MMA105: Discrete Mathematics

Main Assignment, June 4, 2009

3 hours

Exercise 1.

Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be two maps. Assume that $g \circ f: E \longrightarrow G$ is a bijective map. For each of the four questions below, answer yes or no. If the answer is yes, give an example. If the answer is no, prove it.
a) Is-it possible to give an example where f is not injective?
b) Is-it possible to give an example where f is not surjective?
c) Is-it possible to give an example where g is not injective?
d) Is-it possible to give an example where g is not surjective?

Exercise 2.

What is the remainder of the Euclidean division of 123^{801} by each of the following numbers: $2,3,5,6,8,9,50,125,1000$?

Exercise 3.

Compute, for $n \geq 0$,

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}(-2)^{k} .
$$

Exercise 4.

Find all $N \in \mathbf{Z}$ which satisfy

$$
N \equiv 3 \quad(\bmod 26) \quad \text { and } \quad N \equiv 1 \quad(\bmod 57) .
$$

What is the smallest such positive N ?

Exercise 5.

Define u_{n} for $n \geq 0$ by $u_{0}=0, u_{1}=1$ and

$$
u_{n+1}=2 u_{n}+u_{n-1} \quad(n \geq 2)
$$

a) Give the numerical values of u_{2}, u_{3}, u_{4} and u_{5}. Next write a formula for u_{n} valid for all $n \geq 1$ and prove it.
b) Show that the limit u_{n+1} / u_{n} exists and compute it.
c) Write the rational fraction $f(z)$ whose Taylor expansion at the origin is

$$
\sum_{n \geq 0} u_{n} z^{n}
$$

What is the radius of convergence of this series?
d) Compute, for $n \geq 1$,

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)\binom{u_{n}}{u_{n-1}}, \quad\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)^{n} \quad \text { and } \quad\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)^{n}
$$

What is the product of the two last matrices?
Deduce, for all $n \geq 1$,

$$
u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}
$$

Exercise 6. Let K be a field and n, d two positive integers. Recall that a homogeneous polynomial of degree d in n variables is a polynomial

$$
P\left(X_{1}, \ldots, X_{n}\right)=\sum c_{k_{1}, \ldots, k_{n}} X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}
$$

where the sum is over the set of $\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{Z}^{n}$ with $k_{j} \geq 0$ for $1 \leq j \leq n$ and $k_{1}+\cdots+k_{n}=d$.
What is the dimension of the K-vector space of homogeneous polynomial of degree d in n variable?

Exercise 7.

a) Draw a graph with nodes representing the numbers $11,12,13,14,15,16$, in which two nodes are connected by an edge if and only if they have no common divisor larger than 1.
b) Draw a graph with nodes representing the numbers $1,2, \ldots, 8$, in which two nodes are connected by an edge if and only if their sum is a prime number.
c) Find the number of edges and the degrees in these graphs.

Exercise 8. Let n be a positive integer. Denote by G_{n} the graph with nodes the divisors d of n, with $1 \leq d \leq n$, and where two nodes d_{1} and d_{2} are connected by an edge if and only if either
(i) d_{1} divides d_{2} and d_{2} / d_{1} is a prime number,
or symmetrically
(ii) d_{2} divides d_{1} and d_{1} / d_{2} is a prime number.
a) Draw G_{n} for $n=1,2, \ldots, 12$.
b) For which values of $n \geq 1$ is G_{n} a tree?
c) For which values of $n \geq 1$ is G_{n} a cycle?
miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

Master of Science in Mathematics Michel Waldschmidt Master Training Program
Royal University of Phnom Penh RUPP
URPP - Université Royale de Phnom Penh
Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics Main Assignment, June 4, 2009 - solutions

Solution exercise 1

If $h=g \circ f$ is bijective, then g is surjective and f is injective. Indeed if $f(x)=f\left(x^{\prime}\right)$ then $g \circ f(x)=g \circ f\left(x^{\prime}\right)$, and since h is injective this implies $x=x^{\prime}$, which shows that f is injective. Similarly any $z \in g$ can be written $h(x)$ for some $x \in E$, hence $z=g(y)$ with $y=f(x)$, and this shows that g is surjective.

