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Université Paris 6

4 Place Jussieu 75005 PARIS

marie-jose.bertin@imj-prg.fr

IMJ Paris, November 30, 2015

M.J. Bertin (IMJ and Paris 6) Regulators and Mahler measure November 2015 1 / 38



Historic

The first was D.H.Lehmer
” On factorization of certain cyclotomic functions” (1933)
with his famous question (still unsolved): does there exist a monic
irreducible polynomial P, non cyclotomic, with integer coefficients such
that

Ω(P) :=
∏

P(α)=0

max(|α|, 1) < Ω(P0) ' 1.1762...

where P0 is the Lehmer’s polynomial

X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1?
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In fact
Ω(P) = M(P)

the Mahler measure of P (introduced by Mahler in 1962).
The logarithmic Mahler’s measure of a polynomial P is

m(P) :=
1

(2πi)n

∫
Tn

log | P(x1, · · · , xn) | dx1

x1
· · · dxn

xn

and the Mahler’s measure

M(P) := exp(m(P)).

By Jensen’s formula, if P ∈ Z[X ] is monic, then

M(P) =
∏

P(α)=0

max(| α |, 1).

M.J. Bertin (IMJ and Paris 6) Regulators and Mahler measure November 2015 3 / 38



If A(x , y) is in two variables we can write

A(x , y) = a0(y)
d∏

j=1

(x − xj(y))

with xj(y) algebraic functions in y .
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By Jensen’s formula

m(A) = m(a0) +
d∑

j=1

1

2πi

∫
|y |=1

log+ | xj(y) | dy

y

where log+ | z |= log | z | if | z |≥ 1 and 0 otherwise.
Defining

η(x , y) := log | x | d arg y − log | y | d arg x

a real differential 1-form on X \ S (X the variety defined by the polynomial
A, smooth projective completion of Y zero locus of A, S points of X
where x or y has a zero or a pole), we get

m(A) = m(a0) +
1

2π

∫
γ
η(x , y)

γ oriented path on X projecting to Y ∩ {| y |= 1, | x |≥ 1}
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Then Smyth (1971)

M(P) ≥ M(X 3 − X − 1) ' 1.32..

if P is non reciprocal. The obstruction for Lehmer’s question is therefore
the reciprocal polynomials.
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Boyd’s limit formula (1981)

m(P(x , xN)) −→ m(P(x , y))

is a hope to get small measures in one variable from small measures in two
variables.

M((x + 1)y 2 + (x2 + x + 1)y + x(x + 1)) = 1.25...

M(y 2 + (x2 + x + 1)y + x2) = 1.28..

are the smallest known measures in two variables.
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At the same time Smyth obtained the first explicit Mahler measures:

m(x + y + 1) = L′(χ−3,−1) =
3
√

3

4π
L(χ−3, 2)

m(x + y + z + 1) =
7

2π2
ζ(3)
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Boyd meets Deninger (Calgary CMS Summer meeting
(1996))

The result is Deninger’s guess (1996) proved in 2011 by Rogers and
Zudilin, then again by Zudilin in 2013

m(x +
1

x
+ y +

1

y
+ 1) =

15

4π2
L(E , 2) =: L′(E , 0) = b15

The elliptic curve E (algebraic closure of the zero set of the polynomial)
is 15a8 (Cremona’s notation) of conductor 15 defined by

Y 2 + XY + Y = X 3 + X 2

Its L-series is given by the modular form

f15A(z) = η(z)η(3z)η(5z)η(15z)
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The polynomial

P = x +
1

x
+ y +

1

y
+ 1

is tempered
“Tempered” means the roots of all the face polynomials of the Newton
polygon of P are roots of unity.
The polynomial

Y 2 + XY + Y − (X 3 + X 2)

is also tempered.
Very important to obtain formulas “à la Deninger”.
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Just after Deninger’s guess, Boyd obtained a lot of conjectures based on
numerical computations.
He studied families of ’tempered polynomials’ mostly reciprocal defining
elliptic curves, comparing their Mahler measures and their L-series.
The most famous family is pk

m(pk) = m

(
x +

1

x
+ y +

1

y
+ k

)
?
= sk

Nk

4π2
L(E(k), 2) = skbk

sk is a rational number (often integer), E(k) is the elliptic curve, algebraic
closure of the zero set of the polynomial.
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Results for the family pk

(B.=Brunault, L.=Lalin, M.=Mellit, R-V.=Rodriguez-Villegas,
R.=Rogers, S.=Samart, Z.=Zudilin)

k sk Nk Proofs from

1 1 15 R.-Z. (2011), Z. (2013)
2 1 24 Z. (2013)
3 2 21 B. (April 2015), L.-S.-Z. (July 2015)
5 6 15 ?
6 1/2 120
7 1/2 231
8 4 24 R.-L. (2008)
9 1/2 195

