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1 On the so–called Pell–Fermat equation

Let D be a positive integer which is not the square of an integer. It follows
that

√
D is an irrational number. The Diophantine equation

x2 −Dy2 = ±1, (1)

where the unknowns x and y are in Z, is called Pell’s equation.
An introduction to the subject has been given in first lecture:

http://www.math.jussieu.fr/∼miw/articles/pdf/PellFermat2010.pdf
and
http://www.math.jussieu.fr/∼ miw/articles/pdf/PellFermat2010VI.pdf

Here we supply complete proofs of the results introduced in that lecture.

1.1 Examples of simple continued fractions

The three first examples below are special cases of results initiated by O. Per-
ron [23] and related with real quadratic fields of Richaud-Degert type.
Example 1. Take D = a2b2 + 2b where a and b are positive integers. A
solution to

x2 − (a2b2 + 2b)y2 = 1

is (x, y) = (a2b + 1, a). As we shall see, this is related with the continued
fraction expansion of

√
D which is√

a2b2 + 2b = [ab, a, 2ab]

since

t =
√
a2b2 + 2b⇐⇒ t = ab+

1

a+
1

t+ ab

·

This includes the examples D = a2 + 2 (take b = 1) and D = b2 + 2b (take
a = 1). For a = 1 and b = c− 1, this includes the example D = c2 − 1.

Example 2. Take D = a2b2 + b where a and b are positive integers. A
solution to

x2 − (a2b2 + b)y2 = 1

1Les notes sont en anglais, mais les cours seront donnés en français.
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is (x, y) = (2a2b+ 1, 2a). The continued fraction expansion of
√
D is√

a2b2 + b = [ab, 2a, 2ab]

since

t =
√
a2b2 + b⇐⇒ t = ab+

1

2a+
1

t+ ab

·

This includes the example D = b2 + b (take a = 1).
The case b = 1, D = a2 + 1 is special: there is an integer solution to

x2 − (a2 + 1)y2 = −1,

namely (x, y) = (a, 1). The continued fraction expansion of
√
D is√

a2 + 1 = [a, 2a]

since

t =
√
a2 + 1⇐⇒ t = a+

1

t+ a
·

Example 3. Let a and b be two positive integers such that b2 + 1 divides
2ab + 1. For instance b = 2 and a ≡ 1 (mod 5). Write 2ab + 1 = k(b2 + 1)
and take D = a2 + k. The continued fraction expansion of

√
D is

[a, b, b, 2a]

since t =
√
D satisfies

t = a+
1

b+
1

b+
1

a+ t

= [a, b, b, a+ t].

A solution to x2 −Dy2 = −1 is x = ab2 + a+ b, y = b2 + 1.
In the case a = 1 and b = 2 (so k = 1), the continued fraction has period

length 1 only: √
5 = [1, 2].

Example 4. Integers which are Polygonal numbers in two ways are given
by the solutions to quadratic equations.

Triangular numbers are numbers of the form

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for n ≥ 1;
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their sequence starts with

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, . . .

http://www.research.att.com/∼njas/sequences/A000217.

Square numbers are numbers of the form

1 + 3 + 5 + · · ·+ (2n+ 1) = n2 for n ≥ 1;

their sequence starts with

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, . . .

http://www.research.att.com/∼njas/sequences/A000290.

Pentagonal numbers are numbers of the form

1 + 4 + 7 + · · ·+ (3n+ 1) =
n(3n− 1)

2
for n ≥ 1;

their sequence starts with

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, . . .

http://www.research.att.com/∼njas/sequences/A000326.

Hexagonal numbers are numbers of the form

1 + 5 + 9 + · · ·+ (4n+ 1) = n(2n− 1) for n ≥ 1;

their sequence starts with

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, . . .

http://www.research.att.com/∼njas/sequences/A000384.
For instance, numbers which are at the same time triangular and squares

are the numbers y2 where (x, y) is a solution to Pell’s equation with D = 8.
Their list starts with

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, . . .

See http://www.research.att.com/∼njas/sequences/A001110.

Example 5. Integer rectangle triangles having sides of the right angle
as consecutive integers a and a + 1 have an hypothenuse c which satisfies
a2 + (a + 1)2 = c2. The admissible values for the hypothenuse is the set of
positive integer solutions y to Pell’s equation x2 − 2y2 = −1. The list of
these hypothenuses starts with

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965,

See http://www.research.att.com/∼njas/sequences/A001653.
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1.2 Existence of integer solutions

Let D be a positive integer which is not a square. We show that Pell’s
equation (1) has a non–trivial solution (x, y) ∈ Z × Z, that is a solution
6= (±1, 0).

Proposition 2. Given a positive integer D which is not a square, there
exists (x, y) ∈ Z2 with x > 0 and y > 0 such that x2 −Dy2 = 1.

Proof. The first step of the proof is to show that there exists a non–zero
integer k such that the Diophantine equation x2 − Dy2 = k has infinitely
many solutions (x, y) ∈ Z×Z. The main idea behind the proof, which will be
made explicit in Lemmas 4, 5 and Corollary 6 below, is to relate the integer
solutions of such a Diophantine equation with rational approximations x/y
of
√
D.

Using the implication (i) ⇒ (v) of the irrationality criterion 61 and
the fact that

√
D is irrational, we deduce that there are infinitely many

(x, y) ∈ Z× Z with y > 0 (and hence x > 0) satisfying∣∣∣∣√D − x

y

∣∣∣∣ < 1

y2
·

For such a (x, y), we have 0 < x < y
√
D + 1 < y(

√
D + 1), hence

0 < |x2 −Dy2| = |x− y
√
D| · |x+ y

√
D| < 2

√
D + 1.

Since there are only finitely integers k 6= 0 in the range

−(2
√
D + 1) < k < 2

√
D + 1,

one at least of them is of the form x2 −Dy2 for infinitely many (x, y).
The second step is to notice that, since the subset of (x, y) (mod k) in

(Z/kZ)2 is finite, there is an infinite subset E ⊂ Z×Z of these solutions to
x2 −Dy2 = k having the same (x (mod k), y (mod k)).

Let (u1, v1) and (u2, v2) be two distinct elements in E. Define (x, y) ∈ Q2

by

x+ y
√
D =

u1 + v1
√
D

u2 + v2
√
D
·

From u22 −Dv22 = k, one deduces

x+ y
√
D =

1

k
(u1 + v1

√
D)(u2 − v2

√
D),
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hence

x =
u1u2 −Dv1v2

k
, y =

−u1v2 + u2v1
k

·

From u1 ≡ u2 (mod k), v1 ≡ v2 (mod k) and

u21 −Dv21 = k, u22 −Dv22 = k,

we deduce
u1u2 −Dv1v2 ≡ u21 −Dv21 ≡ 0 (mod k)

and
−u1v2 + u2v1 ≡ −u1v1 + u1v1 ≡ 0 (mod k),

hence x and y are in Z. Further,

x2 −Dy2 = (x+ y
√
D)(x− y

√
D)

=
(u1 + v1

√
D)(u1 − v1

√
D)

(u2 + v2
√
D)(u2 − v2

√
D)

=
u21 −Dv21
u22 −Dv22

= 1.

It remains to check that y 6= 0. If y = 0 then x = ±1, u1v2 = u2v1,
u1u2 −Dv1v2 = ±1, and

ku1 = ±u1(u1u2 −Dv1v2) = ±u2(u21 −Dv21) = ±ku2,

which implies (u1, u2) = (v1, v2), a contradiction.
Finally, if x < 0 (resp. y < 0) we replace x by −x (resp. y by −y).

Once we have a non–trivial integer solution (x, y) to Pell’s equation, we
have infinitely many of them, obtained by considering the powers of x+y

√
D.

1.3 All integer solutions

There is a natural order for the positive integer solutions to Pell’s equation
which can be defined in several ways: we can order them by increasing values
of x, or increasing values of y, or increasing values of x+ y

√
D - it is easily

checked that the order is the same.
It follows that there is a minimal positive integer solution2 (x1, y1), which

is called the fundamental solution to Pell’s equation x2 −Dy2 = ±1. In the
same way, there is a fundamental solution to Pell’s equations x2−Dy2 = 1.

2We use the letter x1, which should not be confused with the first complete quotient
in the section 2.2.2 on continued fractions
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Proposition 3. Denote by (x1, y1) the fundamental solution to Pell’s equa-
tion x2 − Dy2 = ±1. Then the set of all positive integer solutions to this
equation is the sequence (xn, yn)n≥1, where xn and yn are given by

xn + yn
√
D = (x1 + y1

√
D)n, (n ∈ Z, n ≥ 1).

In other terms, xn and yn are defined by the recurrence formulae

xn+1 = xnx1 +Dyny1 and yn+1 = x1yn + xny1, (n ≥ 1).

More explicitly:
• If x21−Dy21 = 1, then (x1, y1) is the fundamental solution to Pell’s equation
x2−Dy2 = 1, and there is no integer solution to Pell’s equation x2−Dy2 =
−1.
• If x21 − Dy21 = −1, then (x1, y1) is the fundamental solution to Pell’s
equation x2 − Dy2 = −1, and the fundamental solution to Pell’s equation
x2 − Dy2 = 1 is (x2, y2). The set of positive integer solutions to Pell’s
equation x2 −Dy2 = 1 is {(xn, yn) ; n ≥ 2 even}, while the set of positive
integer solutions to Pell’s equation x2−Dy2 = −1 is {(xn, yn) ; n ≥ 1 odd}.
The set of all solutions (x, y) ∈ Z× Z to Pell’s equation x2 −Dy2 = ±1 is
the set (±xn, yn)n∈Z, where xn and yn are given by the same formula

xn + yn
√
D = (x1 + y1

√
D)n, (n ∈ Z).

The trivial solution (1, 0) is (x0, y0), the solution (−1, 0) is a torsion element
of order 2 in the group of units of the ring Z[

√
D].

Proof. Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 =
±1. Denote by n ≥ 0 the largest integer such that

(x1 + y1
√
D)n ≤ x+ y

√
D.

Hence x+ y
√
D < (x1 + y1

√
D)n+1. Define (u, v) ∈ Z× Z by

u+ v
√
D = (x+ y

√
D)(x1 − y1

√
D)n.

From
u2 −Dv2 = ±1 and 1 ≤ u+ v

√
D < x1 + y1

√
D,

we deduce u = 1 and v = 0, hence x = xn, y = yn.
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1.4 On the group of units of Z[
√
D]

Let D be a positive integer which is not a square. The ring Z[
√
D] is the

subring of R generated by
√
D. The map σ : z = x + y

√
D 7−→ x − y

√
D

is the Galois automorphism of this ring. The norm N : Z[
√
D] −→ Z is

defined by N(z) = zσ(z). Hence

N(x+ y
√
D) = x2 −Dy2.