An example where f is not surjective and g is not injective is obtained with $E=\{x\}$, $F=\left\{y_{1}, y_{2}\right\}$ and $G=\{z\}, f(z)=y_{1}, g\left(y_{1}\right)=g\left(y_{2}\right)=z$.

Therefore the answer is no for a) and d), it is yes for b) and c).

Solution exercise 2

The remainder of the Euclidean division of 123^{801} by 1000 is 123 , since $123^{400} \equiv 1$ (mod 1000).

As a consequence the remainder of the Euclidean division of 123^{801} by any divisor d of 1000 is the same as the remainder of the Euclidean division of 123 by d.

Hence the remainder of the division of 123^{801} by 2 is 1 , by 5 is 3 , by 8 is 3 , by 50 is 23 , by 125 is 123 .

Also the number 123^{801} is divisible by 3^{801}, hence by 3 and by 9 . So the remainder of the division by 3 and by 9 is 0 .

Finally 123^{801} is an odd multiple of 3 , hence it is congruent to 3 modulo 6 . So the remainder the remainder of the division by 6 is 3 .

Solution exercise 3

For $n \geq 0$,

$$
\sum_{k=0}^{n}\binom{n}{k} 2^{k}=(1+2)^{n}=3^{n} \quad \text { and } \quad \sum_{k=0}^{n}\binom{n}{k}(-2)^{k}=(1-2)^{n}=(-1)^{n}
$$

Solution exercise 4

The set of solutions is the set of integers of the form $-569+1482 k$ with $k \in \mathbf{Z}$, the smallest positive solution is 913 . Here is the proof.

The Euclidean algorithm for computing the gcd of 57 and 26 yields

$$
57=26 \times 2+5, \quad 26=5 \times 5+1
$$

hence the gcd is 1 and a Bézout relation is

$$
1=26-5 \times 5=26-5 \times(57-2 \times 26)=11 \times 26-5 \times 57=286-285 .
$$

Write the unknown integer N as

$$
N=3+26 u=1+57 v,
$$

This yields the equation $2=57 v-26 u$. From Euclidean algorithms is follows that one solution to this equation is $u=-22, v=-10$ with $2=26 \times 22-57 \times 10$. This gives one solution N

$$
-569=1-57 \times 10=3-22 \times 26
$$

To get all possible values of N one needs to add a multiple of $57 \times 26=1482$, which meanss that the set of solutions is the set of integers of the form $-569+1482 k$. One deduces the smallest positive solution is $913=1482-569$, which satisfies

$$
913 \equiv 3 \quad(\bmod 26) \quad \text { and } \quad 913 \equiv 1 \quad(\bmod 57) .
$$

Solution exercise 5

The first values are

$$
u_{0}=0, u_{1}=1, u_{2}=2, u_{3}=5, u_{4}=12, u_{5}=29 .
$$

The associated polynomial is $X^{2}-2 X-1=(X-1-\sqrt{2})(X-1+\sqrt{2})$, hence

$$
u_{n}=\frac{1}{2 \sqrt{2}}\left((\sqrt{2}+1)^{n}-(1-\sqrt{2})^{n}\right)
$$

with

$$
\lim u_{n+1} / u_{n}=1+\sqrt{2}
$$

and

$$
f(z)=\frac{z}{1-2 z-z^{2}}
$$

The radius of convergence is $1 /(1+\sqrt{2})=\sqrt{2}-1$. One checks

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)\binom{u_{n}}{u_{n-1}}=\binom{u_{n+1}}{u_{n}}, \quad \text { hence } \quad\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
u_{n+1} & u_{n} \\
u_{n} & u_{n-1}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)^{n}=(-1)^{n}\left(\begin{array}{cc}
u_{n-1} & -u_{n} \\
-u_{n} & u_{n+1}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

it follows that

$$
\left(\begin{array}{cc}
u_{n+1} & u_{n} \\
u_{n} & u_{n-1}
\end{array}\right)\left(\begin{array}{cc}
u_{n-1} & -u_{n} \\
-u_{n} & u_{n+1}
\end{array}\right)=(-1)^{n}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

