I INTRODUCTION

Lehmer's " On factorization of certain cyclotomic functions" (1933)
was searching large prime numbers.

The complexity of the method is related to the growth of the Mahler's measure of P

$$
M(P)=\prod_{P(\alpha)=0} \max (|\alpha|, 1)
$$

for P monic with integer coefficients.

Lehmer's polynomial
$X^{10}+X^{9}-X^{7}-X^{6}-X^{5}-X^{4}-X^{3}+X+1$
has the smallest known measure 1.1762...

Lehmer's polynomial is a Salem polynomial (i. e. irreducible, monic, with integer coefficients, one root inside the unit disk, one root outside and some on.)

So a Salem polynomial is reciprocal and cuts the 1 -torus \mathbb{T}^{1}.

The logarithmic Mahler's measure of a polynomial P
$m(P)=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \cdots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}}$
is related to the Mahler's measure by

$$
M(P)=\exp (m(P))
$$

By Jensen's formula, if $P \in \mathbb{Z}[X]$ is monic, then

$$
M(P)=\prod_{P(\alpha)=0} \max (|\alpha|, 1)
$$

Boyd's limit formula (1981)

$$
m\left(P\left(x, x^{N}\right)\right) \longrightarrow m(P(x, y))
$$

is a hope to get small measures in one variable from small measures in two variables.
$M\left(P_{1}\right)=M\left((x+1) y^{2}+\left(x^{2}+x+1\right) y+x(x+1)\right)=1.25$ $M\left(P_{2}\right)=M\left(y^{2}+\left(x^{2}+x+1\right) y+x^{2}\right)=1.28 .$. are the smallest measures in two variables.

Notice that P_{1} and P_{2} cut the 2-torus respectively in $\left(j, i j^{2}\right)$ and $(j, i j)$.

Question: what about reciprocal polynomials in 3 variables and cutting the 3-torus?

Boyd and Mossinghoff (2002) found

$$
\begin{aligned}
M\left(P_{3}\right) & =M\left(X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z}+1\right) \\
& =1.4483035845491699038 \ldots
\end{aligned}
$$

using an explicit formula of Bertin.

Polynomials P_{1}, P_{2} define elliptic curves and P_{3} defines a quartic surface in \mathbb{P}^{3} that are CalabiYau varieties.

Definition: A smooth projective variety X (over \mathbb{C}, \mathbb{Q} or a number field) of dimension d is a Calabi-Yau variety if

1) $H^{i}\left(X, O_{X}\right)=0$ for $0<i<d$
2) $K_{X}:=\wedge^{d} \Omega_{X}^{1} \simeq O_{X}$

Thus

$p_{g}(X):=\operatorname{dim} H^{0}\left(X, K_{X}\right)=\operatorname{dim}\left(H^{d}\left(X, O_{X}\right)=1\right.$.

If $d=1,1$) is empty and 2$) \Rightarrow$, that if X has a rational point, X is an elliptic curve.

If $d=2, H^{1}\left(X, O_{X}\right)=0$ and $p_{g}(X)=1 \Rightarrow$ that a Calabi-Yau in dimension 2 is a $K 3$ surface:
for example Kummer surfaces, quartics in \mathbb{P}^{3}, double coverings of \mathbb{P}^{2} branched along a sextic.

Explicit formulae: The first were given by Deninger (1997)

1) $m\left(P_{2}\right)=? \frac{15}{4 \pi^{2}} L(E, 2)=L^{\prime}(E, 0)$
with E elliptic curve of conductor 15 defined by P_{2}.
2) $m\left(P_{2}\right)$ is an Eisenstein-Kronecker series of the elliptic curve E more or less an elliptic regulator.

Many examples of 1) by Boyd and of 2) by R-Villegas.

EXPLICIT FORMULAE FOR CALABI-YAU IN DIMENSION 1

Let

$$
P_{k}(x, y)=(x+y+1)(x+1)(y+1)+k x y
$$

the family given by Beauville isomorphic to elliptic curves with rational 5-torsion.

But $\mathcal{H} / \Gamma_{0}(N)^{*}$ is the moduli space of $\left(E, C_{N}\right)$ of elliptic curves with cyclic isogeny modulo the Fricke involution.

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S l_{2}(\mathbb{Z}) / c \equiv O(N)\right\}
$$

and

$$
\Gamma_{0}(N)^{*}=\left\langle\Gamma_{0}(N), w_{N}\right\rangle
$$

where

$$
w_{N}=\left(\begin{array}{cc}
0 & -\frac{1}{\sqrt{N}} \\
\sqrt{N} & 0
\end{array}\right)
$$

is the Fricke involution.

