Master of Science in MathematicsMichel WaldschmidtMaster Training ProgramRoyal University of Phnom Penh RUPPURPP - Université Royale de Phnom PenhCentre International de Mathématiques Pures et Appliquées CIMPA

Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics

Main Assignment, June 4, 2009

3 hours

Exercise 1.

Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be two maps. Assume that $g \circ f: E \longrightarrow G$ is a bijective map. For each of the four questions below, answer yes or no. If the answer is yes, give an example. If the answer is no, prove it.

a) Is-it possible to give an example where f is not injective?

b) Is-it possible to give an example where f is not surjective?

c) Is-it possible to give an example where g is not injective?

d) Is-it possible to give an example where g is not surjective?

Exercise 2.

What is the remainder of the Euclidean division of 123^{801} by each of the following numbers: 2, 3, 5, 6, 8, 9, 50, 125, 1000?

Exercise 3.

Compute, for $n \ge 0$,

$$\sum_{k=0}^{n} \binom{n}{k} 2^{k} \quad \text{and} \quad \sum_{k=0}^{n} \binom{n}{k} (-2)^{k}.$$

Exercise 4.

Find all $N \in \mathbf{Z}$ which satisfy

$$N\equiv 3 \pmod{26} \quad \text{and} \quad N\equiv 1 \pmod{57}.$$

What is the smallest such positive N?

Exercise 5.

Define u_n for $n \ge 0$ by $u_0 = 0$, $u_1 = 1$ and

$$u_{n+1} = 2u_n + u_{n-1} \qquad (n \ge 2).$$

a) Give the numerical values of u_2 , u_3 , u_4 and u_5 . Next write a formula for u_n valid for all $n \ge 1$ and prove it.

- b) Show that the limit u_{n+1}/u_n exists and compute it.
- c) Write the rational fraction f(z) whose Taylor expansion at the origin is

$$\sum_{n\geq 0} u_n z^n.$$

What is the radius of convergence of this series? d) Compute, for $n \ge 1$,

$$\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix}$$
, $\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^n$ and $\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}^n$.

What is the product of the two last matrices? Deduce, for all $n \ge 1$,

$$u_{n+1}u_{n-1} - u_n^2 = (-1)^n.$$

Exercise 6. Let K be a field and n, d two positive integers. Recall that a homogeneous polynomial of degree d in n variables is a polynomial

$$P(X_1,\ldots,X_n) = \sum c_{k_1,\ldots,k_n} X_1^{k_1} \cdots X_n^{k_n}$$

where the sum is over the set of $(k_1, \ldots, k_n) \in \mathbf{Z}^n$ with $k_j \ge 0$ for $1 \le j \le n$ and $k_1 + \cdots + k_n = d$.

What is the dimension of the K-vector space of homogeneous polynomial of degree d in n variable?

Exercise 7.

a) Draw a graph with nodes representing the numbers 11, 12, 13, 14, 15, 16, in which two nodes are connected by an edge if and only if they have no common divisor larger than 1.b) Draw a graph with nodes representing the numbers 1, 2, ..., 8, in which two nodes are connected by an edge if and only if their sum is a prime number.

c) Find the number of edges and the degrees in these graphs.

Exercise 8. Let *n* be a positive integer. Denote by G_n the graph with nodes the divisors d of n, with $1 \le d \le n$, and where two nodes d_1 and d_2 are connected by an edge if and only if either

(i) d_1 divides d_2 and d_2/d_1 is a prime number,

or symmetrically

(ii) d_2 divides d_1 and d_1/d_2 is a prime number.

a) Draw G_n for n = 1, 2, ..., 12.

b) For which values of $n \ge 1$ is G_n a tree?

c) For which values of $n \ge 1$ is G_n a cycle?

miw@math.jussieu.fr

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/

Master of Science in MathematicsMichel WaldschmidtMaster Training ProgramRoyal University of Phnom Penh RUPPURPP - Université Royale de Phnom PenhCentre International de Mathématiques Pures et Appliquées CIMPA

Coopération Mathématique Interuniversitaire Cambodge France

MMA105: Discrete Mathematics Main Assignment, June 4, 2009 — solutions

Solution exercise 1

If $h = g \circ f$ is bijective, then g is surjective and f is injective. Indeed if f(x) = f(x') then $g \circ f(x) = g \circ f(x')$, and since h is injective this implies x = x', which shows that f is injective. Similarly any $z \in g$ can be written h(x) for some $x \in E$, hence z = g(y) with y = f(x), and this shows that g is surjective.

An example where f is not surjective and g is not injective is obtained with $E = \{x\}$, $F = \{y_1, y_2\}$ and $G = \{z\}$, $f(z) = y_1$, $g(y_1) = g(y_2) = z$.

Therefore the answer is no for a) and d), it is yes for b) and c).

Solution exercise 2

The remainder of the Euclidean division of 123^{801} by 1000 is 123, since $123^{400} \equiv 1 \pmod{1000}$.

As a consequence the remainder of the Euclidean division of 123^{801} by any divisor d of 1000 is the same as the remainder of the Euclidean division of 123 by d.

Hence the remainder of the division of 123^{801} by 2 is 1, by 5 is 3, by 8 is 3, by 50 is 23, by 125 is 123.

Also the number 123^{801} is divisible by 3^{801} , hence by 3 and by 9. So the remainder of the division by 3 and by 9 is 0.

Finally 123^{801} is an odd multiple of 3, hence it is congruent to 3 modulo 6. So the remainder the remainder of the division by 6 is 3.

