


I INTRODUCTION

Lehmer’'s " On factorization of certain cyclo-
tomic functions” (1933)

was searching large prime numbers.

The complexity of the method is related to the
growth of the Mahler's measure of P

MP)= ]| maz(|al,1)
P(a)=0

for P monic with integer coefficients.
Lehmer’s polynomial

X104 x9 _x7_x0 _Xx>_Xx*_XxX3+X+1

has the smallest known measure 1.1762...



Lehmer's polynomial is a Salem polynomial (i.
e. irreducible, monic, with integer coefficients,
one root inside the unit disk, one root outside
and some on.)

So a Salem polynomial is reciprocal and cuts
the 1-torus T1.

The logarithmic Mahler’'s measure of a poly-
nomial P

1 d d
m(P) = o L

l P(xq,- -,
(2riyn Jon og | P(x1 Tn) | o o

IS related to the Mahler’'s measure by

M(P) = exp(m(P)).
By Jensen’s formula, if P € Z[X] is monic, then
MP)= ] maz(|al,1).
P(a)=0
Boyd’s limit formula (1981)
m(P(z,z")) — m(P(z,y))



IS a hope to get small measures in one variable
from small measures in two variables.

M(Py) = M((z+1)y°+(z®+x+1)y+z(z+1)) = 1.28
M(Py) = M(y?> + (z° + =+ 1)y + 2%) = 1.28.

are the smallest measures in two variables.

Notice that P; and P> cut the 2-torus respec-
tively in (4,i52) and (4,ij).

Question: what about reciprocal polynomials
in 3 variables and cutting the 3-torus?

Boyd and Mossinghoff (2002) found

1 1 1
M(P3) = M(X + 4+ Y+ +Z+_+1)

= 1.4483035845491699038...

using an explicit formula of Bertin.



Polynomials P;, P> define elliptic curves and P3
defines a quartic surface in P3 that are Calabi-
Yau varieties.

Definition: A smooth projective variety X (over

C, ©Q or a number field) of dimension d is a
Calabi-Yau variety if

1) H(X,Ox)=0for0<i<d
2) Ky :=NQY ~ Oy

T hus

pg(X) := dimHO (X, Kx) = dim(H%(X,0x) = 1.

Ifd=1, 1) is empty and 2)=, that if X has a
rational point, X is an elliptic curve.

Ifd=2, HY(X,0x) = 0 and py(X) = 1 = that
a Calabi-Yau in dimension 2 is a K3 surface:



for example Kummer surfaces, quartics in P3,
double coverings of P2 branched along a sextic.

Explicit formulae: The first were given by
Deninger (1997)

1) m(Pp) =?2%L(E,2) = L/(E,0)

with E elliptic curve of conductor 15 defined
by P».

2) m(P>) is an Eisenstein-Kronecker series of
the elliptic curve E more or less an elliptic reg-
ulator.

Many examples of 1) by Boyd and of 2) by
R-Villegas.



EXPLICIT FORMULAE FOR CALABI-YAU
IN DIMENSION 1

Let

Py(z,y) =(x+y+ 1+ 1)(y+ 1) + kxy

the family given by Beauville isomorphic to el-
liptic curves with rational 5-torsion.

But H/Ig(N)* is the moduli space of (E,Cy)
of elliptic curves with cyclic isogeny modulo
the Fricke involution.

Mo(N) = {(g‘ Z) € SIp(Z) [ c=0 (N))

and

Mo(N)" = (To(N),wy)
where



is the Fricke involution.

So Beauville's family is modular in the follow-
iNng sense.

Let F be a fundamental domain for M1(5),
there is a unique 7 € F, such that

-1 = t(r)
() = allpy (1= g)®®), =2
g — 5¢° + 15¢3 — 30¢* + 40¢° + ...

(g) being Legendre's symbol.

Theorem 1. (Bertin) Let k € 7Z such that Py
does not vanish on T? (k ¢ [—12,0]), then

27rz'n7'

m(P) = R(—2miT+ (1 ——) > Zx(d)d

n>1 d|n

27rzn7

+(1+ ) SN x(d)d?

n>1 d|n

)-




where x Is the odd quadratic character of con-
ductor 5 satisfying x(2) = i.

Theorem 2. (Bertin) With the previous nota-
tions, m(P,) can be expressed as an Eisenstein-
Kronecker series:

5237 s COox(m) + COOX()
272 mn (5mt + n)2(5mT + n)
where, if c(x) is the Gauss sum for the char-

acter v,

m(Pg) = R(

OO0 = (— + 2)e().



Sketch of proofs

Let m(P,) = m(k).

m(k) = R(m(k)),

m(k) =
(z+y+1)(x+1)(y+ 1) . dedr
(27i)2 /11"2 log(k+ Ty ) Ty
SO
o
~/ . 1 1 dﬂ?dy
(k) = (27i)2 /]I‘Q(k + (w+y+1)&$y+1)(y+1)) Ty

T hen



e m/(k) is a period of the elliptic curve asso-
ciated to P, thus a solution of the Picard-
Fuchs differential equation of the family.