The restriction of N to the group of unit Z[
√
D]× of the ring Z[

√
D] is a

homomorphism from the multiplicative group Z[
√
D]× to the group of units

Z× of Z. Since Z× = {±1}, it follows that

Z[
√
D]× = {z ∈ Z[

√
D] ; N(z) = ±1},

hence Z[
√
D]× is nothing else than the set of x+y

√
D when (x, y) runs over

the set of integer solutions to Pell’s equation x2 −Dy2 = ±1.
Proposition 2 means that Z[

√
D]× is not reduced to the torsion subgroup

±1, while Proposition 3 gives the more precise information that this group
Z[
√
D]× is a (multiplicative) abelian group of rank 1: there exists a so–called

fundamental unit u ∈ Z[
√
D]× such that

Z[
√
D]× = {±un ; n ∈ Z}.

The fundamental unit u > 1 is x1+y1
√
D, where (x1, y1) is the fundamental

solution to Pell’s equation x2 −Dy2 = ±1. Pell’s equation x2 −Dy2 = ±1
has integer solutions if and only if the fundamental unit has norm −1.

That the rank of Z[
√
D]× is at most 1 also follows from the fact that the

image of the map

Z[
√
D]× −→ R2

z 7−→
(
log |z|, log |z′|

)
is discrete in R2 and contained in the line t1 + t2 = 0 of R2. This proof is
not really different from the proof we gave of Proposition 3: the proof that
the discrete subgroups of R have rank ≤ 1 relies on Euclid’s division.

Remark. Let d be a non–zero rational integer which is not the square of
an integer. Then d is not the square of a rational number, and the field
k = Q(

√
d) is a quadratic extension of Q (which means a Q–vector space

of dimension 2). An element α ∈ k is an algebraic integer if and only if it
satisfies the following equivalent conditions:
(i) α is root of a monic polynomial with coefficients in Z.
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(ii) The irreductible (monic) polynomial of α over Q has coefficients in Z.
(iii) The irreducible polynomial of α over Z is monic.
(iv) The ring Z[α] is a finitely generated Z–module.
(v) The ring Z[α] is contained in a subring of k which is a finitely generated
Z–module.

The set Zk of algebraic integers of k is the following ring:

Zk =

Z + Z
√
d if d ≡ 2 or 3 (mod 4)

Z + Z
1 +
√
d

2
if d ≡ 1 (mod 4).

Hence Zk = Z + Zα, where α is any of the two roots of X2− d if d ≡ 2 or 3
(mod 4), and any of the two roots of the polynomial

X2 −X − (d− 1)/4 =
1

4
(2X − 1)2 − d

if d ≡ 1 (mod 4).
The discriminant Dk of k is the discriminant of the ring of integers of k:

Dk =



det

∣∣∣∣∣2 0

0 2d

∣∣∣∣∣ = 4d if d ≡ 2 or 3 (mod 4)

det

∣∣∣∣∣2 1

1 (1 + d)/2

∣∣∣∣∣ = d if d ≡ 1 (mod 4).

Hence the discriminant is always congruent to 0 or 1 modulo 4 and the
quadratic field is k = Q(

√
Dk).

The group of units 3 of k is by definition the group of units Z×K of the
ring Zk. For d < 0, it is easy to check that the group of units in k is the
following finite group of roots of unity in k:

• {1, i,−1,−i} if k has discriminant −4, which means k = Q(i)

• {1, %, %2,−1,−%,−%2} if k has discriminant −3, where % is a root of
X2 +X+1. The quadratic field with discriminant −3 is k = Q(

√
%) =

Q(
√
−3) and % is a primitive cube root of unity.

3This is an abuse of language of course, since the units of a field are the non–zero
elements of the field; the same applies for ideals of a number field, which means ideals of
the ring of integers of the number field.
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• {±1} otherwise.

Assume d > 0. Then the roots of unity in k are only±1 and the group Z×k
of units of Zk is a Z-module of rank 1. Hence it is isomorphic to {±1} ×Z.
For d ≡ 2 and for d ≡ 3 (mod 4), the units Z×k of k are the elements
x + y

√
Dk ∈ k such that (x, y) ∈ Z × Z is a solution of Pell’s equation

x2 −Dky
2 = ±1. For d ≡ 1 (mod 4), the group of units Z×k of k is the set

of elements x + y
√
Dk ∈ k such that (x, y) ∈ Z × Z is a solution of Pell’s

equation x2 −Dky
2 = ±4.

1.5 Connection with rational approximation

Lemma 4. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = 1.

(ii) 0 <
x

y
−
√
D <

1

2y2
√
D
·

(iii) 0 <
x

y
−
√
D <

1

y2
√
D + 1

·

Proof. We have
1

2y2
√
D
<

1

y2
√
D + 1

, hence (ii) implies (iii).

(i) implies x2 > Dy2, hence x > y
√
D, and consequently

0 <
x

y
−
√
D =

1

y(x+ y
√
D)

<
1

2y2
√
D
·

(iii) implies

x < y
√
D +

1

y
√
D
< y
√
D +

2

y
,

and
y(x+ y

√
D) < 2y2

√
D + 2,

hence

0 < x2 −Dy2 = y

(
x

y
−
√
D

)
(x+ y

√
D) < 2.

Since x2 −Dy2 is an integer, it is equal to 1.

The next variant will also be useful.

10



Lemma 5. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = −1.

(ii) 0 <
√
D − x

y
<

1

2y2
√
D − 1

·

(iii) 0 <
√
D − x

y
<

1

y2
√
D
·

Proof. We have
1

2y2
√
D − 1

<
1

y2
√
D

, hence (ii) implies (iii).

The condition (i) implies y
√
D > x. We use the trivial estimate

2
√
D > 1 + 1/y2

and write

x2 = Dy2 − 1 > Dy2 − 2
√
D + 1/y2 = (y

√
D − 1/y)2,

hence xy > y2
√
D − 1. From (i) one deduces

1 = Dy2 − x2 = (y
√
D − x)(y

√
D + x)

>

(√
D − x

y

)
(y2
√
D + xy)

>

(√
D − x

y

)
(2y2
√
D − 1).

(iii) implies x < y
√
D and

y(y
√
D + x) < 2y2

√
D,

hence

0 < Dy2 − x2 = y

(√
D − x

y

)
(y
√
D + x) < 2.

Since Dy2 − x2 is an integer, it is 1.

From these two lemmas one deduces:

Corollary 6. Let D be a positive integer which is not a square. Let x and
y be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = ±1.

(ii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

2y2
√
D − 1

·

(iii)

∣∣∣∣√D − x

y

∣∣∣∣ < 1

y2
√
D + 1

·
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Proof. If y > 1 or D > 3 we have 2y2
√
D − 1 > y2

√
D + 1, which means

that (ii) implies trivially (iii), and we may apply Lemmas 4 and 5.
If D = 2 and y = 1, then each of the conditions (i), (ii) and (iii) is

satisfied if and only if x = 1. This follows from

2−
√

2 >
1

2
√

2− 1
>

1√
2 + 1

>
√

2− 1.

If D = 3 and y = 1, then each of the conditions (i), (ii) and (iii) is
satisfied if and only if x = 2. This follows from

3−
√

3 >
√

3− 1 >
1

2
√

3− 1
>

1√
3 + 1

> 2−
√

3.

It is instructive to compare with Liouville’s inequality.

Lemma 7. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. Then∣∣∣∣√D − x

y

∣∣∣∣ > 1

2y2
√
D + 1

·

Proof. If x/y <
√
D, then x ≤ y

√
D and from

1 ≤ Dy2 − x2 = (y
√
D + x)(y

√
D − x) ≤ 2y

√
D(y
√
D − x),

one deduces √
D − x

y
>

1

2y2
√
D
·

We claim that if x/y >
√
D, then

x

y
−
√
D >

1

2y2
√
D + 1

·

Indeed, this estimate is true if x−y
√
D ≥ 1/y, so we may assume x−y

√
D <

1/y. Our claim then follows from

1 ≤ x2 −Dy2 = (x+ y
√
D)(x− y

√
D) ≤ (2y

√
D + 1/y)(x− y

√
D).

This shows that a rational approximation x/y to
√
D, which is only

slightly weaker than the limit given by Liouville’s inequality, will produce a
solution to Pell’s equation x2−Dy2 = ±1. The distance |

√
D−x/y| cannot

be smaller than 1/(2y2
√
D + 1), but it can be as small as 1/(2y2

√
D − 1),

and for that it suffices that it is less than 1/(y2
√
D + 1)
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2 Continued fractions

We first consider generalized continued fractions of the form

a0 +
b1

a1 +
b2

a2 +
b3
. . .

,

which we denote by4

a0 +
b1 |
|a1

+
b2 |
|a2

+
b3|
. . .
·

Next we restrict to the special case where b1 = b2 = · · · = 1, which yields
the simple continued fractions

a0 +
1 |
|a1

+
1 |
|a2

+ · · · = [a0, a1, a2, . . . ].

2.1 Generalized continued fractions

To start with, a0, . . . , an, . . . and b1, . . . , bn, . . . will be independent variables.
Later, we shall specialize to positive integers (apart from a0 which may be
negative).

Consider the three rational fractions

a0, a0 +
b1
a1

and a0 +
b1

a1 +
b2
a2

·

We write them as
A0

B0
,

A1

B1
and

A2

B2

with

A0 = a0, A1 = a0a1 + b1, A2 = a0a1a2 + a0b2 + a2b1,
B0 = 1, B1 = a1, B2 = a1a2 + b2.

4Another notation for a0 + b1 |
|a1

+ b2 |
|a2

+ · · · + bn|
an

introduced by Th. Muir and used by

Perron in [23] Chap. 1 is

K

(
b1, . . . , bn

a0, a1, . . . , an

)

13



Observe that

A2 = a2A1 + b2A0, B2 = a2B1 + b2B0.

Write these relations as (
A2

B2

)
=

(
A1 A0

B1 B0

)(
a2
b2

)
.

In order to iterate the process, it is convenient to work with 2× 2 matrices
and to write (

A2 A1

B2 B1

)
=

(
A1 A0

B1 B0

)(
a2 1
b2 0

)
.

Define inductively two sequences of polynomials with positive rational coef-
ficients An and Bn for n ≥ 3 by(

An An−1
Bn Bn−1

)
=

(
An−1 An−2
Bn−1 Bn−2

)(
an 1
bn 0

)
. (8)

This means

An = anAn−1 + bnAn−2, Bn = anBn−1 + bnBn−2.

