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[3] S. Lang – Algèbre, Dunod, 2004.

[4] R. Lidl & H. Niederreiter – Introduction to finite fields and their
applications, Cambridge Univ. Press, 1994.
http://www.amazon.com/gp/reader/0521460948/ref=sib−dp−ptu#reader-link

[5] V. Shoup – A Computational Introduction to Number Theory and Al-
gebra (Version 2) second print editon, Fall 2008.

http://shoup.net/ntb/

[6] Zhe-Xian Wan – Lectures on finite fields and Galois rings, Word Sci-
entific Publishing Co. Pte. Ltd. 2003.

1 Cyclotomic Polynomials

1.1 Cyclotomic Polynomials over Z

One of the equivalent definitions of the polynomials Φ1,Φ2, . . . in Z[X] is by
induction on n:

Φ1(X) = X − 1, Φn(X) =
Xn − 1∏

d|n
d "=n

Φd(X)
·

1This text is accessible on the author’s web site
http://www.math.jussieu.fr/∼miw/coursVietnam2009.html
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It follows that Φn(X) ∈ Z[X] for all n. Let us recall why.
We shall work with groups, rings and fields. We shall use very often the

properties of finite commutative groups (these are the same as Z–modules),
especially of cyclic groups.

An important result is that the order (number of elements) of a subgroup
of a finite group G divides the order of G (Lagrange’s Theorem). We shall
need the definition and the properties of the order of an element (which is
the order of the subgroup generated by this element). An element x in a
multiplicative group G is torsion if it has finite order, that means if there
exists m ≥ 1 such that xm = 1. In this case the order of x is the least of
these m. The set of m ∈ Z with xm = 1 is a subgroup of Z which is not 0,
hence it has a unique positive generator d which is the order of x. Therefore
for an element x of order d we have

xm = 1⇔ d|m.

We stress that the condition xm = 1 does not mean that x has order m, it
means that the order of x divides m.

If x is an element in a multiplicative group G and m an integer such that
xm = 1, then for i and j in Z satisfying i ≡ j (mod m) we have xi = xj . In
other terms the kernel of the morphism

Z −→ G
j (→ xj

contains mZ. Hence this morphism factors to Z/mZ −→ G, which we
denote again by j (→ xj . This means that we define xj for j a class modulo
m by selecting any representative in Z.

The subgroups and quotients of a cyclic group are cyclic. For any cyclic
group of order n and for any divisor d of n there is a unique subgroup of G
of order d; if ζ is a generator of the cyclic group G of order n and if d divides
n, then ζn/d has order d, hence is a generator of the unique subgroup of G
of order d.

A product G1 × G2 of two finite groups is cyclic if and only if G1 and
G2 are cyclic with relatively prime order.

The number of generators of a cyclic group of order n is given by Euler’s
function ϕ(n).

All rings are supposed to have a unity 1 different from 0 (there is no
ring structure on the set with only one element), they are supposed to be
commutative. Unless we specify it, we shall further assume the rings to be
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without zero divisor (they are also called integral domains but we shall just
say rings).

The units of a ring A are the invertible elements, they form a multiplica-
tive group A×. A field is a ring F such that F× = F \ {0}. The torsion
elements in the group A× are the roots of unity in A. Their set

A×tors = {x ∈ A ; there exists n ≥ 1 such that xn = 1}

is the torsion subgroup of the group of units A×.
We assume that the definitions of irreducible elements in a ring and of

factorial rings are known.
When F is a field, the ring F [X] of polynomials in one variable over F is

a principal domain (since it is an Euclidean ring), and therefore a factorial
ring.

The ring Z[X] is not an Euclidean ring - but if A and B are in Z[X] and
B is monic, then both the quotient Q and the remainder R of the Euclidean
division in Q[X] of A by B

A = BQ + R

are in Z[X]. This proves that Φn(X) ∈ Z[X].
First examples. From the very definition we derive

Φ2(X) =
X2 − 1
X − 1

= X + 1, Φ3(X) =
X3 − 1
X − 1

= X2 + X + 1,

and more generally for p prime

Φp(X) =
Xp − 1
X − 1

= Xp−1 + Xp−2 + · · · + X + 1.