10 -1/8 840
11 -1/8 1155
12 2 48 B. (April 2015)
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Results: Family pk (continued)

k sk Nk Proofs from

i 2 17 Z. (2013)
2i 1 40 Z. (2013)√

2 1/4 56 Z. (2013)

4/
√

2 1 32 R.-V. (1999) CM

4
√

2 1 64 R.-V. (1999) CM
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Results: other families

In the family
Pk = x3 + y 3 + 1− kxy

Mellit preprint (2009) arxiv (2012) m−1 = 2b14, m5 = 7b14

In the family

Pk = (x + 1)y 2 + (x2 + kx + 1)y + x(x + 1)

Mellit preprint (2009) arxiv (2012) m1 = b14, m−5 = 6b14, m10 = 10b14

In the family
Pk = y 2 + kxy + y − x3

Brunault arxiv (april 2015) m−1 = 2b14, m−2 = b35, m−3 = b54
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A new result (Bertin August 2015)

Related also to the family

Pk(x , y) = (x + 1)y 2 + (x2 + kx + 1)y + x(x + 1)

Boyd conjectured the two formulae

m4 = 3b20 and m−2 = 2b20.

In fact, E 4 is isomorphic to the curve 20a2 [0, 1, 0,−1, 0], E−2 is
isomorphic to the curve 20a1 [0, 1, 0, 4, 4], 2-isogenous to 20a2.
The corresponding modular form on Γ0(20) thus giving the L-series is

f20A = η(2z)2η(10z)2 = q − 2q3 − q5 + 2q7 + q9 + 2q13 + 2q15....

The main ingredients are regulators and modular units.
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Some comments

For CM elliptic curves in Boyd’s families Rodriguez-Villegas proved the
conjectures using Eisenstein-Kronecker series.
For example,

m
(

x + 1
x + y + 1

y + k
)

= <
(

16=τ
π2

∑′
m,n

χ−4(m)
(m+n4τ)2(m+n4τ̄)

)
= <

(
−πτ + 2

∑∞
n=1

∑
d |n χ−4(d)d2 qn

n

)
with

q = e2πiτ = q

(
16

k2

)
= exp

(
−π 2F1

(
1
2 ,

1
2 ; 1, 1− 16

k2

)
2F1

(
1
2 ,

1
2 ; 1, 16

k2

) )
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Beilinson’s result, Zagier’s conjecture

For elliptic modular curves E , Beilinson proved

L(E , 2) = πDE (ξ), ξ ∈ Z[E (C)]tors

For a general elliptic curve E , Zagier conjectured

L(E/Q, 2)
?
= πDE (ξ), ξ ∈ Z[E (Q̄]Gal(Q̄/Q)
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“tempered” and the K2 of the elliptic curve

Let X be a smooth projective algebraic curve defined over C and let C(X )
be its function field. Let x , y ∈ C(X ) be two non-constant rational
functions and let S ⊂ X be the set of zeros and poles of x or y . The
image of the rational map (x , y) : X \ S → C∗ × C∗ is of dimension 1; let
A ∈ C[x , y ] be a defining equation.

{x , y} ∈ K2(X )⊗Q⇔ A“tempered”

(since the “Tame symbol” is related to the zeros of the face polynomials
by CCGLS’s paper at Inventiones (1994) that uses Puiseux’s expansions)
CCGLS=Cooper, Culler, Gillet, Long, Shalen “Plane curves associated to
character varieties of 3-manifolds”
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Integral expression of the regulator

The regulator r can be expressed as an integral

r : K2(E ) → C

{f , g} 7→ 1
2π

∫
γ η(f , g)

with
η(f , g) = log |f |d(arg g)− log |g |d(arg f ),

f and g ∈ Q(E ) and γ closed path not going through zeros and poles of f
and g and generating the subgroup of cycles H1(E ,Z)−
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Regulator and Mahler measure

The Mahler measure can be expressed as a regulator if we can prove that
the path of integration in the expression of the Mahler measure belongs to
H1(E ,Z)−.
This is precisely the case for the polynomial P−2.
Set P−2(x2, y2) the polynomial

P−2(x2, y2) = (x2 + 1)y 2
2 + (x2

2 − 2x2 + 1)y2 + x2(x2 + 1).

