Ho Chi Minh University of Science HCMUS
Update: April 16, 2009

Finite fields: some applications
Michel Waldschmidt *

Second course
April 10, 2009

1.4 Proof of the irreducibility of the cyclotomic polynomial
®,, for any n > 1.

Proof of Theorem 7. Let f € Z[X] be an irreducible factor of ®,, and let g
satisfy fg = ®,. Our goal is to prove f = &, and g = 1.

Since ®,, is monic, the same is true for f and g. Let ¢ be a root of f
in C and let p be a prime number which does not divide n. Since (P is a
primitive n-th root of unity, it is a zero of ®,,.

The first and main step of the proof is to check that f(¢?) = 0. If (P is
not a root of f, then it is a root of g. We assume ¢(¢(?) = 0 and we shall
reach a contradiction.

Since f is irreducible, f is the minimal polynomial of {, hence from
g(¢?) = 0 we infer that f(X) divides g(X?). Write g(X?) = f(X)h(X) and
consider the morphism W, of reduction modulo p already introduced in (9):

U, : Z[X] — F,[X].

Denote by F', G, H the images of f, g, h. Recall that fg = ®,, in Z[X],
hence F'(X)G(X) divides X" — 1 in F),[X]. The assumption that p does not
divide n implies that X™ — 1 has no square factor in F,[X].

Let P € Z[X] be an irreducible factor of F. From G(X?) = F(X)H(X)
it follows that P(X) divides G(X?). But G € F,[X], hence (see Lemma
17) G(XP) = G(X)P and therefore P divides G(X). Now P? divides the
product F'GG, which is a contradiction.

We have checked that for any root ¢ of f in C and any prime number p
which does not divide n, the number (? is again a root of f. By induction
on the number of prime factors of m, it follows that for any integer m with

2This text is accessible on the author’s web site
http://www.math. jussieu.fr/~miw/coursVietnam2009.html
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ged(m,n) = 1 the number (™ is a root of f. Now f vanishes at all the
primitive roots of unity, hence f = &, and g = 1.
O

2 Error correcting codes

2.1 Preliminary definitions

A code of length n on a finite alphabet A with g elements is a subset C of
A" A word is an element of A", a codeword is an element of C.

A linear code over a finite field F, of length n and dimension r is a
F —vector subspace of Fy of dimension r (such a code is also called a (n,r)-
code). A subspace C of Fy of dimension r can be described by giving a basis
et,...,e of C over Fy, so that

C={mier +-- +mper; (m1,...,m;) € F}.

An alternative description of a subspace C of Fy of codimension n —r is by
giving n — r linearly independent linear forms Li,...,L,_, in n variables
z = (x1,...,x,) with coefficients in Fg, such that

C=kerL1N---NkerL,_,.

The sender replaces his message (m1,...,m;) € Fy of length r by the longer
message mie; + -+ + mpe, € C C Fg of length n. The receiver checks
whether the message z = (71,...,2,) € Fy belongs to C by computing
the n — r—tuple L(z) = (Li(z),..., Ln—r(z)) € Fy~". If there is no error
during the transmission, then z € C and Li(z) = --- = Ly—(z) = 0. On
the opposite, if the receiver observes that some L;(x) is non—zero, he knows
that the received message has at least one error. The message with was sent
was an element c¢ of the code C, the message received x is not in C, the error
is ¢ = z — ¢. The values of L(z) may enable him to correct the errors in
case there are not too many of them. We only give examples today. For
simplicity we take ¢ = 2: we consider binary codes.

2.2 Examples

Trivial codes of length n are C = {0} of dimension 0 and C = Fy, of dimension
n.

The two first examples below are repetition codes. The next one is a
parity bit code detecting one error. The following ones use the parity bit
idea but are 1-error correcting codes.
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Example 22. n =2, r = 1, rate = 1/2, detects one error.

C= {(0,0), (1, 1)}, e1 = (1,1), Li(x1,m9) = 21 + .
Example 23. n =3, r = 1, rate = 1/3, corrects one error.
¢ =1{(0,0,0), (1,1,1)}, er1 = (1,1,1),

Li(z) = z1 + 23, La(z) = z2 + z3.

If the message which is received is correct, it is either (0,0,0) or (1,1,1),
and the two numbers Lq(z) and La(z) are 0 (in F2). If there is exactly one
mistake, then the message which is received is either one of

(0,0,1), (0,1,0), (1,0,0),
or else one of
(1,1,0), (1,0, 1), (0,1,1).