Solution exercise 3

For $n \geq 0$,

$$\sum_{k=0}^{n} \binom{n}{k} 2^{k} = (1+2)^{n} = 3^{n} \text{ and } \sum_{k=0}^{n} \binom{n}{k} (-2)^{k} = (1-2)^{n} = (-1)^{n}.$$

Solution exercise 4

The set of solutions is the set of integers of the form -569+1482k with $k \in \mathbb{Z}$, the smallest positive solution is 913. Here is the proof.

The Euclidean algorithm for computing the gcd of 57 and 26 yields

$$57 = 26 \times 2 + 5, \quad 26 = 5 \times 5 + 1,$$

hence the gcd is 1 and a Bézout relation is

$$1 = 26 - 5 \times 5 = 26 - 5 \times (57 - 2 \times 26) = 11 \times 26 - 5 \times 57 = 286 - 285$$

Write the unknown integer N as

$$N = 3 + 26u = 1 + 57v,.$$

This yields the equation 2 = 57v - 26u. From Euclidean algorithms is follows that one solution to this equation is u = -22, v = -10 with $2 = 26 \times 22 - 57 \times 10$. This gives one solution N

$$-569 = 1 - 57 \times 10 = 3 - 22 \times 26$$

To get all possible values of N one needs to add a multiple of $57 \times 26 = 1482$, which meanss that the set of solutions is the set of integers of the form -569 + 1482k. One deduces the smallest positive solution is 913 = 1482 - 569, which satisfies

$$913 \equiv 3 \pmod{26}$$
 and $913 \equiv 1 \pmod{57}$.

Solution exercise 5

The first values are

$$u_0 = 0, u_1 = 1, u_2 = 2, u_3 = 5, u_4 = 12, u_5 = 29$$

The associated polynomial is $X^2 - 2X - 1 = (X - 1 - \sqrt{2})(X - 1 + \sqrt{2})$, hence

$$u_n = \frac{1}{2\sqrt{2}} \left((\sqrt{2} + 1)^n - (1 - \sqrt{2})^n \right)$$

with

$$\lim u_{n+1}/u_n = 1 + \sqrt{2}$$

and

$$f(z) = \frac{z}{1 - 2z - z^2}$$

The radius of convergence is $1/(1+\sqrt{2}) = \sqrt{2} - 1$. One checks

$$\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}, \quad \text{hence} \quad \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$$

and

$$\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}^n = (-1)^n \begin{pmatrix} u_{n-1} & -u_n \\ -u_n & u_{n+1} \end{pmatrix}$$

Since

$$\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

it follows that

$$\begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix} \begin{pmatrix} u_{n-1} & -u_n \\ -u_n & u_{n+1} \end{pmatrix} = (-1)^n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

On the other hand a direct computation gives

$$\begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix} \begin{pmatrix} u_{n-1} & -u_n \\ -u_n & u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n-1}u_{n+1} - u_n^2 & 0 \\ 0 & u_{n-1}u_{n+1} - u_n^2 \end{pmatrix}$$

Hence for $n \geq 1$,

$$u_{n-1}u_{n+1} - u_n^2 = (-1)^n.$$

Solution exercise 6

The dimension of the K-vector space of homogeneous polynomial of degree d in n variable is the number of $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ with $k_j \ge 0$ for $1 \le j \le n$ and $k_1 + \cdots + k_n = d$. This is

$$\binom{d+n-1}{n-1}.$$

Let us recall the proof. Write $k_1 + \cdots + k_n = d$. Replace each k_i by 11...11 where the number of 1's is k_i . Then $k_1 + \cdots + k_n$ becomes a sequence of n + k - 1 symbols, n of which are +'s, and the other d - 1 are 1's. The number of sequences (k_1, \ldots, k_n) of integers ≥ 0 with sum d is therefore the number of sequences of n + k - 1 symbols, n of which are +, and the other d - 1 are 1.

Solution exercise 7

a) The degrees of the nodes are respectively 5, 2, 5, 3, 4, 3, the sum of which is 22, the number of edges is 11.

b) The degrees of the nodes are respectively 3, 3, 3, 3, 3, 3, 2, 2, the sum of which is also 22, the number of edges is 11.

Solution exercise 8

For n = 1 the graph G_1 is the empty graph with one node (and no edge). a) For n = 2, 3, 5, 7, 11, and more generally for n a prime p, the graph is

$$G_p \qquad p - 1.$$

For n = 4, 9, and more generally for $n = p^2$ the square of a prime number p, the graph is

$$G_{p^2} \qquad p^2 - p - 1.$$

For n = 8, and more generally for $n = p^s$ a power of a prime p, the graph G_{p^s} is a path with s + 1 nodes and s edges

$$G_{p^s} \qquad p^s - p^{s-1} - \cdots - p^2 - p - 1.$$

Hence the graph G_{p^s} is a tree.

For n = 6, 10, and more generally for $n = p_1 p_2$ product of two distinct prime numbers, the graph is a cycle

The nodes of G_{12} are 1, 2, 3, 4, 6 and 12. There are 7 edges. More generally for $n = p_1^{a_1} p_2^{a_2}$ where p_1 and p_2 are two distinct prime numbers and a_1, a_2 two positive integers, the graph G_n is

If n is not a power of a prime, it has at least two prime divisors p_1 and p_2 , hence G_n contains the cycle $G_{p_1p_2}$.

b) It follows from this discussion that G_n is a tree if and only if n is a power of a prime, and G_n is a cycle if and only if n is the product p_1p_2 of two different primes.

miw@math.jussieu.fr

Michel Waldschmidt

http://www.math.jussieu.fr/~miw/