This recurrence relation holds for n ≥ 2. It will also hold for n = 1 if we set
A−1 = 1 and B−1 = 0:(

A1 A0

B1 B0

)
=

(
a0 1
1 0

)(
a1 1
b1 0

)
and it will hold also for n = 0 if we set b0 = 1, A−2 = 0 and B−2 = 1:(

A0 A−1
B0 B−1

)
=

(
1 0
0 1

)(
a0 1
b0 0

)
.

Obviously, an equivalent definition is(
An An−1
Bn Bn−1

)
=

(
a0 1
b0 0

)(
a1 1
b1 0

)
· · ·
(
an−1 1
bn−1 0

)(
an 1
bn 0

)
. (9)

These relations (9) hold for n ≥ −1, with the empty product (for n = −1)
being the identity matrix, as always.

Hence An ∈ Z[a0, . . . , an, b1, . . . , bn] is a polynomial in 2n+ 1 variables,
while Bn ∈ Z[a1 . . . , an, b2, . . . , bn] is a polynomial in 2n− 1 variables.

14



Exercise 1. Check, for n ≥ −1,

Bn(a1, . . . , an, b2, . . . , bn) = An−1(a1, . . . , an, b2, . . . , bn).

Lemma 10. For n ≥ 0,

a0 +
b1 |
|a1

+ · · ·+ bn |
|an

=
An

Bn
·

Proof. By induction. We have checked the result for n = 0, n = 1 and
n = 2. Assume the formula holds with n− 1 where n ≥ 3. We write

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

= a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

with

x = an−1 +
bn
an
·

We have, by induction hypothesis and by the definition (8),

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

=
An−1
Bn−1

=
an−1An−2 + bn−1An−3
an−1Bn−2 + bn−1Bn−3

·

Since An−2, An−3, Bn−2 and Bn−3 do not depend on the variable an−1, we
deduce

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|x

=
xAn−2 + bn−1An−3
xBn−2 + bn−1Bn−3

·

The product of the numerator by an is

(anan−1 + bn)An−2 + anbn−1An−3 = an(an−1An−2 + bn−1An−3) + bnAn−2

= anAn−1 + bnAn−2 = An

and similarly, the product of the denominator by an is

(anan−1 + bn)Bn−2 + anbn−1Bn−3 = an(an−1Bn−2 + bn−1Bn−3) + bnBn−2

= anBn−1 + bnBn−2 = Bn.

From (9), taking the determinant, we deduce, for n ≥ −1,

AnBn−1 −An−1Bn = (−1)n+1b0 · · · bn. (11)
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which can be written, for n ≥ 1,

An

Bn
− An−1
Bn−1

=
(−1)n+1b0 · · · bn

Bn−1Bn
· (12)

Adding the telescoping sum, we get, for n ≥ 0,

An

Bn
= A0 +

n∑
k=1

(−1)k+1b0 · · · bk
Bk−1Bk

· (13)

We now substitute for a0, a1, . . . and b1, b2, . . . rational integers, all of
which are ≥ 1, apart from a0 which may be ≤ 0. We denote by pn (resp.
qn) the value of An (resp. Bn) for these special values. Hence pn and qn are
rational integers, with qn > 0 for n ≥ 0. A consequence of Lemma 10 is

pn
qn

= a0 +
b1 |
|a1

+ · · ·+ bn |
|an

for n ≥ 0.

We deduce from (8),

pn = anpn−1 + bnpn−2, qn = anqn−1 + bnqn−2 for n ≥ 0,

and from (11),

pnqn−1 − pn−1qn = (−1)n+1b0 · · · bn for n ≥ −1,

which can be written, for n ≥ 1,

pn
qn
− pn−1
qn−1

=
(−1)n+1b0 · · · bn

qn−1qn
· (14)

Adding the telescoping sum (or using (13)), we get the alternating sum

pn
qn

= a0 +
n∑

k=1

(−1)k+1b0 · · · bk
qk−1qk

· (15)

Recall that for real numbers a, b, c, d, with b and d positive, we have

a

b
<
c

d
=⇒ a

b
<
a+ c

b+ d
<
c

d
· (16)

Since an and bn are positive for n ≥ 0, we deduce that for n ≥ 2, the rational
number

pn
qn

=
anpn−1 + bnpn−2
anqn−1 + bnqn−2
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lies between pn−1/qn−1 and pn−2/qn−2. Therefore we have

p2
q2
<
p4
q4
< · · · < p2n

q2n
< · · · < p2m+1

q2m+1
< · · · < p3

q3
<
p1
q1
· (17)

From (14), we deduce, for n ≥ 3, qn−1 > qn−2, hence qn > (an + bn)qn−2.
The previous discussion was valid without any restriction, now we as-

sume an ≥ bn for all sufficiently large n, say n ≥ n0. Then for n > n0, using
qn > 2bnqn−2, we get∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
b0 · · · bn
qn−1qn

<
bn · · · b0

2n−n0bnbn−1 · · · bn0+1qn0qn0−1
=

bn0 · · · b0
2n−n0qn0qn0−1

and the right hand side tends to 0 as n tends to infinity. Hence the sequence
(pn/qn)n≥0 has a limit, which we denote by

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

From (15), it follows that x is also given by an alternating series

x = a0 +
∞∑
k=1

(−1)k+1b0 · · · bk
qk−1qk

·

We now prove that x is irrational. Define, for n ≥ 0,

xn = an +
bn+1 |
|an+1

+ · · ·

so that x = x0 and, for all n ≥ 0,

xn = an +
bn+1

xn+1
, xn+1 =

bn+1

xn − an

and an < xn < an + 1. Hence for n ≥ 0, xn is rational if and only if
xn+1 is rational, and therefore, if x is rational, then all xn for n ≥ 0 are
also rational. Assume x is rational. Consider the rational numbers xn with
n ≥ n0 and select a value of n for which the denominator v of xn is minimal,
say xn = u/v. From

xn+1 =
bn+1

xn − an
=

bn+1v

u− anv
with 0 < u− anv < v,

it follows that xn+1 has a denominator strictly less than v, which is a con-
tradiction. Hence x is irrational.
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Conversely, given an irrational number x and a sequence b1, b2, . . . of pos-
itive integers, there is a unique integer a0 and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1, such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

Indeed, the unique solution is given inductively as follows: a0 = bxc, x1 =
b1/{x}, and once a0, . . . , an−1 and x1, . . . , xn are known, then an and xn+1

are given by
an = bxnc, xn+1 = bn+1/{xn},

so that for n ≥ 1 we have 0 < xn − an < 1 and

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

Here is what we have proved.

Proposition 18. Given a rational integer a0 and two sequences a0, a1, . . .
and b1, b2, . . . of positive rational integers with an ≥ bn for all sufficiently
large n, the infinite continued fraction

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

exists and is an irrational number.
Conversely, given an irrational number x and a sequence b1, b2, . . . of posi-
tive integers, there is a unique a0 ∈ Z and a unique sequence a1, . . . , an, . . .
of positive integers satisfying an ≥ bn for all n ≥ 1 such that

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

+ · · ·

These results are useful for proving the irrationality of π and er when
r is a non–zero rational number, following the proof by Lambert. See for
instance Chapter 7 (Lambert’s Irrationality Proofs) of David Angell’s course
on Irrationality and Transcendence(5) at the University of New South Wales:

http://www.maths.unsw.edu.au/∼angell/5535/
The following example is related with Lambert’s proof [16]:

tanh z =
z|
|1

+
z2|
| 3

+
z2|
| 5

+ · · ·+ z2 |
|2n+ 1

+ · · ·

5I found this reference from the website of John Cosgrave
http://staff.spd.dcu.ie/johnbcos/transcendental−numbers.htm.
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Here, z is a complex number and the right hand side is a complex valued
function. Here are other examples (see Sloane’s Encyclopaedia of Integer
Sequences(6))

1√
e− 1

= 1 +
2|
|3

+
4|
|5

+
6|
|7

+
8|
|9

+ · · · = 1.541 494 082 . . . (A113011)

1

e− 1
=

1|
|1

+
2|
|2

+
3|
|3

+
4|
|4

+ · · · = 0.581 976 706 . . . (A073333)

Remark. A variant of the algorithm of simple continued fractions is the
following. Given two sequences (an)n≥0 and (bn)n≥0 of elements in a field
K and an element x in K, one defines a sequence (possibly finite) (xn)n≥1
of elements in K as follows. If x = a0, the sequence is empty. Otherwise
x1 is defined by x = a0 + (b1/x1). Inductively, once x1, . . . , xn are defined,
there are two cases:

• If xn = an, the algorithm stops.

• Otherwise, xn+1 is defined by

xn+1 =
bn+1

xn − an
, so that xn = an +

bn+1

xn+1
·

If the algorithm does not stop, then for any n ≥ 1, one has

x = a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|xn
·

In the special case where a0 = a1 = · · · = b1 = b2 = · · · = 1, the set of x such
that the algorithm stops after finitely many steps is the set (Fn+1/Fn)n≥1 of
quotients of consecutive Fibonacci numbers. In this special case, the limit of

a0 +
b1 |
|a1

+ · · ·+ bn−1 |
|an−1

+
bn |
|an

is the Golden ratio, which is independent of x, of course!

2.2 Simple continued fractions

We restrict now the discussion of § 2.1 to the case where b1 = b2 = · · · =
bn = · · · = 1. We keep the notations An and Bn which are now polynomials
in Z[a0, a1, . . . , an] and Z[a1, . . . , an] respectively, and when we specialize to

6 http://www.research.att.com/∼njas/sequences/
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integers a0, a1, . . . , an . . . with an ≥ 1 for n ≥ 1 we use the notations pn and
qn for the values of An and Bn.

The recurrence relations (8) are now, for n ≥ 0,(
An An−1
Bn Bn−1

)
=

(
An−1 An−2
Bn−1 Bn−2

)(
an 1
1 0

)
, (19)

while (9) becomes, for n ≥ −1,(
An An−1
Bn Bn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
. (20)

From Lemma 10 one deduces, for n ≥ 0,

[a0, . . . , an] =
An

Bn
·

Taking the determinant in (20), we deduce the following special case of (11)

AnBn−1 −An−1Bn = (−1)n+1.

The specialization of these relations to integral values of a0, a1, a2 . . . yields(
pn pn−1
qn qn−1

)
=

(
pn−1 pn−2
qn−1 qn−2

)(
an 1
1 0

)
for n ≥ 0, (21)

(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an−1 1

1 0

)(
an 1
1 0

)
for n ≥ −1,

(22)

[a0, . . . , an] =
pn
qn

for n ≥ 0

and
pnqn−1 − pn−1qn = (−1)n+1 for n ≥ −1. (23)

From (23), it follows that for n ≥ 0, the fraction pn/qn is in lowest terms:
gcd(pn, qn) = 1.