Then

2m−2 = ±r({x2, y2}).
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The diamond operator

Let Z[〈P〉] the subgroup of Z[E (Q)] generated by P ∈ E (Q) and
Z[E (Q)]− its quotient by the relation cl(−P) = −cl(P).
Define

� : Z[〈P〉]× Z[〈P〉] → Z[E (Q)]−

((f ), (g)) 7→ (f ) � (g) =
∑

m,n anbmcl((n −m)P)

(f ) =
∑

n∈Z an[nP],(g) =
∑

n∈Z bn[nP]
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The elliptic dilogarithm (introduced by Bloch)

E elliptic curve on Q
On E (C), we have the representations

E (C)
∼→ C/(Zτ + Z)

∼→ C∗/qZ

(P(u),P′(u)) 7→ u(modΛ) 7→ z = exp 2πiu

The elliptic dilogarithm DE is

DE (P) =
+∞∑

n=−∞
D(qnz)

where D denotes the Bloch-Wigner dilogarithm.

(D(z) = =(Li
[c]
2 (z) + log | z | log[c](1− z))
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Bloch’s Theorem: regulator and elliptic dilogarithm

Theorem

Let f and g functions on the elliptic curve E with divisors elements of
Z[〈P〉] such that {f , g} ∈ K2(E ), then

πr({f , g}) = DE ((f ) � (g))
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Touafek’s results

Some years later (2008), in his thesis (not published in extenso), Touafek
considered the elliptic curve E2 defined by the equation

Y 2
2 + 2X2Y2 + 2Y2 = (X2 − 1)3

exhibited the isomorphisms between E2, 20a1 and E−2, remarked that

{X2,Y2} ∈ K2(E2)⊗Q

{x2, y2} ∈ K2(E 2)⊗Q

and used Bloch’s theorem to derive the equality

r({X2,Y2}) = r({x2, y2})

and conjectured their common value 4b20.
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Proof of Touafek’s conjecture: modular units

The idea is the parametrization by modular units. (Brunault, Mellit,
Zudilin).
Recall that a modular unit is a modular function whose all zeros and poles
are cusps, for example certain quotient of eta functions for Γ0(20).
We proved the lemma

Lemma

The elliptic curve E2 defined by

Y 2
2 + 2X2Y2 + 2Y2 = (X2 − 1)3

is isomorphic to the curve ’20a1’ [0, 1, 0, 4, 4] in Cremona’s classification
and can be parametrized by eta quotients, modular units on X0(20). More
precisely

X2 = η(4τ)4

η(20τ)4
η(10τ)2

η(2τ)2

Y2 = −η(4τ)
η(τ)

η(5τ)5

η(20τ)5
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Modular units

Let us recall first the definition of the modular unit ga:

ga(τ) := qNB(a/N)/2
∏

n ≥ 1
n ≡ a mod N

(1− qn)
∏

n ≥ 1
n ≡ −a mod N

(1− qn)

Now it follows from the definition of a modular unit:

X2 =
(
g4g8
g2g6

)2

Y2 = − g4
5 g

2
10

g1g2g3g6g7g9
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Main ingredient: Brunault-Mellit’s theorem (proof by
Zudilin)

Theorem

For integers a, b, c with ac and bc not divisible by N, we have the formula∫ i∞

c/N
η(ga, gb) =

1

4π
L(f (τ)− f (i∞), 2)

where f (τ) = fa,b;c(τ), fa,b;c := ea,bceb,−ac − ea,−bceb,ac and

ea,b(τ) =
1

2

(
1 + ζaN
1− ζaN

+
1 + ζbN
1− ζbN

)
+
∑

m, n≥1

(ζ
am+bn)
N − ζ−(am+bn)

N )qmn

ζN := exp(2πi/N), q := exp(2πiτ).
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How to choose c : the path of integration

If α, β ∈ H∗ satisfy β = M(α), M ∈ Γ0(N) (α and β are said equivalent
under the action of Γ0(N)).
Any smooth path (for instance a geodesic path) projects to a closed path
in the quotient space X0(N), hence determines an integral homology class
in H1(X0(N),Z), which depends only on α and β and not on the path
chosen. In fact the class depends only on the matrix M. This homology
class is denoted by the modular symbol {α, β}Γ0(N). Conversely, every
homology class γ ∈ H1(X0(N),Z) can be represented by such a modular
symbol {α, β}Γ0(N).
For f ∈ S2(Γ0(N)),

< γ, f >:=

∫
γ

2πif (z)dz = 2πi

∫ β

α
f (z)dz

is called a period of the cusp form f .
Elements of H−1 (X0(N),R) are identified by