On the other hand a direct computation gives

$$
\left(\begin{array}{cc}
u_{n+1} & u_{n} \\
u_{n} & u_{n-1}
\end{array}\right)\left(\begin{array}{cc}
u_{n-1} & -u_{n} \\
-u_{n} & u_{n+1}
\end{array}\right)=\left(\begin{array}{cc}
u_{n-1} u_{n+1}-u_{n}^{2} & 0 \\
0 & u_{n-1} u_{n+1}-u_{n}^{2}
\end{array}\right) .
$$

Hence for $n \geq 1$,

$$
u_{n-1} u_{n+1}-u_{n}^{2}=(-1)^{n}
$$

Solution exercise 6

The dimension of the K-vector space of homogeneous polynomial of degree d in n variable is the number of $\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{Z}^{n}$ with $k_{j} \geq 0$ for $1 \leq j \leq n$ and $k_{1}+\cdots+k_{n}=d$. This is

$$
\binom{d+n-1}{n-1}
$$

Let us recall the proof. Write $k_{1}+\cdots+k_{n}=d$. Replace each k_{i} by $11 \ldots 11$ where the number of 1 's is k_{i}. Then $k_{1}+\cdots+k_{n}$ becomes a sequence of $n+k-1$ symbols, n of which are + 's, and the other $d-1$ are 1 's. The number of sequences (k_{1}, \ldots, k_{n}) of integers ≥ 0 with sum d is therefore the number of sequences of $n+k-1$ symbols, n of which are + , and the other $d-1$ are 1 .

Solution exercise 7

a) The degrees of the nodes are respectively $5,2,5,3,4,3$, the sum of which is 22 , the number of edges is 11 .
b) The degrees of the nodes are respectively $3,3,3,3,3,3,2,2$, the sum of which is also 22 , the number of edges is 11 .

Solution exercise 8

For $n=1$ the graph G_{1} is the empty graph with one node (and no edge).
a) For $n=2,3,5,7,11$, and more generally for n a prime p, the graph is

$$
G_{p} \quad p-1
$$

For $n=4,9$, and more generally for $n=p^{2}$ the square of a prime number p, the graph is

$$
G_{p^{2}} \quad p^{2}-p-1 .
$$

For $n=8$, and more generally for $n=p^{s}$ a power of a prime p, the graph $G_{p^{s}}$ is a path with $s+1$ nodes and s edges

$$
G_{p^{s}} \quad p^{s}-p^{s-1}-\cdots-p^{2}-p-1
$$

Hence the graph $G_{p^{s}}$ is a tree.
For $n=6,10$, and more generally for $n=p_{1} p_{2}$ product of two distinct prime numbers, the graph is a cycle

The nodes of G_{12} are $1,2,3,4,6$ and 12. There are 7 edges. More generally for $n=p_{1}^{a_{1}} p_{2}^{a_{2}}$ where p_{1} and p_{2} are two distinct prime numbers and a_{1}, a_{2} two positive integers, the graph G_{n} is

If n is not a power of a prime, it has at least two prime divisors p_{1} and p_{2}, hence G_{n} contains the cycle $G_{p_{1} p_{2}}$.
b) It follows from this discussion that G_{n} is a tree if and only if n is a power of a prime, and G_{n} is a cycle if and only if n is the product $p_{1} p_{2}$ of two different primes.
miw@math.jussieu.fr Michel Waldschmidt http://www.math.jussieu.fr/~miw/