Transposing (22) yields, for n ≥ −1,(
pn qn
pn−1 qn−1

)
=

(
an 1
1 0

)(
an−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
from which we deduce, for n ≥ 1,

[an, . . . , a0] =
pn
pn−1

and [an, . . . , a1] =
qn
qn−1
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Lemma 24. For n ≥ 0,

pnqn−2 − pn−2qn = (−1)nan.

Proof. We multiply both sides of (21) on the left by the inverse of the matrix(
pn−1 pn−2
qn−1 qn−2

)
which is (−1)n

(
qn−2 −pn−2
−qn−1 pn−1

)
.

We get

(−1)n
(
pnqn−2 − pn−2qn pn−1qn−2 − pn−2qn−1
−pnqn−1 + pn−1qn 0

)
=

(
an 1
1 0

)

2.2.1 Finite simple continued fraction of a rational number

Let u0 and u1 be two integers with u1 positive. The first step in Euclid’s
algorithm to find the gcd of u0 and u1 consists in dividing u0 by u1:

u0 = a0u1 + u2

with a0 ∈ Z and 0 ≤ u2 < u1. This means

u0
u1

= a0 +
u2
u1
,

which amonts to dividing the rational number x0 = u0/u1 by 1 with quotient
a0 and remainder u2/u1 < 1. This algorithms continues with

um = amum+1 + um+2,

where am is the integral part of xm = um/um+1 and 0 ≤ um+2 < um+1,
until some u`+2 is 0, in which case the algorithms stops with

u` = a`u`+1.

Since the gcd of um and um+1 is the same as the gcd of um+1 and um+2, it
follows that the gcd of u0 and u1 is u`+1. This is how one gets the regular
continued fraction expansion x0 = [a0, a1, . . . , a`], where ` = 0 in case x0 is
a rational integer, while a` ≥ 2 if x0 is a rational number which is not an
integer.
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Exercise 2. Compare with the geometrical construction of the continued
fraction given in the beamer presentation.
Give a variant of this geometrical construction where rectangles are replaced
by segments.

Proposition 25. Any finite regular continued fraction

[a0, a1, . . . , an],

where a0, a1, . . . , an are rational numbers with ai ≥ 2 for 1 ≤ i ≤ n and
n ≥ 0, represents a rational number. Conversely, any rational number x has
two representations as a continued fraction, the first one, given by Euclid’s
algorithm, is

x = [a0, a1, . . . , an]

and the second one is

x = [a0, a1, . . . , an−1, an − 1, 1].

If x ∈ Z, then n = 0 and the two simple continued fractions representa-
tions of x are [x] and [x− 1, 1], while if x is not an integer, then n ≥ 1 and
an ≥ 2. For instance the two continued fractions of 1 are [1] and [0, 1], they
both end with 1. The two continued fractions of 0 are [0] and [−1, 1], the
first of which is the unique continued fraction which ends with 0.

We shall use later (in the proof of Lemma 30 in § 3.2) the fact that any
rational number has one simple continued fraction expansion with an odd
number of terms and one with an even number of terms.

2.2.2 Infinite simple continued fraction of an irrational number

Given a rational integer a0 and an infinite sequence of positive integers
a1, a2, . . . , the continued fraction

[a0, a1, . . . , an, . . . ]

represents an irrational number. Conversely, given an irrational number x,
there is a unique representation of x as an infinite simple continued fraction

x = [a0, a1, . . . , an, . . . ]

Definitions The numbers an are the partial quotients, the rational numbers

pn
qn

= [a0, a1, . . . , an]
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are the convergents (in French réduites), and the numbers

xn = [an, an+1, . . .]

are the complete quotients.

From these definitions we deduce, for n ≥ 0,

x = [a0, a1, . . . , an, xn+1] =
xn+1pn + pn−1
xn+1qn + qn−1

. (26)

Lemma 27. For n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Proof. From (26) one deduces

x− pn
qn

=
xn+1pn + pn−1
xn+1qn + qn−1

− pn
qn

=
(−1)n

(xn+1qn + qn−1)qn
·

Corollary 28. For n ≥ 0,

1

qn+1 + qn
< |qnx− pn| <

1

qn+1
·

Proof. Since an+1 is the integral part of xn+1, we have

an+1 < xn+1 < an+1 + 1.

Using the recurrence relation qn+1 = an+1qn + qn−1, we deduce

qn+1 < xn+1qn + qn−1 < an+1qn + qn−1 + qn = qn+1 + qn.

In particular, since xn+1 > an+1 and qn−1 > 0, one deduces from Lemma
27

1

(an+1 + 2)q2n
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

an+1q2n
· (29)

Therefore any convergent p/q of x satisfies |x− p/q| < 1/q2 (compare with
(i) ⇒ (v) in Proposition 61). Moreover, if an+1 is large, then the approx-
imation pn/qn is sharp. Hence, large partial quotients yield good rational
approximations by truncating the continued fraction expansion just before
the given partial quotient.
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3 Continued fractions and Pell’s Equation

3.1 The main lemma

The theory which follows is well–known (a classical reference is the book
[23] by O. Perron), but the point of view which we develop here is slightly
different from most classical texts on the subject. We follow [3, 4, 32].
An important role in our presentation of the subject is the following result
(Lemma 4.1 in [26]).

Lemma 30. Let ε = ±1 and let a, b, c, d be rational integers satisfying

ad− bc = ε

and d ≥ 1. Then there is a unique finite sequence of rational integers
a0, . . . , as with s ≥ 1 and a1, . . . , as−1 positive, such that(

a b
c d

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
(31)

These integers are also characterized by

b

d
= [a0, a1, . . . , as−1],

c

d
= [as, . . . , a1], (−1)s+1 = ε. (32)

For instance, when d = 1, for b and c rational integers,(
bc+ 1 b
c 1

)
=

(
b 1
1 0

)(
c 1
1 0

)
and (

bc− 1 b
c 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.

Proof. We start with unicity. If a0, . . . , as satisfy the conclusion of Lemma
30, then by using (31), we find b/d = [a0, a1, . . . , as−1]. Taking the trans-
pose, we also find c/d = [as, . . . , a1]. Next, taking the determinant, we
obtain (−1)s+1 = ε. The last equality fixes the parity of s, and each of the
rational numbers b/d, c/d has a unique continued fraction expansion whose
length has a given parity (cf. Proposition 25). This proves the unicity of the
factorisation when it exists.

For the existence, we consider the simple continued fraction expansion
of c/d with length of parity given by the last condition in (32), say c/d =
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[as, . . . , a1]. Let a0 be a rational integer such that the distance between b/d
and [a0, a1, . . . , as−1] is ≤ 1/2. Define a′, b′, c′, d′ by(

a′ b′

c′ d′

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
.

We have

d′ > 0, a′d′ − b′c′ = ε,
c′

d′
= [as, . . . , a1] =

c

d

and
b′

d′
= [a0, a1, . . . , as−1],

∣∣∣∣ b′d′ − b

d

∣∣∣∣ ≤ 1

2
·

From gcd(c, d) = gcd(c′, d′) = 1, c/d = c′/d′ and d > 0, d′ > 0 we deduce
c′ = c, d′ = d. From the equality between the determinants we deduce
a′ = a+ kc, b′ = b+ kd for some k ∈ Z, and from

b′

d′
− b

d
= k

we conclude k = 0, (a′, b′, c′, d′) = (a, b, c, d). Hence (31) follows.

Corollary 33. Assume the hypotheses of Lemma 30 are satisfied.
(a) If c > d, then as ≥ 1 and

a

c
= [a0, a1, . . . , as].

(b) If b > d, then a0 ≥ 1 and

a

b
= [as, . . . , a1, a0].

The following examples show that the hypotheses of the corollary are
not superfluous: (

1 b
0 1

)
=

(
b 1
1 0

)(
0 1
1 0

)
,(

b− 1 b
1 1

)
=

(
b− 1 1

1 0

)(
1 1
1 0

)(
0 1
1 0

)
and (

c− 1 1
c 1

)
=

(
0 1
1 0

)(
1 1
1 0

)(
c− 1 1

1 0

)
.

25



Proof of Corollary 33. Any rational number u/v > 1 has two continued frac-
tions. One of them starts with 0 only if u/v = 1 and the continued fraction
is [0, 1]. Hence the assumption c > d implies as > 0. This proves part (a),
and part (b) follows by transposition (or repeating the proof).

Another consequence of Lemma 30 is the following classical result (Satz
13 p. 47 of [23]).

Corollary 34. Let a, b, c, d be rational integers with ad − bc = ±1 and
c > d > 0. Let x and y be two irrational numbers satisfying y > 1 and

x =
ay + b

cy + d
·

Let x = [a0, a1, . . .] be the simple continued fraction expansion of x. Then
there exists s ≥ 1 such that

a = ps, b = ps−1, c = qs, r = qs−1, y = xs+1.

Proof. Using lemma 30, we write(
a b
c d

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
with a′1, . . . , a

′
s−1 positive and

b

d
= [a′0, a

′
1, . . . , a

′
s−1],

c

d
= [a′s, . . . , a

′
1].

From c > d and corollary 33, we deduce a′s > 0 and

a

c
= [a′0, a

′
1, . . . , a

′
s] =

p′s
q′s
, x =

p′sy + p′s−1
q′sy + q′s−1

= [a′0, a
′
1, . . . , a

′
s, y].

Since y > 1, it follows that a′i = ai, p
′
i = q′i for 0 ≤ i ≤ s and y = xs+1.

Remark.
In [12], § 4, there is a variant of the matrix formula (21) for the simple
continued fraction of a real number.
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Given integers a0, a1, . . . with ai > 0 for i ≥ 1 and writing, for n ≥ 0,
as usual, pn/qn = [a0, a1, . . . , an], one checks, by induction on n, the two
formulae(

1 a0
0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
=

(
pn−1 pn
qn−1 qn

)
if n is even(

1 a0
0 1

)(
1 0
a1 1

)
. · · ·

(
1 0
an 1

)
=

(
pn pn−1
qn qn−1

)
if n is odd

 (35)

Define two matrices U (up) and L (low) in GL2(R) of determinant +1 by

U =

(
1 1
0 1

)
and L =

(
1 0
1 1

)
.

For p and q in Z, we have

Up =

(
1 p
0 1

)
and Lq =

(
1 0
q 1

)
,

so that these formulae (35) are

Ua0La1 · · ·Uan =

(
pn−1 pn
qn−1 qn

)
if n is even

and

Ua0La1 · · ·Lan =

(
pn pn−1
qn qn−1

)
if n is odd.

