Master of Science in MathematicsMichel WaldschmidtMaster Training ProgramRoyal University of Phnom Penh RUPPURPP - Université Royale de Phnom PenhCentre International de Mathématiques Pures et Appliquées CIMPA

Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics

First Assignment, April 24, 2009

Exercise 1.

a) How many subsets of $\{a, b, c, d, e, f\}$ contain neither b nor d?

b) How many subsets of $\{a, b, c, d, e, f\}$ contain b but do not contain d?

c) How many subsets of $\{a, b, c, d, e, f\}$ contain b and d?

d) How many subsets of $\{a, b, c, d, e, f\}$ with 2 elements contain b but do not contain d?

e) Given a set E with n elements and two disjoint subsets F_1 and F_2 of E with k_1 and k_2 elements respectively,

e1) how many subsets of E contain all elements of F_1 but no element of F_2 ?

e2) given also a positive integer m, how many subsets of E with m elements contain all elements of F_1 but no element of F_2 ?

Exercise 2. Let n, k be positive integers and a_1, \ldots, a_k be non-negative integers. How many solutions $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ are there to the equation

$$x_1 + \dots + x_k = n$$

in integers restricted to the conditions $x_i \ge a_i$ for $1 \le i \le k$?

This question is the same as the following one: in how many ways can you distribute n pennies to k children in such a way that the first child receives at least a_1 pennies, the second at least a_2,\ldots and the last one at least a_k ?

Hint: recall that when $a_1 = \cdots = a_n = 0$ the answer is $\binom{n+k-1}{k-1}$.

Exercise 3. Denote by $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ the map $x \longmapsto x^3$. Find $f^{-1}(1200 \mathbb{Z})$.

Exercise 4. Check, for $n \ge 1$,

$$\binom{n}{2} + \binom{n+1}{2} = n^2.$$

miw@math.jussieu.fr

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/