Master of Science in Mathematics Michel Waldschmidt Master Training Program
Royal University of Phnom Penh RUPP
URPP - Université Royale de Phnom Penh Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics

Third Assignment, May 8, 2009

Exercise 1.

Give the last three decimal digits of 859^{2001}.

Exercise 2.

How many times do you need to multiply two numbers when you compute 5^{97} ?

Exercise 3.

For $k \geq 1$, let N_{k} be the integer $77 \ldots 77$ with k decimal digits, all of which are 7 .
Equivalently, define $N_{1}=7$ and by induction on k

$$
N_{k}=10 N_{k-1}+N_{1} \quad(k \geq 2)
$$

What is the remainder of the division of N_{k} by 2 ? By 3 ? By $5 ?$ By $9 ?$ By $11 ?$
Exercise 4.
Find all $N \in \mathbf{Z}$ which satisfy

$$
N \equiv 2 \quad(\bmod 11) \quad \text { and } \quad N \equiv 10 \quad(\bmod 13)
$$

What is the smallest such positive N ?
Exercise 5.
Let $k \geq 1$ be a positive integer and p_{1}, \ldots, p_{k} be distinct primes. Set $n=p_{1} \cdots p_{k}$. Assume $p_{j}-1$ divides $n-1$ for $1 \leq j \leq k$. Prove

$$
a^{n} \equiv a \quad(\bmod n) \quad \text { for all } a \in \mathbf{Z}
$$

Exercise 6.

Let G be a graph with n nodes.
a) Show that the following conditions are equivalent.
(i) G is connected.
(ii) G contains a subgraph with n nodes which is a tree.

Deduce that a connected graph with n nodes has at least $n-1$ edges.
b) Show that the following conditions are equivalent.
(i) G does not contain a cycle.
(ii) G is contained in a graph with n nodes which is a tree.

Deduce that a graph with n nodes which does not contain a cycle has at most $n-1$ edges.
miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