The connexion with Euclid’s algorithm is

U−p
(
a b
c d

)
=

(
a− pc b− pd
c d

)
and L−q

(
a b
c d

)
=

(
a b

c− qa d− qb

)
.

The corresponding variant of Lemma 30 is also given in [12], § 4: If a, b, c,
d are rational integers satisfying b > a > 0, d > c ≥ 0 and ad− bc = 1, then
there exist rational integers a0, . . . , an with n even and a1, . . . , an positive,
such that (

a b
c d

)
=

(
1 a0
0 1

)(
1 0
a1 1

)
· · ·
(

1 an
0 1

)
These integers are uniquely determined by b/d = [a0, . . . , an] with n even.
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3.2 Simple Continued fraction of
√
D

An infinite sequence (an)n≥1 is periodic if there exists a positive integer s
such that

an+s = an for all n ≥ 1. (36)

In this case, the finite sequence (a1, . . . , as) is called a period of the original
sequence. For the sake of notation, we write

(a1, a2, . . . ) = (a1, . . . , as).

If s0 is the smallest positive integer satisfying (36), then the set of s satisfying
(36) is the set of positive multiples of s0. In this case (a1, . . . , as0) is called
the fundamental period of the original sequence.

Theorem 37. Let D be a positive integer which is not a square. Write the
simple continued fraction of

√
D as [a0, a1, . . .] with a0 = b

√
Dc.

(a) The sequence (a1, a2, . . .) is periodic.
(b) Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 = ±1.
Then there exists s ≥ 1 such that x/y = [a0, . . . , as−1] and

(a1, a2, . . . , as−1, 2a0)

is a period of the sequence (a1, a2, . . .). Further, as−i = ai for 1 ≤ i ≤ s− 1.
One says that the word a1, . . . , as−1 is a palindrome. 7

(c) Let (a1, a2, . . . , as−1, 2a0) be a period of the sequence (a1, a2, . . .). Set
x/y = [a0, . . . , as−1]. Then x2 −Dy2 = (−1)s.
(d) Let s0 be the length of the fundamental period. Then for i ≥ 0 not
multiple of s0, we have ai ≤ a0.

If (a1, a2, . . . , as−1, 2a0) is a period of the sequence (a1, a2, . . .), then
√
D = [a0, a1, . . . , as−1, 2a0] = [a0, a1, . . . , as−1, a0 +

√
D].

7Note (2016). As kindly pointed out to me by Yoishi Motohashi, the fact that the
word a1, . . . , as−1 is a palindrom is proved in ’Essai sur la théorie des nombres’ by
Legendre (1798).
In his first paper published at the age of 17 by Evariste Galois, it is proved that if the
expansion of a quadratic irrational α is purely periodic, then the same is true for the
conjugate α′ of α, and the continued fraction of α′ is obtained by reversing the order of
the continued fraction of α. Besides, this continued fraction is a palindrom if and only if
αα′ = −1.
É. Galois, Démonstration d’un théorème sur les fractions continues périodiques.
Annales de Mathématiques Pures et Appliquées, 19 (1828-1829), p. 294-301.
http://archive.numdam.org/article/AMPA−1828-1829−−19−−294−0.pdf

For more information on these contributions by Galois, see
https://www.bibnum.education.fr/mathematiques/algebre/demonstration-d-un-theoreme-sur-les-fractions-continues-periodiques
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Consider the fundamental period (a1, a2, . . . , as0−1, as0) of the sequence (a1, a2, . . .).
By part (b) of Theorem 37 we have as0 = 2a0, and by part (d), it follows
that s0 is the smallest index i such that ai > a0.

From (b) and (c) in Theorem 37, it follows that the fundamental solution
(x1, y1) to Pell’s equation x2−Dy2 = ±1 is given by x1/y1 = [a0, . . . , as0−1],
and that x21 − Dy21 = (−1)s0 . Therefore, if s0 is even, then there is no
solution to the Pell’s equation x2 − Dy2 = −1. If s0 is odd, then (x1, y1)
is the fundamental solution to Pell’s equation x2 − Dy2 = −1, while the
fundamental solution (x2, y2) to Pell’s equation x2 − Dy2 = 1 is given by
x2/y2 = [a0, . . . , a2s−1].

It follows also from Theorem 37 that the (ns0 − 1)-th convergent

xn/yn = [a0, . . . , ans0−1]

satisfies
xn + yn

√
D = (x1 + y1

√
D)n. (38)

We shall check this relation directly (Lemma 42).

Proof. Start with a positive solution (x, y) to Pell’s equation x2−Dy2 = ±1,
which exists according to Proposition 2. Since Dy ≥ x and x > y, we may
use lemma 30 and corollary 33 with

a = Dy, b = c = x, d = y

and write (
Dy x
x y

)
=

(
a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s 1
1 0

)
(39)

with positive integers a′0, . . . , a
′
s and with a′0 = b

√
Dc. Then the contin-

ued fraction expansion of Dy/x is [a′0, . . . , a
′
s] and the continued fraction

expansion of x/y is [a′0, . . . , a
′
s−1].

Since the matrix on the left hand side of (39) is symmetric, the word
a′0, . . . , a

′
s is a palindrome. In particular a′s = a′0.

Consider the periodic continued fraction

δ = [a′0, a
′
1, . . . , a

′
s−1, 2a

′
0].

This number δ satisfies

δ = [a′0, a
′
1, . . . , a

′
s−1, a

′
0 + δ].
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Using the inverse of the matrix(
a′0 1
1 0

)
which is

(
0 1
1 −a′0

)
,

we write (
a′0 + δ 1

1 0

)
=

(
a′0 1
1 0

)(
1 0
δ 1

)
Hence the product of matrices associated with the continued fraction of δ(

a′0 1
1 0

)(
a′1 1
1 0

)
· · ·
(
a′s−1 1

1 0

)(
a′0 + δ 1

1 0

)
is (

Dy x
x y

)(
1 0
δ 1

)
=

(
Dy + δx x
x+ δy y

)
.

It follows that

δ =
Dy + δx

x+ δy
,

hence δ2 = D. As a consequence, a′i = ai for 0 ≤ i ≤ s − 1 while a′s = a0,
as = 2a0.

This proves that if (x, y) is a non–trivial solution to Pell’s equation x2−
Dy2 = ±1, then the continued fraction expansion of

√
D is of the form

√
D = [a0, a1, . . . , as−1, 2a0] (40)

with a1, . . . , as−1 a palindrome, and x/y is given by the convergent

x/y = [a0, a1, . . . , as−1]. (41)

Consider a convergent pn/qn = [a0, a1, . . . , an]. If an+1 = 2a0, then (29)
with x =

√
D implies the upper bound∣∣∣∣√D − pn

qn

∣∣∣∣ ≤ 1

2a0q2n
,

and it follows from Corollary 6 that (pn, qn) is a solution to Pell’s equation
p2n − Dq2n = ±1. This already shows that ai < 2a0 when i + 1 is not the
length of a period. We refine this estimate to ai ≤ a0.

Assume an+1 ≥ a0 + 1. Since the sequence (am)m≥1 is periodic of period
length s0, for any m congruent to n modulo s0, we have am+1 > a0. For
these m we have ∣∣∣∣√D − pm

qm

∣∣∣∣ ≤ 1

(a0 + 1)q2m
·
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For sufficiently large m congruent to n modulo s we have

(a0 + 1)q2m > q2m
√
D + 1.

Corollary 6 implies that (pm, qm) is a solution to Pell’s equation p2m−Dq2m =
±1. Finally, Theorem 37 implies that m+ 1 is a multiple of s0, hence n+ 1
also.

3.3 Connection between the two formulae for the n-th posi-
tive solution to Pell’s equation

Lemma 42. Let D be a positive integer which is not a square. Consider
the simple continued fraction expansion

√
D = [a0, a1, . . . , as0−1, 2a0] where

s0 is the length of the fundamental period. Then the fundamental solution
(x1, y1) to Pell’s equation x2 −Dy2 = ±1 is given by the continued fraction
expansion x1/y1 = [a0, a1, . . . , as0−1]. Let n ≥ 1 be a positive integer. Define
(xn, yn) by xn/yn = [a0, a1, . . . , ans0−1]. Then xn + yn

√
D = (x1 + y1

√
D)n.

This result is a consequence of the two formulae we gave for the n-th
solution (xn, yn) to Pell’s equation x2 − Dy2 = ±1. We check this result
directly.

Proof. From Lemma 30 and relation (39), one deduces(
Dyn xn
xn yn

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)(
a0 1
1 0

)
.

Since (
Dyn xn
xn yn

)(
0 1
1 −a0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
,

we obtain(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ans0−1 1

1 0

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)
. (43)

Notice that the determinant is (−1)ns0 = x2n −Dy2n. Formula (43) for n+ 1
and the periodicity of the sequence (a1, . . . , an, . . . ) with as0 = 2a0 give :(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
.
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Take first n = 1 in (43) and multiply on the left by(
2a0 1
1 0

)(
0 1
1 −a0

)
=

(
1 a0
0 1

)
.

Since (
1 a0
0 1

)(
x1 Dy1 − a0x1
y1 x1 − a0y1

)
=

(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

we deduce(
2a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as0−1 1

1 0

)
=

(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

Therefore(
xn+1 Dyn+1 − a0xn+1

yn+1 xn+1 − a0yn+1

)
=

(
xn Dyn − a0xn
yn xn − a0yn

)(
x1 + a0y1 (D − a20)y1

y1 x1 − a0y1

)
.

The first column gives

xn+1 = xnx1 +Dyny1 and yn+1 = x1yn + xny1,

which was to be proved.

3.4 Records

For large D, Pell’s equation may obviously have small integer solutions.
Examples are

for D = m2 − 1 with m ≥ 2, the numbers x = m, y = 1 satisfy
x2 −Dy2 = 1,

for D = m2 + 1 with m ≥ 1, the numbers x = m, y = 1 satisfy
x2 −Dy2 = −1,

for D = m2 ±m with m ≥ 2, the numbers x = 2m ± 1, y = 2 satisfy
x2 −Dy2 = 1,

for D = t2m2 + 2m with m ≥ 1 and t ≥ 1, the numbers x = t2m + 1,
y = t satisfy x2 −Dy2 = 1.

On the other hand, relatively small values of D may lead to large fun-
damental solutions. Tables are available on the internet8.