< γ, f >∈ iR⇐⇒ γ ∈ H−1 (X0(N),R).
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Recall also that by the Manin-Drinfeld theorem, the rational homology
H1(X0(N),Q) is generated by paths between cusps.
The closed path of integration γ generating H1(E ,Z)− in the expression of
the regulator becomes under the parametrization a closed path generator
of H−1 (X0(20),Z), hence an appropriate modular symbol we can compute
using Sage. We can take the closed path {−3/20, 3/20} and apply
theorem B-M-Z. So

r({X2,Y2})

= 1
2π

(∫ i∞
−3/20−

∫ i∞
3/20

)
η(
(
g4g8
g2g6

)2
,

g4
5 g

2
10

g1g2g3g6g7g9
)

= 1
4π2 4× 20L(f , 2)

f is the newform of conductor 20

f (q) = q − 2q3 − q5 + 2q7 + q9 + . . .
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The end

We have just proved Touafek’s conjecture

r({X2,Y2}) =
1

2π2
40L(f , 2) = 4b20

and previously it was obtained

r({X2,Y2}) = r({x2, y2})

2m−2 = ±r({x2, y2}).

We deduce Boyd’s conjecture

m−2 = m(P−2) = 2b20

where b20 = 20
4π2 L(E−2, 2).
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Proof of the second conjecture

Similarly, Touafek considered the isomorphic curves E 4 defined by

(x1 + 1)y 2
1 + (x2

1 + 4x1 + 1)y1 + x1(x1 + 1) = 0

and the elliptic curve E1 defined by

Y 2
1 + 2X1Y1 − X 3

1 + X1 = 0.

Both polynomials are tempered; so the respective regulators r({x1, y1} and
r({X1,Y1}) can be defined and from Touafek’s computations we can also
deduce the equality

r({x1, y1}) =
3

2
r({X1,Y1}).

Touafek proved also the relation

r({X2,Y2}) = r({X1,Y1}).

As previously we get
2m4 = r({x1, y1}).
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Finally, it follows

2m4 = r({x1, y1}) = 3
2 r({X1,Y1})

= 3
2 r({X2,Y2})

= 3
2 4b20
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Conjectures again

Let
P1 = y 2

1 (x1 + 1)2 + y1(2(x1 + 1)2 − 9x1) + (x1 + 1)2

P2 = (x2 + 1)2y 2
2 + x2y2 + (x2 + 1)2

Boyd conjectured

m(P1)
?
= 4

21

4π2
L(f21, 2) = 4b21

m(P2)
?
=

3

2

21

4π2
L(f21, 2) =

3

2
b21

I proved (2004) that the elliptic curves defined by P1 and P2 are both
isomorphic to E1 defined by

Y 2
1 + 3X1Y1 = X1(X1 − 1)2,

πr({X1,Y1}) = 8DE1((1, 0))

and conjectured

πr({X1,Y1})
?
= 4b21.
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This last conjecture can be deduced from Brunault’s or
Lalin-Samart-Zudilin’s results. I propose a variant obtained from
discussions with O. Lecacheux.
The curve E1 is 2-isogenous to E0 = 21a1 defined by

y 2 + xy = x3 − 4x − 1.

E0(Q) ' Z/4Z× Z/2Z
' 〈P = (5, 8)〉 × 〈Q = (−2, 1)〉

We get

2P = (2,−1) 3P = (5,−13) P + Q = (−1,−1) 3P + Q = (−1, 2)
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Now choose the following isomorphism from the modular curve X0(21)
into E0:

cusps 0 1/3 1/7 ∞
↓ ↓ ↓ ↓

3P 3P + Q Q (0)
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Define the modular units

(f ) = 2(Q)− 2(0) f = η(7τ)η(3τ)3

η(τ)η(21τ)3

(g) = 4(3P + Q)− 4(0) g = η(3τ)η(7τ)7

η(τ)η(21τ)7
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Theorem

Let E the elliptic curve defined by the tempered polynomial

Y 2 − (2X + 1)(X − 2)Y + (X − 1)4

The curves E and E0 are isomorphic by

x = X − 2 X = x + 2

y = Y − X 2 + X + 2 Y = y + x2 + 3x

The curve E is parametrisable by the modular units f and g

r({X ,Y }) =
1

2π

∫ 8/21

−8/21
η(

g 2
3 g 2

6 g 7
9

g1g2g4g5g8g10
,

g 6
7

g1g2g4g5g8g10
)

= 4× 21

4π2
L(f21, 2)

= 4b21

=
8

π
(DE0(P)− DE0(P + Q))
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Corollary

Using the 2-isogeny and a relation between the elliptic dilogarithms we
deduce

DE1((1, 0)) = DE0(P)− DE0(P + Q)

then
r({X1,Y1}) = 4b21

and
m(P1) = 4b21
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