So Beauville's family is modular in the following sense.

Let \mathcal{F} be a fundamental domain for $\Gamma_{1}(5)$, there is a unique $\tau \in \mathcal{F}$, such that

$$
\begin{aligned}
-\frac{1}{k} & =t(\tau) \\
t(\tau) & =q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{5\left(\frac{n}{5}\right)}, \quad q=e^{2 \pi \imath \tau} \\
& =q-5 q^{2}+15 q^{3}-30 q^{4}+40 q^{5}+\ldots
\end{aligned}
$$

$\left(\frac{n}{5}\right)$ being Legendre's symbol.
Theorem 1. (Bertin) Let $k \in \mathbb{Z}$ such that P_{k} does not vanish on $\mathbb{T}^{2}(k \notin[-12,0])$, then

$$
\begin{aligned}
m\left(P_{k}\right)= & \Re\left(-2 \pi i \tau+\left(1-\frac{i}{2}\right) \sum_{n \geq 1} \sum_{d \mid n} \chi(d) d^{2} \frac{e^{2 \pi i n \tau}}{n}\right. \\
& \left.+\left(1+\frac{i}{2}\right) \sum_{n \geq 1} \sum_{d \mid n} \bar{\chi}(d) d^{2} \frac{e^{2 \pi i n \tau}}{n}\right) .
\end{aligned}
$$

where χ is the odd quadratic character of conductor 5 satisfying $\chi(2)=i$.

Theorem 2. (Bertin) With the previous notations, $m\left(P_{k}\right)$ can be expressed as an EisensteinKronecker series:

$$
m\left(P_{k}\right)=\Re\left(\frac{5^{2} \Im \tau}{2 \pi^{2}} \sum_{m, n}^{\prime} \frac{C(\chi) \chi(n)+\bar{C}(\bar{\chi}) \bar{\chi}(n)}{(5 m \tau+n)^{2}(5 m \bar{\tau}+n)}\right)
$$

where, if $c(\chi)$ is the Gauss sum for the character χ,

$$
C(\chi)=\left(-\frac{1}{4}+\frac{i}{2}\right) c(\bar{\chi})
$$

Sketch of proofs

Let $m\left(P_{k}\right)=m(k)$.

$$
m(k)=\Re(\tilde{m}(k)),
$$

$$
\begin{gathered}
\tilde{m}(k)= \\
\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}} \log \left(k+\frac{(x+y+1)(x+1)(y+1)}{x y}\right) \frac{d x}{x} \frac{d y}{y} \\
\text { so } \\
\tilde{m}^{\prime}(k)=\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}}\left(\frac{1}{\left.k+\frac{(x+y+1)(x+1)(y+1)}{x y}\right)} \frac{d x}{x} \frac{d y}{y} .\right.
\end{gathered}
$$

Then

- $\tilde{m}^{\prime}(k)$ is a period of the elliptic curve associated to P_{k}, thus a solution of the PicardFuchs differential equation of the family. Now, if

$$
(x+y+1)(x+1)(y+1)-\frac{1}{t} x y=0
$$

by Verrill, the corresponding P-F equation is
$t\left(t^{2}+11 t-1\right) y^{\prime \prime}+\left(3 t^{2}+22 t-1\right) y^{\prime}+(t+3) y=0$
and a solution is
$f=\frac{\eta(5 \tau)^{5 / 2}}{(t(\tau) \eta(\tau))^{1 / 2}}=1+3 q+4 q^{2}+2 q^{3}+q^{4}+\ldots$
where $t(\tau)$ is given above. So

$$
f(t)=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} t^{n}\right.
$$

Comparing their q -developments, we deduce

$$
\tilde{m}^{\prime}(k)=-t f
$$

and

$$
d \tilde{m}=-f \frac{d t}{t}=-f \frac{t^{\prime}(q) d q}{t} \cdot \in \mathcal{M}_{3}\left(\Gamma_{1}(5)\right)
$$

Let $L_{\chi}(q) \in \mathcal{M}_{3}(\Gamma)$,

$$
L_{\chi}(q)=\sum_{n \geq 1}\left(\sum_{d \mid n} \chi(d) d^{2}\right) q^{n}
$$

Now

$$
-f q \frac{d t}{t d q}=-1+\left(1-\frac{i}{2}\right) L_{\chi}+\left(1+\frac{i}{2}\right) L_{\bar{\chi}} .
$$

- Finally, by integration between q and $+\infty$, we get the formula.

For the proof of theorem 2 we express $m(k)$ in terms of a function $K\left(e^{2 \pi i \tau}\right)$, real, periodic of period 5, which can be developped in a Fourier
series, following an idea given in Weil "Elliptic functions according to Eisenstein and Kronecker".