8For instance:
Tomás Oliveira e Silva: Record-Holder Solutions of Pell’s Equation
http://www.ieeta.pt/∼tos/pell.html.
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For D a positive integer which is not a square, denote by S(D) the base
10 logarithm of x1, when (x1, y1) is the fundamental solution to x2−Dy2 = 1.
The number of decimal digits of the fundamental solution x1 is the integral
part of S(D) plus 1. For instance, when D = 61, the fundamental solution
(x1, y1) is

x1 = 1 766 319 049, y1 = 226 153 980

and S(61) = log10 x1 = 9.247 069 . . .
An integer D is a record holder for S if S(D′) < S(D) for all D′ < D.
Here are the record holders up to 1021:

D 2 5 10 13 29 46 53 61 109

S(D) 0.477 0.954 1.278 2.812 3.991 4.386 4.821 9.247 14.198

D 181 277 397 409 421 541 661 1021

S(D) 18.392 20.201 20.923 22.398 33.588 36.569 37.215 47.298

Some further records with number of digits successive powers of 10:

D 3061 169789 12765349 1021948981 85489307341

S(D) 104.051 1001.282 10191.729 100681.340 1003270.151

3.5 Periodic continued fractions

An infinite sequence (an)n≥0 is said to be ultimately periodic if there exists
n0 ≥ 0 and s ≥ 1 such that

an+s = an for all n ≥ n0. (44)

The set of s satisfying this property (3.5) is the set of positive multiples of an
integer s0, and (an0 , an0+1, . . . , an0+s0−1) is called the fundamental period.

A continued fraction with a sequence of partial quotients satisfying (44)
will be written

[a0, a1, . . . , an0−1, an0 , . . . , an0+s−1].

Example. For D a positive integer which is not a square, setting a0 = b
√
Dc,

we have by Theorem 37

a0 +
√
D = [2a0, a1, . . . , as−1] and

1√
D − a0

= [a1, . . . , as−1, 2a0].
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Lemma 45 (Euler 1737). If an infinite continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic, then x is a quadratic irrational number.

Proof. Since the continued fraction of x is infinite, x is irrational. Assume
first that the continued fraction is periodic, namely that (44) holds with
n0 = 0:

x = [a0, . . . , as−1].

This can be written
x = [a0, . . . , as−1, x].

Hence

x =
ps−1x+ ps−2
qs−1x+ qs−2

·

It follows that
qs−1X

2 + (qs−2 − ps−1)X − ps−2
is a non–zero quadratic polynomial with integer coefficients having x as a
root. Since x is irrational, this polynomial is irreducible and x is quadratic.

In the general case where (44) holds with n0 > 0, we write

x = [a0, a1, . . . , an0−1, an0 , . . . , an0+s−1] = [a0, a1, . . . , an0−1, y],

where y = [an0 , . . . , an0+s−1] is a periodic continued fraction, hence is quadratic.
But

x =
pn0−1y + pn0−2
qn0−1y + qn0−2

,

hence x ∈ Q(y) is also quadratic irrational.

Lemma 46 (Lagrange, 1770). If x is a quadratic irrational number, then
its continued fraction

x = [a0, a1, . . . , an, . . .]

is ultimately periodic.

Proof. For n ≥ 0, define dn = qnx− pn. According to Corollary 28, we have
|dn| < 1/qn+1.
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Let AX2 +BX + C with A > 0 be an irreducible quadratic polynomial
having x as a root. For each n ≥ 2, we deduce from (26) that the convergent
xn is a root of a quadratic polynomial AnX

2 +BnX + Cn, with

An = Ap2n−1 +Bpn−1qn−1 + Cq2n−1,

Bn = 2Apn−1pn−2 +B(pn−1qn−2 + pn−2qn−1) + 2Cqn−1qn−2,

Cn = An−1.

Using Ax2 +Bx+ C = 0, we deduce

An = (2Ax+B)dn−1qn−1 +Ad2n−1,

Bn = (2Ax+B)(dn−1qn−2 + dn−2qn−1) + 2Adn−1dn−2.

There are similar formulae expressing A, B, C as homogeneous linear com-
binations of An, Bn, Cn, and since (A,B,C) 6= (0, 0, 0), it follows that
(An, Bn, Cn) 6= (0, 0, 0). Since xn is irrational, one deduces An 6= 0.

From the inequalities

qn−1|dn−2| < 1, qn−2|dn−1| < 1, qn−1 < qn, |dn−1dn−2| < 1,

one deduces

max{|An|, |Bn|/2, |Cn|} < A+ |2Ax+B|.

This shows that |An|, |Bn| and |Cn| are bounded independently of n. There-
fore there exists n0 ≥ 0 and s > 0 such that xn0 = xn0+s. From this we
deduce that the continued fraction of xn0 is purely periodic, hence the con-
tinued fraction of x is ultimately periodic.

A reduced quadratic irrational number is an irrational number x > 1
which is a root of a degree 2 polynomial ax2 + bx + c with rational integer
coefficients, such that the other root x′ of this polynomial, which is the
Galois conjugate of x, satisfies −1 < x′ < 0. If x is reduced, then so is
−1/x′.

Lemma 47. A continued fraction

x = [a0, a1, . . . , an . . .]

is purely periodic if and only if x is a reduced quadratic irrational number.
In this case, if x = [a0, a1, . . . , as−1] and if x′ is the Galois conjugate of x,
then

−1/x′ = [as−1, . . . , a1, a0]
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Proof. Assume first that the continued fraction of x is purely periodic:

x = [a0, a1, . . . , as−1].

From as = a0 we deduce a0 > 0, hence x > 1. From x = [a0, a1, . . . , as−1, x]
and the unicity of the continued fraction expansion, we deduce

x =
ps−1x+ ps−2
qs−1x+ qs−2

and x = xs.

Therefore x is a root of the quadratic polynomial

Ps(X) = qs−1X
2 + (qs−2 − ps−1)X − ps−2.

This polynomial Ps has a positive root, namely x > 1, and a negative root
x′, with the product xx′ = −ps−2/qs−1. We transpose the relation(

ps−1 ps−2
qs−1 qs−2

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as−1 1

1 0

)
and obtain (

ps−1 qs−1
ps−2 qs−2

)
=

(
as−1 1

1 0

)
· · ·
(
a1 1
1 0

)(
a0 1
1 0

)
.

Define
y = [as−1, . . . , a1, a0],

so that y > 1,

y = [as−1, . . . , a1, a0, y] =
ps−1y + qs−1
ps−2y + qs−2

and y is the positive root of the polynomial

Qs(X) = ps−2X
2 + (qs−2 − ps−1)X − qs−1.

The polynomials Ps and Qs are related by Qs(X) = −X2Ps(−1/X). Hence
y = −1/x′.

For the converse, assume x > 1 and −1 < x′ < 0. Let (xn)n≥1 be the
sequence of complete quotients of x. For n ≥ 1, define x′n as the Galois
conjugate of xn. One deduces by induction that x′n = an + 1/x′n+1, that
−1 < x′n < 0 (hence xn is reduced), and that an is the integral part of
−1/x′n+1.
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If the continued fraction expansion of x were not purely periodic, we
would have

x = [a0, . . . , ah−1, ah, . . . , ah+s−1]

with ah−1 6= ah+s−1. By periodicity we have xh = [ah, . . . , ah+s−1, xh], hence
xh = xh+s, x

′
h = x′h+s. From x′h = x′h+s, taking integral parts, we deduce

ah−1 = ah+s−1, a contradiction.

Corollary 48. If r > 1 is a rational number which is not a square, then the
continued fraction expansion of

√
r is of the form

√
r = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome and a0 = b
√
rc.

Conversely, if the continued fraction expansion of an irrational number t > 1
is of the form

t = [a0, a1, . . . , as−1, 2a0]

with a1, . . . , as−1 a palindrome, then t2 is a rational number.

Proof. If t2 = r is rational > 1, then for and a0 = b
√
tc the number x = t+a0

is reduced. Since t′ + t = 0, we have

− 1

x′
=

1

x− 2a0
·

Hence

x = [2a0, a1, . . . , as−1], − 1

x′
= [as−1, . . . , a1, 2a0]

and a1, . . . , as−1 a palindrome.
Conversely, if t = [a0, a1, . . . , as−1, 2a0] with a1, . . . , as−1 a palindrome,

then x = t + a0 is periodic, hence reduced, and its Galois conjugate x′

satisfies

− 1

x′
= [a1, . . . , as−1, 2a0] =

1

x− 2a0
,

which means t+ t′ = 0, hence t2 ∈ Q.

Lemma 49 (Serret, 1878). Let x and y be two irrational numbers with
continued fractions

x = [a0, a1, . . . , an . . .] and y = [b0, b1, . . . , bm . . .]
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respectively. Then the two following properties are equivalent.

(i) There exists a matrix

(
a b
c d

)
with rational integer coefficients and de-

terminant ±1 such that

y =
ax+ b

cx+ d
·

(ii) There exists n0 ≥ 0 and m0 ≥ 0 such that an0+k = bm0+k for all k ≥ 0.

Condition (i) means that x and y are equivalent modulo the action of
GL2(Z) by homographies.

Condition (ii) means that there exists integers n0, m0 and a real number
t > 1 such that

x = [a0, a1, . . . , an0−1, t] and y = [b0, b1, . . . , bm0−1, t].

Example.

If x = [a0, a1, x2], then − x =

{
[−a0 − 1, 1, a1 − 1, x2] if a1 ≥ 2,

[−a0 − 1, 1 + x2] if a1 = 1.
(50)

Proof. We already know by (26) that if xn is a complete quotient of x, then
x and xn are equivalent modulo GL2(Z). Condition (ii) means that there
is a partial quotient of x and a partial quotient of y which are equal. By
transitivity of the GL2(Z) equivalence, (ii) implies (i).

Conversely, assume (i):

y =
ax+ b

cx+ d
·

Let n be a sufficiently large number. From(
a b
c d

)(
pn pn−1
qn qn−1

)
=

(
un un−1
vn vn−1

)
with

un = apn + bqn, un−1 = apn−1 + bqn−1,
vn = cpn + dqn, vn−1 = cpn−1 + dqn−1,

we deduce

y =
unxn+1 + un−1
vnxn+1 + vn−1

·

We have vn = (cx + d)qn + cδn with δn = pn − qnx. We have qn → ∞,
qn ≥ qn−1 + 1 and δn → 0 as n → ∞. Hence, for sufficiently large n, we
have vn > vn−1 > 0. From part 1 of Corollary 33, we deduce(

un un−1
vn vn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
as 1
1 0

)
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with a0, . . . , as in Z and a1, . . . , as positive. Hence

y = [a0, a1, . . . , as, xn+1].

A computational proof of (i) ⇒ (ii). Another proof is given by Bombieri [3]
(Theorem A.1 p. 209). He uses the fact that GL2(Z) is generated by the
two matrices (

1 1
0 1

)
and

(
0 1
1 0

)
.

The associated fractional linear transformations are K and J defined by

K(x) = x+ 1 and J(x) = 1/x.

We have J2 = 1 and

K([a0, t]) = [a0 + 1, t], K−1([a0, t]) = [a0 − 1, t].

