4$$

Since

$$P(1728, l) = (l+8)^2(l^2+16l-8)^2$$

the index of ramification over J = 1728 is 2, 2, 2. Since

$$P(0,l) = (l^2 + 16l + 16)^3$$

the index of ramification over J = 0 is 3, 3. And over $J = \infty$ we get the fibers I_1 , I_4 and I_1^* . So $h^{1,1} = N$ and r = 0.

Corollary 7.

$$m(y^{2}(x+1)^{2}+2y(x^{2}-6x+1)+(x+1)^{2})$$

$$= L'(\chi_{-4}, -1)$$

Remark 2. 1. The previous formula, guessed numerically by Boyd, was also conjectured by Vandervelde. 2. The two non modular elliptic surfaces (3s.1) and (3s.3) having both a fiber of type I_0^* are twists of the elliptic modular one (3s.3s). By just a change $l \mapsto l + 4$, we get the same J and the same projective Picard-Fuchs equation.