In the first case the message which was sent was (0, 0,0), in the second case
it was (1,1,1).

A message with a single error is obtained by adding to a codeword one
of the three possible errors

(1,0,0), (0,1,0), (0,0,1).

If the mistake was on x1, which means that x = ¢+ ¢ with e = (1,0,0) and
¢ € C a codeword, then Li(z) =1 and Lo(z) = 0. If the mistake was on x3,
then ¢ = (0,1,0) and Li(z) = 0 and La(x) = 1. Finally if the mistake was
on x3, then € = (0,0,1) and Li(z) = La(z) = 1. Therefore the three possible
values for the pair L(z) = (Li(x), L2(z)) other than (0, 0) correspond to the
three possible positions for a mistake. We shall see that this is a perfect one
error correcting code.

Example 24. n = 3, r = 2, rate = 2/3, detects one error.
C = {(m17m27m1 + m2) 3 (ml,mz) e F%}

e1 = (1,0,1), ea = (0,1,1), Ly(z1, 22, 23) = 71 + T2 + 3.
This is the easiest example of the bit parity check.
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Example 25. n =5, r = 2, rate = 2/5, corrects one error.
C= {(mlvaam17m2am1 +m2) ; (mlamQ) € F%}
€1 = (1505 1507 1)7 €2 = (O) 1705 ]-a ]-)7

Li(z) = x1 + x3, La(z) = w2 + x4, L3(z) = x1 + x2 + 5,

The possible values for the triple L(x) corresponding to a single error are
displayed in the following table.

x1 Z2 z3 Ty T5

L(z) | (1,0,1) | (0,1,1) | (1,0,0) | (0,1,0) | (0,0,1)

Therefore when there is a single error, the value of L(z) enables one to
correct the error.

One may observe that a single error will never produce the triple (1,1, 0)
nor (1,1,1) for L(z): there are 8 elements x € F3 which cannot be re-
ceived starting from a codeword and adding at most one mistake, namely
($1,$2,$1 + 1,20 + 1,.%‘5), with (.%'1, x9, x5) S F%

Example 26. n =6, r = 3, rate = 1/2, corrects one error.
C = {(m1,ma, m3, ma + mz, m1 +mz,m1 +my) ; (m1, me, ms) € F3}

e1 =(1,0,0,0,1,1), ea = (0,1,0,1,0,1), e3 = (0,0,1,1,1,0),
Li(z) = zo+ 23+ x4, Lo(z) = 21 + 23+ 25, L3(z) = 21 + 22 + 256.

The possible values for the triple L(x) corresponding to a single error are
displayed in the following table.

xr1 X9 xrs3 Ty Ts Ze
L(z) | (0,1,1) | (1,0,1) | (1,1,0) | (1,0,0) | (0,1,0) | (0,0,1)

Therefore when there is a single error, the value of L(x) enables one to
correct the error.

One may observe that a single error will never produce the triple (1,1,1)
for L(x): there are 8 elements z € F3 which cannot be received starting from
a codeword and adding at most one mistake, namely:

(1,29, 23,22 + x3+ 1,21 + 23+ 1,21 + 29+ 1) with (21, 29,23) € F%
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Example 27 (Hamming Code of dimension 4 and length 7 over Fs).
n =7, r =4, rate = 7/4, corrects one error.
C is the set of

(m1,ma, m3, ma, My + Mo + ma, my +mg + my, my + mz +my) € FY
where (m1, mg, m3, m4) ranges over F3. A basis of C is

€1 = (1707030317170)7
e3 = (0,0,1,0,0,1,1), eq=(0,0,0,1,1,1,1)

and C is also the intersection of the hyperplanes defined as the kernels of
the linear forms

Li(z) = x1+xo+mgtws, Lo(z) = v1+x3+xs4+me, L3(z) = vot+23+24+27.

This corresponds to the next picture from
http://en.wikipedia.org/wiki/Hamming_ code

Hamming (7,4) code

The possible values for the triple L(z) corresponding to a single error
are displayed in the following table.
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z

a1

Z2

x3

Ly

Ty

Ze

X7

L(z)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

(1,0,0)

(0,1,0)

(0,0,1)

This table gives a bijective map between the set {1,2,3,4,5,6,7} of
indices of the unique wrong letter in the word x which is received with a
single mistake on the one hand, the set of values of the triple

L(z) = (L1(z), L2(z), Ls(z)) € F3\ {0}

on the second hand. This is a perfect 1—error correcting code.
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