Master of Science in MathematicsMichel WaldschmidtMaster Training ProgramRoyal University of Phnom Penh RUPPURPP - Université Royale de Phnom PenhCentre International de Mathématiques Pures et Appliquées CIMPA

Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics

Third Assignment, May 8, 2009

Exercise 1.

Give the last three decimal digits of 859^{2001} .

Exercise 2.

How many times do you need to multiply two numbers when you compute 5^{97} ?

Exercise 3.

For $k \ge 1$, let N_k be the integer 77...77 with k decimal digits, all of which are 7. Equivalently, define $N_1 = 7$ and by induction on k

$$N_k = 10N_{k-1} + N_1 \quad (k \ge 2).$$

What is the remainder of the division of N_k by 2? By 3? By 5? By 9? By 11?

Exercise 4.

Find all $N \in \mathbf{Z}$ which satisfy

 $N \equiv 2 \pmod{11}$ and $N \equiv 10 \pmod{13}$.

What is the smallest such positive N?

Exercise 5.

Let $k \ge 1$ be a positive integer and p_1, \ldots, p_k be distinct primes. Set $n = p_1 \cdots p_k$. Assume $p_j - 1$ divides n - 1 for $1 \le j \le k$. Prove

 $a^n \equiv a \pmod{n}$ for all $a \in \mathbf{Z}$.

Exercise 6.

Let G be a graph with n nodes.

a) Show that the following conditions are equivalent.

(i) G is connected.

(ii) G contains a subgraph with n nodes which is a tree.

Deduce that a connected graph with n nodes has at least n-1 edges.

b) Show that the following conditions are equivalent.

(i) G does not contain a cycle.

(ii) G is contained in a graph with n nodes which is a tree.

Deduce that a graph with n nodes which does not contain a cycle has at most n-1 edges.

miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/