The next cyclotomic polynomials are

Φ4(X) =
X4 − 1
X2 − 1

= X2 + 1 = Φ2(X2),

Φ6(X) =
X6 − 1

(X3 − 1)(X + 1)
=

X3 + 1
X + 1

= X2 −X + 1 = Φ3(−X).

Definition. In a field F , an element ζ is a n-th root of unity if ζn = 1. It is a
primitive n-th root of unity if it is an element of order n in the multiplicative
group F×.
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For each positive integer n, the n–th roots of unity in F form a finite
subgroup of F×tors having at most n elements. The union of all these sub-
groups of F×tors is just the torsion group F×tors itself. This group contains 1
and −1, but it could have just one element, like for F = Z/2Z. The torsion
subgroup of R× is {±1}, the torsion subgroup of C× has n elements.

Since the n roots of Xn − 1 in C are pairwise distinct, and since

Xn − 1 =
∏

d|n

Φd(X), (1)

the roots of Φn in C are the complex numbers which are roots of Xn − 1
but not roots of Xd − 1 when d divides n, d *= n. Hence in C[X] we have

Xn − 1 =
n−1∏

k=0

(X − e2iπk/n), Φn(X) =
∏

0≤k≤n−1
gcd(k,n)=1

(X − e2πik/n). (2)

Therefore:

Proposition 3. The roots of Φn(X) in C are exactly the complex primitive
n-th roots of unity.

The name cyclotomy comes from the Greek and means divide the circle.
The roots of Xn − 1 are the vertices of a regular polygon with n sides.

The second formula from (2) provides an alternative way of defining Φn ∈
C[X]. Starting from this definition, it is not plain that Φn has coefficients
in Z. One may recover this fact by using Galois theory, or more easily (as
we did), by using the equivalence with the previous definition which rests
on (1) and the Euclidean algorithm in Z[X].

The degree of Φn is the value at n of Euler’s function

ϕ(n) = #{k ; 1 ≤ k ≤ n, gcd(k, n) = 1}.

This is the order of the multiplicative group (Z/nZ)× of the ring Z/nZ.
Recall that ϕ is a multiplicative function: ϕ(mn) = ϕ(m)ϕ(n) when m

and n are relatively prime. This follows from the ring isomorphim between
the ring product (Z/mZ) × (Z/nZ) and the ring (Z/mnZ) when m and n
are relatively prime.

Also ϕ(pa) = pa−1(p−1) for p prime and a ≥ 1. Hence the value of ϕ(n)
for n written as a product of powers of distinct prime numbers is

ϕ(pa1
1 · · · par

r ) = pa1−1
1 (p1 − 1) · · · par−1

r (pr − 1).

From (1) we deduce
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Corollary 4.
n =

∑

d|n

ϕ(d).

Exercise 5. Let n be a positive integer. Check

ϕ(2n) =

{
ϕ(n) if n is odd,

2ϕ(n) if n is even,
Φ2n(X) =

{
Φn(−X) if n is odd,

Φn(X2) if n is even.

Hint: For a geometric proof, cut the circle in 2n pieces in place of n.
Compare the positions on the unit circle of the roots of the two degree n
polynomials Xn − 1 and Xn + 1.

For instance Φ2!(X) = X2!−1 + 1 for # ≥ 1 .

Exercise 6. For p prime and n ≥ 1, check
{

Φn(Xp) = Φpn(X) and ϕ(pn) = pϕ(n) if p|n,
Φn(Xp) = Φpn(X)Φn(X) and ϕ(pn) = (p− 1)ϕ(n) if gcd(p, n) = 1.

Check also

Φpr(X) = Xpr−1(p−1) + Xpr−1(p−2) + · · · + Xpr−1
+ 1

when p is a prime and r ≥ 1.

Theorem 7. For any n ≥ 1, the polynomial Φn is irreducible in Z[X].