Now, if

(e +y+ D@+ Dy+1) — oy =0

by Verrill, the corresponding P-F equation
IS

t(t24+11t—1)y"+(3t°+22t— 1)y +(t+3)y = 0

and a solution is

;= n(57)°/2
t(r)n(r))L/?

where t(7) is given above. So

= 14+3¢+4¢°4+2¢3+¢*+...

f<t>=z<i(z)2<”‘);k>tn.

n>0 k=0



Comparing their g-developments, we de-
duce

m'(k) = —tf
and

t'(q)dq
[

d
dm = —f% = —f .€ M3("1(5))

Let Ly(q) € M3(T),
Ly(9) = 3 Q- x(d)d?)q",

n>1 dn

Now

dt 1 1
—fq% = -1+ (1- E)LX + (1 + 5)[/;2-

e Finally, by integration between g and o0,
we get the formula.

For the proof of theorem 2 we express m(k) in
terms of a function K (e2™7), real, periodic of
period 5, which can be developped in a Fourier



series, following an idea given in Weil " Ellip-
tic functions according to Eisenstein and Kro-
necker’ .

The elliptic regulator

Let K be a field. By Matsumoto, K>(K) can
be described in terms of symbols {f, g}, f and
g € K* and relations.

For example, if v is a discrete valuation on
K with maximal ideal M and residual field k,
Tate's tame symbol

2V (Y)

(2,9)y = (—1)v@)v®) (modM)

yv(x)
defines a homomorphism



Let E an elliptic curve on Q and Q(F) its ra-
tional function field. To any P € E(Q) is as-
sociated a valuation on Q(F) that gives the
homomorphism

Ap 1 Ko(Q(E)) — Q(P)”

and the exact sequence

0 - K2(E)®Q — Ko(Q(E)®Q 2 || Q(P)*®Q -

PeE(Q)
By definition K>(FE) is modulo torsion

Ky(E) ~kerA=nNnpkerAp C K>(Q(F)).

By a theorem due to Villegas, under some hy-
pothesis, if P € Q[z*,y*] defines a smooth
curve C, we get

{CU7 y} S KQ(C)

. In particuliar, if

Pl,y)=(+y+ 1)+ 1)y+1)+axy



we get

{z,y} € Ko(E)
. Let f et g dans Q(FE)*and define

n(f,g) =109 | f | dargg —log | g | dargf.

Definition The elliptic regulator r of E is given
by

TZKQ(E) — R
{f.a} — == [,n(f9)

for a suitable loop #.

But P does not cut the torus and when x de-
scribes the unit circle, one root of P, say y1(x)
satisfies

| y1(z) [< 1
and (xz,y1(x)) is a suitable loop on E. So

m(P) - (27T’l)2 f|5’7|—1 f|y|_1 109 | Pl(x y) | dxdy

1 d
= —ﬁfm:l log | y1(x) | ?x



from Jensen's formula and

—1 dx
m(P)=—./ log | y1 | —
2w Joq x

i/01"'7(:v,y) = +r({z,y}.

:27'('



Analytic expression of the regulator

Bloch gave an other expression of the regulator

Ko(E)@Q — Kx(Q(E)®Q — R
{f, 9} — i—fZi,jaiijz,l('
where
4
Ko1(t) = ) = ’;>

veLy#0 Y
and
ty — ty
\S’T )
Hence the importance of getting m(P) as an
Eisenstein-Kronecker series.

<ty >:=exp(m




EXPLICIT FORMULAE FOR CALABI-YAU
IN DIMENSION 2

Let
=X+ —dY 4ot Zt—h
k= X Y Z

and

C%=X+1+Y+1+Z+}

1
—I—XY—I———l—ZY—I———l—XYZ—l—m—k

These polynomials define families of K3 hy-
persurfaces.

Theorem 3. 1) Let k=t+ T and define

_ n(m)5n((6m)° 1 3 5/2 7/2
= (37yn(32)6 = ¢ /2 _6¢3/2415¢%/2—-2047/%+...



with n Dedekind eta function

T

77(7_) — 12 H (1 . 627m'n7').

n>1
T hen
m(Py) =
8%{ , —|—Z(Zd3)(4qn 16q2n+36q3n 144q6n>}
— T — — :
mr n>1 dn n 2n 3n 6Mm

2) Ifk=—(t+1) -2 and

_ n(37)*n(127)8n(271)12

— n(r)*n(4r)8n(67)12

Then

m(Qr) =N

e Y™ ) 2n 3n on
(—2mir+ Z (Z d3)( 2q +32q +18q _288q
n

n>1 dn 2n 3n 6n

)}




Theorem 4. With the previous notations, we

can express the measure in terms of Eisenstein-
Kronecker series

1)
ST

m(Py) = ?n;{
% 2 X ,4 n 4

(mt 4+ &)3(mT+ k) (M7 4+ &)2(MT + k)2

2x 16 16

” §R(2m7' + k)3(2mT + k) + (2mT + k)2(2mT + k)2
5 2 x 36 n 36

(Bmt 4+ k)3(BmT+ k)  (Bm7 + K)2(3MT + k)2
g 2 % 144 N 144

(6mt + k)3(6mT + k)  (6mT + K)2(6MmT + k)2

2)



m(Qy) = 8— T;

2 X 2 2
(mT + k)3(mT + H)) (m7 4+ k)2(mMT + k)2
5 2 x 32 n 32
2mt + k)3(2mT + k) (Cmt + K)2(2mT + k)2
% 2x 18 n 18
(Bmt 4+ k)3(BmT+ k)  (Bm7 + K)2(3MT + k)2
LR 2 X 288 n 2388

(6mt + k)3(6mT + k)  (6mT + K)2(6MmT + k)2



