MMA105: Discrete Mathematics

First Assignment, April 24, 2009

Exercise 1.

a) How many subsets of $\{a, b, c, d, e, f\}$ contain neither b nor d ?
b) How many subsets of $\{a, b, c, d, e, f\}$ contain b but do not contain d ?
c) How many subsets of $\{a, b, c, d, e, f\}$ contain b and d ?
d) How many subsets of $\{a, b, c, d, e, f\}$ with 2 elements contain b but do not contain d ?
e) Given a set E with n elements and two disjoint subsets F_{1} and F_{2} of E with k_{1} and k_{2} elements respectively,
e1) how many subsets of E contain all elements of F_{1} but no element of F_{2} ?
e2) given also a positive integer m, how many subsets of E with m elements contain all elements of F_{1} but no element of F_{2} ?

Exercise 2. Let n, k be positive integers and a_{1}, \ldots, a_{k} be non-negative integers. How many solutions $\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{Z}^{k}$ are there to the equation

$$
x_{1}+\cdots+x_{k}=n
$$

in integers restricted to the conditions $x_{i} \geq a_{i}$ for $1 \leq i \leq k ?$
This question is the same as the following one: in how many ways can you distribute n pennies to k children in such a way that the first child receives at least a_{1} pennies, the second at least a_{2}, \ldots and the last one at least a_{k} ?
Hint: recall that when $a_{1}=\cdots=a_{n}=0$ the answer is $\binom{n+k-1}{k-1}$.
Exercise 3. Denote by $f: \mathbf{Z} \longrightarrow \mathbf{Z}$ the map $x \longmapsto x^{3}$. Find $f^{-1}(1200 \mathbf{Z})$.
Exercise 4. Check, for $n \geq 1$,

$$
\binom{n}{2}+\binom{n+1}{2}=n^{2}
$$

miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