Hence [Q(e2πi/n) : Q] = ϕ(n).
We postpone the proof of Theorem 7 to the next course. We give here

the proof in the special case where n is prime.

Proof of Theorem 7 for n = p prime. We set X − 1 = Y , so that

Φp(Y + 1) =
(Y + 1)p − 1

Y
= Y p−1 +

(
p

1

)
Y p−2 + · · · +

(
p

2

)
Y + p ∈ Z[Y ].

We observe that p divides all coefficients – but the leading one – of the monic
polynomial Φp(Y + 1) and that p2 does not divide the constant term. We
conclude by using the next result.

Theorem 8 (Eisenstein criterion). Let

h(X) = c0X
d + · · · + cd ∈ Z[X]

and p a prime number. Assume h is product of two polynomials in Z[X] of
positive degrees. Assume also that p divides ci for 1 ≤ i ≤ d but that p does
not divide c0. Then p2 divides cd.
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Proof. Let

f(X) = a0X
n + · · · + an and g(X) = b0X

m + · · · + bm

be two polynomials of positive degrees m and n such that h = fg. Hence
d = m + n, c0 = a0b0, cd = anbm. We use the reduction modulo p

Ψp : Z[X] −→ Fp[X] (9)

which is the unique morphism of rings mapping X to X. Its kernel is the
principal ideal pZ[X] = (p) generated by p.

Write F = Ψp(f), G = Ψp(g), H = Ψp(h),

F (X) = α0X
n + · · · + αn, G(X) = β0X

m + · · · + βm

and
H(X) = γ0X

d + · · · + γd.

The greek letters α, β, γ denote the classes of the roman letters a, b, c
modulo p. By assumption γ0 *= 0, γ1 = · · · = γd = 0, hence H(X) =
γ0Xd = F (X)G(X) with γ0 = α0β0 *= 0. Now F and G have positive
degrees n and m, hence αn = βm = 0, which means that p divides an and
bm, and therefore p2 divides cd = anbm..

1.2 Cyclotomic Polynomials over any ring

The existence of Ψp in (9) is a special case of the following fact: Any mor-
phism of rings f : A → B extends in a unique way to a morphism of rings
A[X]→ B[X] mapping X to X.

As a consequence, Φn makes sense in A[X] over any ring A: indeed for
any ring A there is a unique ring morphism Z→ A. This morphism is used
to give the definition of the characteristic of a ring. For an integral domain
the characteristic is either 0 or a prime.

We shall use repeatedly the fact that in a ring of characteristic p, the
map x (→ xp is ring homomorphism: (x + y)p = xp + yp.

Let n = prm with r ≥ 0 and p does not divide m. If F is a field of
characteristic p, we have in F [X]

Xn − 1 = (Xm − 1)pr
.

For that reason when dealing with Xn − 1 and Φn we are going to assume
most often that the characteristic of the field is not a prime divisor of n.
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Exercise 10. In characteristic p, for r ≥ 1 and m ≥ 1

Φmpr(X) = Φm(X)pr−1(p−1).

Hint:Use exercise 6.

The proof we gave of proposition 3 extends to any field F , with the
proviso that the characteristic of F is not a prime divisor of n:

Proposition 11. Let F be a field and n an integer. We assume that either
the characteristic of F is 0 or else that it is a prime number which does not
divide n. Then roots of Φn(X) in F are exactly the primitive n-th roots of
unity in F .

For instance in any algebraically closed field Ω the number of primitive
n-th roots of unity is ϕ(n). These are the generators of the unique cyclic
subgroup Cn of order n of Ω×, which is the group of n-th roots of unity in
Ω:

Cn = {x ∈ Ω ; xn = 1}.

Proposition 12. Any finite subgroup of the multiplicative group of a field F
is cyclic. If n is the order of G, then G is the set of roots of the polynomial
Xn − 1 in F .