Also J([a0, t]) = [0, a0, t] if a0 > 0 and J([0, t]) = btc. According to (50),
the continued fractions of x and −x differ only by the first terms. This
completes the proof. 9

3.6 Diophantine approximation and simple continued frac-
tions

Lemma 51 (Lagrange, 1770). The sequence (|qnx − pn|)n≥0 is strictly de-
creasing: for n ≥ 1 we have

|qnx− pn| < |qn−1x− pn−1|.

Proof. We use Lemma 27 twice: on the one hand

|qnx− pn| =
1

xn+1qn + qn−1
<

1

qn + qn−1

because xn+1 > 1, on the other hand

|qn−1x− pn−1| =
1

xnqn−1 + qn−2
>

1

(an + 1)qn−1 + qn−2
=

1

qn + qn−1

because xn < an + 1.
9Bombieri in [3] gives formulae for J([a0, t]) when a0 ≤ −1. He distinguishes eight

cases, namely four cases when a0 = −1 (a1 > 2, a1 = 2, a1 = 1 and a3 > 1, a1 = a3 = 1),
two cases when a0 = −2 (a1 > 1, a1 = 1) and two cases when a0 ≤ −3 (a1 > 1, a1 = 1).
Here, (50) enables us to simplify his proof by reducing to the case a0 ≥ 0.
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Corollary 52. The sequence (|x − pn/qn|)n≥0 is strictly decreasing: for
n ≥ 1 we have ∣∣∣∣x− pn

qn

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ .
Proof. For n ≥ 1, since qn−1 < qn, we have∣∣∣∣x− pn

qn

∣∣∣∣ =
1

qn
|qnx−pn| <

1

qn
|qn−1x−pn−1| =

qn−1
qn

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ < ∣∣∣∣x− pn−1
qn−1

∣∣∣∣ .

Here is the law of best approximation of the simple continued fraction.

Lemma 53. Let n ≥ 0 and (p, q) ∈ Z× Z with q > 0 satisfy

|qx− p| < |qnx− pn|.

Then q ≥ qn+1.

Proof. The system of two linear equations in two unknowns u, v{
pnu+ pn+1v = p
qnu+ qn+1v = q

(54)

has determinant ±1, hence there is a solution (u, v) ∈ Z× Z.
Since p/q 6= pn/qn, we have v 6= 0.
If u = 0, then v = q/qn+1 > 0, hence v ≥ 1 and q ≥ qn+1.
We now assume uv 6= 0.
Since q, qn and qn+1 are > 0, it is not possible for u and v to be both

negative. In case u and v are positive, the desired result follows from the
second relation of (54). Hence one may suppose u and v of opposite signs.
Since qnx − pn and qn+1x − pn+1 also have opposite signs, the numbers
u(qnx− pn) and v(qn+1x− pn+1) have same sign, and therefore

|qnx− pn| ≤ |u(qnx− pn)|+ |v(qn+1x− pn+1)| = |qx− p| < |qnx− pn|,

which is a contradiction.

A consequence of Lemma 53 is that the sequence of pn/qn produces
the best rational approximations to x in the following sense: any rational
number p/q with denominator q < qn has |qx − p| > |qnx − pn|. This is
sometimes referred to as best rational approximations of type 0.
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Corollary 55. The sequence (qn)n≥0 of denominators of the convergents of
a real irrational number x is the increasing sequence of positive integers for
which

‖qnx‖ < ‖qx‖ for 1 ≤ q < qn.

As a consequence,
‖qnx‖ = min

1≤q≤qn
‖qx‖.

The theory of continued fractions is developed starting from Corollary 55 as
a definition of the sequence (qn)n≥0 in Cassels’s book [7].

Corollary 56. Let n ≥ 0 and p/q ∈ Q with q > 0 satisfy∣∣∣∣x− p

q

∣∣∣∣ < ∣∣∣∣x− pn
qn

∣∣∣∣ .
Then q > qn.

Proof. For q ≤ qn we have∣∣∣∣x− p

q

∣∣∣∣ =
1

q
|qx− p| > 1

q
|qnx− pn|

qn
q

∣∣∣∣x− pn
qn

∣∣∣∣ ≥ ∣∣∣∣x− pn
qn

∣∣∣∣ .

Corollary 56 shows that the denominators qn of the convergents are also
among the best rational approximations of type 1 in the sense that∣∣∣∣x− p

q

∣∣∣∣ > ∣∣∣∣x− pn
qn

∣∣∣∣ for 1 ≤ q < qn,

but they do not produce the full list of them: to get the complete set, one
needs to consider also some of the rational fractions of the form

pn−1 + apn
qn−1 + aqn

with 0 ≤ a ≤ an+1 (semi–convergents) – see for instance [23], Chap. II, § 16.

Lemma 57 (Vahlen, 1895). Among two consecutive convergents pn/qn and
pn+1/qn+1, one at least satisfies |x− p/q| < 1/2q2.
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Proof. Since x− pn/qn and x− pn−1/qn−1 have opposite signs,∣∣∣∣x− pn
qn

∣∣∣∣+

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ =

∣∣∣∣pnqn − pn−1
qn−1

∣∣∣∣ =
1

qnqn−1
<

1

2q2n
+

1

2q2n−1
·

The last inequality is ab < (a2 + b2)/2 for a 6= b with a = 1/qn and b =
1/qn−1. Therefore,

either

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

2q2n
or

∣∣∣∣x− pn−1
qn−1

∣∣∣∣ < 1

2q2n−1
·

Lemma 58 (É. Borel, 1903). Among three consecutive convergents pn−1/qn−1,
pn/qn and pn+1/qn+1, one at least satisfies |x− p/q| < 1/

√
5q2.

Compare with the implication (i) ⇒ (vi) in the irrationality criterion
below (Proposition 61 in § 4.1).

That the constant
√

5 cannot be replaced by a larger one is proved in
Lemma 66. This is true for any number with a continued fraction expansion
having all but finitely many partial quotients equal to 1 (which means the
Golden number Φ and all rational numbers which are equivalent to Φ modulo
GL2(Z)).

Proof. Recall Lemma 27: for n ≥ 0,

qnx− pn =
(−1)n

xn+1qn + qn−1
·

Therefore |qnx−pn| < 1/
√

5qn if and only if |xn+1qn+qn−1| >
√

5qn. Define
rn = qn−1/qn. Then this condition is equivalent to |xn+1 + rn| >

√
5.

Recall the inductive definition of the convergents:

xn+1 = an+1 +
1

xn+2
·

Also, using the definitions of rn, rn+1, and the inductive relation qn+1 =
an+1qn + qn−1, we can write

1

rn+1
= an+1 + rn.

Eliminate an+1:
1

xn+2
+

1

rn+1
= xn+1 + rn.
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Assume now

|xn+1 + rn| ≤
√

5 and |xn+2 + rn+1| ≤
√

5.

We deduce

1√
5− rn+1

+
1

rn+1
≤ 1

xn+2
+

1

rn+1
= xn+1 + rn ≤

√
5,

which yields
r2n+1 −

√
5rn+1 + 1 ≤ 0.

The roots of the polynomial X2 −
√

5X + 1 are Φ = (1 +
√

5)/2 and Φ−1 =
(
√

5− 1)/2. Hence rn+1 > Φ−1 (the strict inequality is a consequence of the
irrationality of the Golden ratio). .

This estimate follows from the hypotheses |qnx − pn| < 1/
√

5qn and
|qn+1x− pn+1| < 1/

√
5qn+1. If we also had |qn+2x− pn+2| < 1/

√
5qn+2, we

would deduce in the same way rn+2 > Φ−1. This would give

1 = (an+2 + rn+1)rn+2 > (1 + Φ−1)Φ−1 = 1,

which is impossible.

Lemma 59 (Legendre, 1798). If p/q ∈ Q satisfies |x − p/q| ≤ 1/2q2, then
p/q is a convergent of x.

Proof. Let r and s in Z satisfy 1 ≤ s < q. From

1 ≤ |qr−ps| = |s(qx−p)− q(sx− r)| ≤ s|qx−p|+ q|sx− r| ≤ s

2q
+ q|sx− r|

one deduces

q|sx− r| ≥ 1− s

2q
>

1

2
≥ q|qx− p|.

Hence |sx − r| > |qx − p| and therefore Lemma 53 implies that p/q is a
convergent of x.

3.7 A criterion for the existence of a solution to the negative
Pell equation

Here is a recent result on the existence of a solution to Pell’s equation
x2 −Dy2 = −1
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Proposition 60 (R.A. Mollin, A. Srinivasan10). Let d be a positive integer
which is not a square. Let (x0, y0) be the fundamental solution to Pell’s
equation x2 − dy2 = 1. Then the equation x2 − dy2 = −1 has a solution if
and only if x0 ≡ −1 (mod 2d).

Proof. If a2 − db2 = −1 is the fundamental solution to x2 − dy2 = −1, then
x0 + y0

√
d = (a+ b

√
d)2, hence

x0 = a2 + db2 = 2db2 − 1 ≡ −1 (mod 2d).

Conversely, if x0 = 2dk − 1, then x20 = 4d2k2 − 4dk + 1 = dy20 + 1, hence
4dk2 − 4k = y20. Therefore y0 is even, y0 = 2z, and k(dk − 1) = z2. Since k
and dk − 1 are relatively prime, both are squares, k = b2 and dk − 1 = a2,
which gives a2 − db2 = −1.

3.8 Arithmetic varieties

Let D be a positive integer which is not a square. Define G = {(x, y) ∈
R2 ; x2 −Dy2 = 1}.

The map
G −→ R×

(x, y) 7−→ t = x+ y
√
D

is bijective: the inverse of that map is obtained by writing u = 1/t, 2x =
t+ u, 2y

√
D = t− u, so that t = x+ y

√
D and u = x− y

√
D. By transfer

of structure, this endows G with a multiplicative group structure, which is
isomorphic to R×, for which

G −→ GL2(R)

(x, y) 7−→
(
x Dy
y x

)
.

is an injective group homomorphism. Let G(R) be its image, which is
therefore isomorphic to R×.

A matrix

(
a b
c d

)
respects the quadratic form x2 −Dy2 if and only if

(ax+ by)2 −D(cx+ dy)2 = x2 −Dy2,

which can be written

a2 −Dc2 = 1, b2 −Dd2 = D, ab = cdD.

10Pell equation: non-principal Lagrange criteria and central norms; Canadian Math.
Bull., to appear
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Hence the group of matrices of determinant 1 with coefficients in Z which
respect the quadratic form x2 −Dy2 is the group

G(Z) =

{(
a Dc
c a

)
∈ GL2(Z)

}
.