The elliptic regulator

Let K be a field. By Matsumoto, $K_{2}(K)$ can be described in terms of symbols $\{f, g\}, f$ and $g \in K^{*}$ and relations.

For example, if v is a discrete valuation on K with maximal ideal \mathcal{M} and residual field k, Tate's tame symbol

$$
(x, y)_{v} \equiv(-1)^{v(x) v(y)} \frac{x^{v(y)}}{y^{v(x)}}
$$

defines a homomorphism

$$
\lambda_{v}: K_{2}(F) \rightarrow k^{*}
$$

Let E an elliptic curve on \mathbb{Q} and $\mathbb{Q}(E)$ its rational function field. To any $P \in E(\overline{\mathbb{Q}})$ is associated a valuation on $\mathbb{Q}(E)$ that gives the homomorphism

$$
\lambda_{P}: K_{2}(\mathbb{Q}(E)) \rightarrow \mathbb{Q}(P)^{*}
$$

and the exact sequence

$$
0 \rightarrow K_{2}(E) \otimes \mathbb{Q} \rightarrow K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q} \xrightarrow{\lambda} \bigsqcup_{P \in E(\overline{\mathbb{Q}})} \mathbb{Q}(P)^{*} \otimes \mathbb{Q}-
$$

By definition $K_{2}(E)$ is modulo torsion

$$
K_{2}(E) \simeq \operatorname{ker} \lambda=\cap_{P} \operatorname{ker} \lambda_{P} \subset K_{2}(\mathbb{Q}(E)) .
$$

By a theorem due to Villegas, under some hypothesis, if $P \in \mathbb{Q}\left[x^{ \pm}, y^{ \pm}\right]$defines a smooth curve C, we get

$$
\{x, y\} \in K_{2}(C)
$$

. In particuliar, if

$$
P(x, y)=(x+y+1)(x+1)(y+1)+x y
$$

we get

$$
\{x, y\} \in K_{2}(E)
$$

. Let f et g dans $\mathbb{Q}(E)^{*}$ and define

$$
\eta(f, g)=\log |f| \operatorname{darg} g-\log |g| d \arg f
$$

Definition The elliptic regulator r of E is given by

$$
\begin{array}{ccc}
r: K_{2}(E) & \rightarrow & \mathbb{R} \\
\{f, g\} & \mapsto & \frac{1}{2 \pi} \int_{\gamma} \eta(f, g)
\end{array}
$$

for a suitable loop γ.

But P does not cut the torus and when x describes the unit circle, one root of P, say $y_{1}(x)$ satisfies

$$
\left|y_{1}(x)\right|<1
$$

and $\left(x, y_{1}(x)\right)$ is a suitable loop on E. So

$$
\begin{aligned}
m(P) & =\frac{1}{(2 \pi i)^{2}} \int_{|x|=1} \int_{|y|=1} \log \left|P_{1}(x, y)\right| \frac{d x}{x} \frac{d y}{y} \\
& =-\frac{1}{2 \pi i} \int_{|x|=1} \log \left|y_{1}(x)\right| \frac{d x}{x}
\end{aligned}
$$

from Jensen's formula and

$$
\begin{aligned}
& m(P)=\frac{-1}{2 \pi i} \int_{\sigma_{1}} \log \left|y_{1}\right| \frac{d x}{x} \\
& =\frac{1}{2 \pi} \int_{\sigma_{1}} \eta(x, y)= \pm r(\{x, y\} .
\end{aligned}
$$

Analytic expression of the regulator

Bloch gave an other expression of the regulator

$$
\begin{array}{rlc}
K_{2}(E) \otimes \mathbb{Q} \rightarrow K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q} & \rightarrow & \mathbb{R} \\
\{f, g\} & \mapsto \frac{\Im \tau^{2}}{\pi^{2}} \sum_{i, j} a_{i} b_{j} K_{2,1}(
\end{array}
$$

where

$$
K_{2,1}(t):=\sum_{\gamma \in L, \gamma \neq 0} \frac{<t, \gamma>}{\gamma^{2} \bar{\gamma}}
$$

and

$$
<t, \gamma>:=\exp \left(\pi \frac{t \bar{\gamma}-\bar{t} \gamma}{\Im \tau}\right)
$$

Hence the importance of getting $m(P)$ as an Eisenstein-Kronecker series.