Proof. Let F be a field and G a finite subgroup of F×. Denote by e the
exponent of G: this is the smallest positive integer such that xe = 1 for any
x ∈ G. Equivalently, e is the lcm of the orders of the elements in G. By
Lagrange’s theorem e divides n. Any x in G is a root of the polynomial
Xe−1. Since G has order n, we get n roots in the field F of this polynomial
Xe − 1 of degree e ≤ n. Hence e = n. We conclude by using the fact that
there exists in G an element of order e, hence G is cyclic and is the set of
roots of the polynomial Xn − 1 in F .

The following alternative proof (not using the exponent) is instructive
since it uses the properties of the cyclotomic polynomials. For any divisor d
of n, denote by NG(d) the number of elements in G of order d. By Lagrange’s
Theorem

n =
∑

d|n

NG(d). (13)

Let d be a divisor of n. If NG(d) > 0, that is, if there exists an element
ζ in G of order d, then the cyclic subgroup of G generated by ζ has order
d, it has ϕ(d) génerators. These ϕ(d) elements in F are roots of Φd and
therefore they are all the roots of Φd in F . It follows that there are exactly
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ϕ(d) elements of order d in G. This proves that NG(d) is either 0 or ϕ(d).
From (13) and Corollary 4 we deduce

n =
∑

d|n

NG(d) ≤
∑

d|n

ϕ(d) = n,

hence NG(d) = ϕ(d) for all d|n. In particular NG(n) > 0, which means that
G is cyclic.

1.3 Cyclotomic Polynomials over a finite field

Let F be finite field with q element. The characteristic of F is a finite prime
p. The prime field of F (which is defined as the smallest subfield of F , that
is the intersection of all subfields of F ) is therefore Fp = Z/pZ, which is the
unique field with p elements. Since F is a finite vector space over Fp, we
deduce q = pr where r is the dimension [F : Fp] of the Fp–vector space F .

We shall use the definitions of algebraically closed fields and of the alge-
braic closure of a field. We take for granted that any field has an algebraic
closure. We denote by Fp an algebraic closure of Fp. While dealing with fi-
nite fields of characteristic p, we shall always consider that they are subfield
of Fp.

Given q = pr, the unique subfield of Fp with q elements is the set Fq of
roots of Xq −X in Fp:

Xq −X =
∏

x∈Fq

(X − x), Xq−1 − 1 =
∏

x∈F×q

(X − x). (14)

See [5], Theorem 19.6. The set {X − x ; x ∈ Fq} is the set of all monic
degree 1 polynomials with coefficients in Fq. Hence (14) is the special case
n = 1 of the next statement ([5], Theorem 19.10).

Proposition 15. For any n ≥ 1,

Xqn −X =
∏

d|n

∏

f∈Eq(d)

f(X)

where Eq(d) is the sel all monic irreducible polynomials in Fq[X] of degree
d.

Denote by Nq(d) the number of elements in Eq(d), that is the number of
monic irreducible polynomials of degree d in Fq[X]. Proposition 15 yields,
for n ≥ 1,

qn =
∑

d|n

dNq(d).
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As a consequence ([5], Theorem 19.10),

1
2n

qn ≤ Nq(n) ≤ 1
n

qn

for all n ≥ 1.
From Möbius inversion formula one deduces ([5], Exercise 19.1):

Nq(n) =
∑

d|n

µ(d)qn/d.

For instance when # is a prime number not equal to the characteristic p of
Fq,

Nq(#) =
q" − q

#
· (16)

Remarks on Möbius inversion formula.
The Möbius function µ is the map from the positive integers to {0, 1,−1}
defined by the properties µ(1) = 1, µ(p) = −1 for p prime, µ(pm) = 0 for
p prime and m ≥ 2, and µ(ab) = µ(a)µ(b) if a and b are relatively prime.
Hence µ(a) = 0 if and only if a has a square factor, while for a squarefree
number a which is a product of s distinct primes we have µ(a) = (−1)s:

µ(p1 · · · ps) = (−1)s.

There are several variants of the Möbius inversion formula. The most clas-
sical one that we just used states that for f and g two maps defined on the
set of positive integers with values in an additive group, the two following
properties are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∑

d|n

f(d).