According to the work of Siegel, Harish–Chandra, Borel and Godement,
the quotient of G(R) by G(Z) is compact. Hence G(Z) is infinite (of rank 1
over Z), which means that there are infinitely many solutions to the equation
a2 −Dc2 = 1.

This is not a new proof of Proposition 2, but an interpretation and a
generalization. Such results are valid for arithmetic varieties11.

4 More on Diophantine Approximation

4.1 Irrationality Criterion

Proposition 61. Let ϑ be a real number. The following conditions are
equivalent:
(i) ϑ is irrational.
(ii) For any ε > 0, there exists (p, q) ∈ Z2 such that q > 0 and

0 < |qϑ− p| < ε.

(iii) For any ε > 0, there exist two linearly independent linear forms in two
variables

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

(iv) For any real number Q > 1, there exists an integer q in the range
1 ≤ q < Q and a rational integer p such that

0 < |qϑ− p| < 1

Q
·

11See for instance Nicolas Bergeron, “Sur la forme de certains espaces provenant de
constructions arithmétiques”, Images des Mathématiques, (2004).
http://www.math.jussieu.fr/∼bergeron/Recherche−files/Images.pdf.
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(v) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

q2
·

(vi) There exist infinitely many p/q ∈ Q such that∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·

The implication (vi) ⇒ (v) is trivial. We shall prove (i) ⇒ (vi) later (in
the section on continued fractions). We now prove the equivalence between
the other conditions of Proposition 61 as follows:

(iv) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (v) and (v) ⇒ (ii).

Notice that given a positive integer q, there is at most one value of p
such that |qϑ− p| < 1/2, namely the nearest integer to qϑ. Hence, when we
approximate ϑ by a rational number p/q, we have only one free parameter
in Z>0, namely q.

In condition (v), there is no need to assume that the left hand side is
not 0: if one p/q ∈ Q produces 0, then all other ones do not, and there are
again infinitely many of them.

Proof of (iv) ⇒ (ii). Using (iv) with Q satisfying Q > 1 and Q ≥ 1/ε, we
get (ii).

Proof of (v) ⇒ (ii). According to (v), there is an infinite sequence of distinct
rational numbers (pi/qi)i≥0 with qi > 0 such that∣∣∣∣ϑ− pi

qi

∣∣∣∣ < 1√
5q2i
·

For each qi, there is a single value for the numerator pi for which this in-
equality is satisfied. Hence the set of qi is unbounded. Taking qi ≥ 1/ε
yields (ii).

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p, q) ∈
Z× Z with q > 0 and gcd(p, q) = 1 such that

0 < |qϑ− p| < ε.
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We use (ii) once more with ε replaced by |qϑ−p|. There exists (p′, q′) ∈ Z×Z
with q′ > 0 such that

0 < |q′ϑ− p′| < |qϑ− p|. (62)

Define L0(X0, X1) = pX0 − qX1 and L1(X0, X1) = p′X0 − q′X1. It only
remains to check that L0(X0, X1) and L1(X0, X1) are linearly independent.
Otherwise, there exists (s, t) ∈ Z2 \ (0, 0) such that sL0 = tL1. Hence
sp = tp′, sq = tq′, and p/q = p′/q′. Since gcd(p, q) = 1, we deduce t = 1,
p′ = sp, q′ = sq and q′ϑ− p′ = s(qϑ− p). This is not compatible with (62).

Proof of (iii) ⇒ (i). Assume ϑ ∈ Q, say ϑ = a/b with gcd(a, b) = 1 and b >
0. For any non–zero linear form L ∈ ZX0 + ZX1, the condition L(1, ϑ) 6= 0
implies |L(1, ϑ)| ≥ 1/b, hence for ε = 1/b condition (iii) does not hold.

Proof of (i) ⇒ (iv) using Dirichlet’s box principle. Let Q > 1 be a given
real number. Define N = dQe: this means that N is the integer such
that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

Let ϑ ∈ R \Q. Consider the subset E of the unit interval [0, 1] which
consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N + 1 elements are pairwise distinct. Split the
interval [0, 1] into N intervals

Ij =

[
j

N
,
j + 1

N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j+ 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =

[
1− 1

N
, 1

]
contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤
N − 1. Set p = bqϑc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p−qϑ = bqϑc+1−bqϑc−{qϑ} = 1−{qϑ}, hence 0 < p−qϑ < 1

N
≤ 1

Q
·
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Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = bq2ϑc − bq1ϑc.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.

Remark. Theorem 1.A in Chap. II of [28] states that for any real number ϑ,
for any real number Q > 1, there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1

qQ
·

The proof given there yields strict inequality |qϑ−p| < 1/Q in case Q is not
an integer. In the case where Q is an integer and ϑ is rational, the result
does not hold with a strict inequality in general. For instance, if ϑ = a/b
with gcd(a, b) = 1 and b ≥ 2, there is a solution p/q to this problem with
strict inequality for Q = b+ 1, but not for Q = b.

However, when Q is an integer and ϑ is irrational, the number |qϑ − p|
is irrational (recall that q > 0), hence not equal to 1/Q.

Proof of (iv) ⇒ (v). Assume (iv). We already know that (iv) ⇒ (i), hence
ϑ is irrational.

Let {q1, . . . , qN} be a finite set of positive integers. We are going to show
that there exists a positive integer q 6∈ {q1, . . . , qN} satisfying the condition
(v). Denote by ‖ · ‖ the distance to the nearest integer: for x ∈ R,

‖x‖ = min
a∈Z
|x− a|.

Since ϑ is irrational, it follows that for 1 ≤ j ≤ N , the number ‖qjϑ‖ is
non–zero. Let Q > 1 satisfy

Q >

(
min

1≤j≤N
‖qjϑ‖

)−1
.

From (iv) we deduce that there exists an integer q in the range 1 ≤ q < Q
such that

0 < ‖qϑi‖ ≤
1

Q
·

The right hand side is < 1/q, and the choice of Q implies q 6∈ {q1, . . . , qN}.
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4.2 Liouville’s inequality

The main Diophantine tool for proving transcendence results is Liouville’s
inequality.

Recall that the ring Z[X] is factorial, its irreducible elements of positive
degree are the non-constant polynomials with integer coefficients which are
irreducible in Q[X] (i.e., not a product of two non-constant polynomials
in Q[X]) and have content 1. The content of a polynomial in Z[X] is the
greatest common divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irre-
ducible polynomial P ∈ Z[X] which vanishes at α and has a positive leading
coefficient.

The next lemma is one of many variants of Liouville’s inequality (see,
for instance, [28]), which is close to the original one of 1844.

Lemma 63. Let α be an algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(c+ ε)qd
·

Proof. The result is trivial if α is not real: an admissible value for q0 is

q0 = (c|=m(α)|)−1/d.

Assume now α is real. Let q be a sufficiently large positive integer and let
p be the nearest integer to qα. In particular,∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

2q
·

Denote by a0 the leading coefficient of P and by α1, . . . , αd the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
. (64)

Also

P ′(α) = a0

d∏
i=2

(α− αi).
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The left hand side of (64) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi −

p

q

∣∣∣∣ ≤ |αi − α|+
1

2q
·

We deduce

1 ≤ qda0
∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1

2q

)
.

For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

4.1.2 Liouville’s inequality for quadratic numbers

Consider Lemma 63 in the special case d = 2 where α is a quadratic algebraic
number. Write its minimal polynomial f(X) = aX2 + bX + c and let ∆ :=
b2 − 4ac be its discriminant. Since we are interested in the approximation
of α by rational numbers, we assume ∆ > 0. If α = (−b ±

√
∆)/2a, then

the other root is α′ = (−b∓
√

∆)/2a and

f ′(α) = a(α− α′) = ±
√

∆.

Lemma 65. Let α be an algebraic number of degree 2 and minimal polyno-
mial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an integer
q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(
√

∆ + ε)q2
·

The smallest positive discriminant of an irreducible quadratic polynomial
with coefficients in Z is 5, which is the value of the discriminant of X2−X−1,
with roots Φ and −Φ−1 where Φ = 1.6180339887499 . . . denotes the Golden
ratio.

The next result deals with the Fibonacci sequence (Fn)n≥0:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).
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Lemma 66. For any q ≥ 1 and any p ∈ Z,∣∣∣∣Φ− p

q

∣∣∣∣ > 1√
5q2 + (q/2)

·

On the other hand

lim
n→∞

F 2
n−1

∣∣∣∣Φ− Fn

Fn−1

∣∣∣∣ =
1√
5
·

Proof. It suffices to prove the lower bound when p is the nearest integer to
qΦ. From X2 −X − 1 = (X − Φ)(X + Φ−1) we deduce

p2 − pq − q2 = q2
(
p

q
− Φ

)(
p

q
+ Φ−1

)
.

The left hand side is a non-zero rational integer, hence has absolute value
at least 1. We now bound the absolute value of the right hand side from
above. Since p < qΦ + (1/2) and Φ + Φ−1 =

√
5 we have

p

q
+ Φ−1 <

√
5 +

1

2q
·

Hence

1 < q2
∣∣∣∣pq − Φ

∣∣∣∣ (√5 +
1

2q

)
The first part of Lemma 66 follows.

The real vector space of sequences (vn)n≥0 satisfying vn = vn−1+vn−2 has
dimension 2, a basis is given by the two sequences (Φn)n≥0 and ((−Φ−1)n)n≥0.
From this one easily deduces the formula

Fn =
1√
5

(Φn − (−1)nΦ−n)

due to A. De Moivre (1730), L. Euler (1765) and J.P.M. Binet (1843). It
follows that Fn is the nearest integer to

1√
5

Φn,

hence the sequence (un)n≥2 of quotients of Fibonacci numbers

un = Fn/Fn−1

satisfies limn→∞ un = Φ.
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By induction one easily checks

F 2
n − FnFn−1 − F 2

n−1 = (−1)n−1

for n ≥ 1. The left hand side is F 2
n−1(un−Φ)(un + Φ−1), as we already saw.

Hence

F 2
n−1|Φ− un| =

1

Φ−1 + un
,

and the limit of the right hand side is 1/(Φ + Φ−1) = 1/
√

5. The result
follows.

Remark. The sequence un = Fn/Fn−1 is also defined by

u2 = 2, un = 1 +
1

un−1
, (n ≥ 3).

Hence

un = 1 +
1

1 +
1

un−2

= 1 +
1

1 +
1

1 +
1

un−3

= · · ·

Remark. It is known (see for instance [28] p. 25) that if k is a positive
integer, if an irrational real number ϑ has a continued fraction expansion
[a0; a1, a2, . . . ] with an ≥ k for infinitely many n, then

lim inf
q→∞

q2
∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1√
4 + k2

·
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