EXPLICIT FORMULAE FOR CALABI-YAU IN DIMENSION 2

Let

$$
P_{k}=X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z}-k
$$

and

$$
\begin{aligned}
& Q_{k}=X+\frac{1}{X}+Y+\frac{1}{Y}+Z+\frac{1}{Z} \\
& +X Y+\frac{1}{X Y}+Z Y+\frac{1}{Z Y}+X Y Z+\frac{1}{X Y Z}-k .
\end{aligned}
$$

These polynomials define families of $K 3$ hypersurfaces.

Theorem 3.1) Let $k=t+\frac{1}{t}$ and define

$$
t=\frac{\eta(\tau)^{6} \eta(6 \tau)^{6}}{\eta(2 \tau)^{6} \eta(3 \tau)^{6}}=q^{1 / 2}-6 q^{3 / 2}+15 q^{5 / 2}-20 q^{7 / 2}+\ldots
$$

with η Dedekind eta function

$$
\eta(\tau)=e^{\frac{\pi i \tau}{12}} \prod_{n \geq 1}\left(1-e^{2 \pi i n \tau}\right)
$$

Then

$$
m\left(P_{k}\right)=
$$

$\Re\left\{-\pi i \tau+\sum_{n \geq 1}\left(\sum_{d \mid n} d^{3}\right)\left(\frac{4 q^{n}}{n}-\frac{16 q^{2 n}}{2 n}+\frac{36 q^{3 n}}{3 n}-\frac{144 q^{6 n}}{6 n}\right)\right\}$.
2) If $k=-\left(t+\frac{1}{t}\right)-2$ and

$$
t=\frac{\eta(3 \tau)^{4} \eta(12 \tau)^{8} \eta(2 \tau)^{12}}{\eta(\tau)^{4} \eta(4 \tau)^{8} \eta(6 \tau)^{12}}
$$

Then

$$
\begin{gathered}
m\left(Q_{k}\right)=\Re \\
\left\{-2 \pi i \tau+\sum_{n \geq 1}\left(\sum_{d \mid n} d^{3}\right)\left(\frac{-2 q^{n}}{n}+\frac{32 q^{2 n}}{2 n}+\frac{18 q^{3 n}}{3 n}-\frac{288 q^{6 n}}{6 n}\right)\right\}
\end{gathered}
$$

Theorem 4. With the previous notations, we can express the measure in terms of EisensteinKronecker series
1)

$$
\begin{aligned}
& m\left(P_{k}\right)=\frac{\Im \tau}{8 \pi^{3}} \sum_{m, \kappa}^{\prime} \\
& -\Re \frac{2 \times 4}{(m \tau+\kappa)^{3}(m \bar{\tau}+\kappa)}+\frac{2 \times 16}{(m \tau+\kappa)^{2}(m \bar{\tau}+\kappa)^{2}} \\
& +\Re \frac{16}{(2 m \tau+\kappa)^{3}(2 m \bar{\tau}+\kappa)}+\frac{2 \times 36}{(2 m \tau+\kappa)^{2}(2 m \bar{\tau}+\kappa)^{2}} \\
& -\Re \frac{36}{(3 m \tau+\kappa)^{3}(3 m \bar{\tau}+\kappa)}+\frac{2 \times 144}{(3 m \tau+\kappa)^{2}(3 m \bar{\tau}+\kappa)^{2}} \\
& +\Re \frac{144}{(6 m \tau+\kappa)^{3}(6 m \bar{\tau}+\kappa)}+\frac{2}{(6 m \tau+\kappa)^{2}(6 m \bar{\tau}+\kappa)^{2}}
\end{aligned}
$$

2)

$$
\begin{aligned}
& m\left(Q_{k}\right)=\frac{\Im \tau}{8 \pi^{3}} \sum_{m, \kappa}^{\prime} \\
& \Re \frac{2 \times 2}{(m \tau+\kappa)^{3}(m \bar{\tau}+\kappa)}+\frac{2 \times 32}{(m \tau+\kappa)^{2}(m \bar{\tau}+\kappa)^{2}} \\
& -\Re \frac{32}{(2 m \tau+\kappa)^{3}(2 m \bar{\tau}+\kappa)}+\frac{2 \times 18}{(2 m \tau+\kappa)^{2}(2 m \bar{\tau}+\kappa)^{2}} \\
& -\Re \frac{18}{(3 m \tau+\kappa)^{3}(3 m \bar{\tau}+\kappa)}+\frac{2 \times 288}{(3 m \tau+\kappa)^{2}(3 m \bar{\tau}+\kappa)^{2}} \\
& +\Re \frac{288}{(6 m \tau+\kappa)^{3}(6 m \bar{\tau}+\kappa)}+\frac{2}{(6 m \tau+\kappa)^{2}(6 m \bar{\tau}+\kappa)^{2}}
\end{aligned}
$$