(ii) For any integer n ≥ 1,

f(n) =
∑

d|n

µ(n/d)g(d).

For instance Corollary 4 is equivalent to

ϕ(n) =
∑

d|n

µ(n/d)d for all n ≥ 1
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An equivalent statement of the Möbius inversion formula is the following
multiplicative version which deals with two maps f , g from the positive
integers into an abelian multiplicative group G. The two following properties
are equivalent:
(i) For any integer n ≥ 1,

g(n) =
∏

d|n

f(d).

(ii) For any integer n ≥ 1,

f(n) =
∏

d|n

g(d)µ(n/d).

For instance take for G the multiplicative group F (X)× where F is a field.
The n–th cyclotomic polynomial Φn has been defined by induction using (1)
Hence

Φn(X) =
∏

d|n

(Xd − 1)µ(n/d).

A third form of the Möbius inversion formula (which we shall not use here)
deals with two functions F and G from [1,+∞) to C. The two following
properties are equivalent:
(i) For any real number x ≥ 1,

G(x) =
∑

n≤x

F (x/n).

(ii) For any real number x ≥ 1,

F (x) =
∑

n≤x

µ(n)G(x/n).

As an illustration take F (x) = 1 for all x and G(x) = [x]. Then
∑

n≤x

µ(n)[x/n] = 1

Denote by σq the Fq–automorphism of Fp (Frobenius automorphism: [5]
Theorem 19.7):

σq(x) = xq.
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Let x ∈ Fp. The conjugates of x over Fq are the roots in Fp of the minimal
(=monic irreducible) polynomial of x over Fq, and these are exactly the
images of x by the iterated Frobenius:

σ0
q = 1, σ"

q = σ"−1
q ◦ σq (# ≥ 1),

σ0
q (x) = x, σq(x) = xq, σ2

q (x) = xq2
, σ"

q(x) = xq!
(# ≥ 0).

We shall use repeatedly the following fact:

Lemma 17. Let Fq be a finite field with q elements and f ∈ Fp[X] a
polynomial whose coefficients are algebraic over Fq. Then f belongs to Fq[X]
if and only if f(Xq) = f(X)q.

One of the main results of the theory of finite fields is the following ([5]
Theorem 19.15):

Theorem 18. Let α ∈ Fp. Define n = [Fq(α) : Fq]. Then

n = min{# ≥ 1 ; σ"
q(α) = α}

and the minimal polynomial of α over Fq is

n−1∏

"=0

(
X − σ"

q(α)
)
.

We apply this result to the cyclotomic polynomials ([5] Theorem 19.16):

Corollary 19. Let Fq be a finite field with q elements and let n be a pos-
itive integer not divisible by the characteristic of Fq. Then the cyclotomic
polynomial Φn splits in Fq[X] into a product of irreducible factors, all of the
same degree d, where d is the order of q modulo n.

The order of q modulo n is by definition the order of the class of q in the
multiplicative group (Z/nZ)× (hence it is defined if and only if n and q are
relatively prime), it is the smallest integer # such that q" is congruent to 1
modulo n.

Since an element ζ ∈ F×p has order n in the multiplicative group F×p if
and only if ζ is a root of Φn, an equivalent statement to Corollary 19 is the
following.

Corollary 20. If ζ ∈ F×p has order n in the multiplicative group F×p , then
its degree d = [Fq(ζ) : Fq] over Fq is the order of q modulo n.
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Exercise 21. Let F be a field, m and n two positive integers, a and b two
integers ≥ 2. Check that the following conditions are equivalent.
(i) n divides m.
(ii) In F [X], the polynomial Xn − 1 divides Xm − 1.
(iii) an − 1 divides am − 1.
(ii’) In F [X], the polynomial Xan −X divides Xam −X.
(iii’) ban − b divides bam − b.

Hint Denote r the remainder of the Euclidean division of m by n. Check
that ar − 1 is the remainder of the Euclidean division of am − 1 by an − 1.
See also [5], Theorems 19.2, 19.3, 19.4.
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