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2.3 Linear forms

2.3.1 Siegel’s method: m + 1 linear forms

For proving linear independence of real numbers, Hermite [6] considered
simultaneous approximation to these numbers by algebraic numbers. The
point of view introduced by Siegel in 1929 [14] is dual (duality in the sense
of convex bodies): he considers simultaneous approximation by means of
independent linear forms.

We define the height of a linear form L = a0X0 + · · · + amXm with
complex coefficients by

H(L) = max{|a0|, . . . , |am|}.

Lemma 13. Let ϑ1, . . . , ϑm be complex numbers. Assume that, for any
ε > 0, there exists m + 1 linearly independent linear forms L0, . . . , Lm in
m + 1 variables, with coefficients in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| <
ε

Hm−1
where H = max

0≤k≤m
H(Lk).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.

The proof is given by C.L. Siegel in [14]; see also [4] Chap. 2 § 1.4 and
[1]. We sketch the argument here, and we expand it below.

Assume 1, ϑ1, . . . , ϑm are linearly dependent over Q: let Λ0 ∈ ZX0 +
ZX1+· · ·+ZXm be a non–zero linear form in m+1 variables which vanishes
at the point (1, ϑ1, . . . , ϑm). Denote by A the sum of the absolute values of
the coefficients of Λ0 and use the assumption with ε = 1/m!A. Among the
m + 1 linearly independent linear forms which are given by the assumption
of Lemma 13, select m of them, say Λ1, . . . ,Λm, which form with Λ0 a
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set of m + 1 linearly independent linear forms. The (m + 1) × (m + 1)
matrix of coefficients of these forms is regular; using the inverse matrix, one
expresses its determinant ∆ as a linear combination with integer coefficients
of Λk(1, ϑ1, . . . , ϑm)|, 1 ≤ k ≤ m. The choice of ε yields the contradiction
|∆| < 1.

We develop this idea and deduce the following more precise statement.

Proposition 14. Let ϑ1, . . . , ϑm be complex numbers and L0, . . . , Lm be
m + 1 linearly independent linear forms in m + 1 variables with coefficients
in Z. Then

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)|
H(Lk)

≥ 1
(m + 1)!H(L0) · · ·H(Lm)

·

Proof. For 0 ≤ k ≤ m, write

Lk(X0, . . . , Xm) =
m∑

i=0

#kiXi and set λk = Lk(1, ϑ1, . . . , ϑm).

Define ϑ0 = 1. Let L be the regular (m + 1)× (m + 1) matrix
(
#ki

)
0≤k,i≤m

.
Using the relation 


ϑ0
...

ϑm



 = L−1




λ0
...

λm



 ,

one can write the product of ϑ0 = 1 by det(L) as a linear combination of
λ0, . . . , λm with rational integer coefficients. In this linear combination, the
absolute value of the coefficient of λk is ≤ m!H(L0) · · ·H(Lm)/H(Lk). We
deduce

1 ≤ |det(L)| ≤ m!
m∑

k=0

H(L0) · · ·H(Lm)
|λk|

H(Lk)
·

Proposition 14 follows.

An straightforward consequence of Proposition 14 is the following:

Corollary 15. Let ϑ1, . . . , ϑm be complex numbers, H be a positive real
number and L0, . . . , Lm be m+1 linearly independent linear forms in m+1
variables with coefficients in Z of height ≤ H. Then

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| ≥ 1
(m + 1)!Hm

·
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Using either Proposition 14 or Corollary 15, we deduce the following
result (compare with [11] Lemma 2.4):

Corollary 16. Let ϑ1, . . . , ϑm be complex numbers and κ ≥ 0 be a real
number. Assume that, for any ε > 0, there exists m+1 linearly independent
linear forms L0, . . . , Lm in m + 1 variables, with coefficients in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| <
ε

Hκ
where H = max

0≤k≤m
H(Lk).

Denote by r+1 the dimension of the Q–vector space spanned by 1, ϑ1, . . . , ϑm.
Then r > κ.

Under the assumptions of Corollary 16, since r ≤ m, we deduce κ <m ,
which is a plain consequence of Corollary 15.

We recover Lemma 13 by taking κ = m− 1.
Also we recover the implication (iii) ⇒ (i) from Proposition 3 by taking

κ = 0.

Proof. One can deduce Corollary 16 from Proposition 14 as follows: consider
m − r linearly independent linear relations among 1, ϑ1, . . . , ϑm. Denote
by L̃r+1, . . . , L̃m these linear forms and by c their maximal height. Take
0 < ε < 1/((m + 1)!cm−r). Select r + 1 linear forms L̃0, . . . , L̃r among
L0, . . . , Lm to get a maximal system of m + 1 linearly independent linear
forms L̃0, . . . , L̃m. From Proposition 14 one deduces

1
(m + 1)!cm−rH(L̃0) · · ·H(L̃r)

≤ 1
(m + 1)!H(L̃0) · · ·H(L̃m)

≤ max
0≤k≤m

|L̃k(1, ϑ1, . . . , ϑm)|
H(L̃k)

(17)

≤ max
0≤k≤r

|L̃k(1, ϑ1, . . . , ϑm)|
H(L̃k)

≤ max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)|
H(Lk)

·

From the choice of ε, one concludes Hκ < Hr, hence r > κ.
Here is another proof of Corollary 16, which rests on Corollary 15. Let

1, ξ1, . . . , ξr be a basis of the Q–vector space spanned by 1, ϑ1, . . . , ϑm. De-
fine ξ0 = ϑ0 = 1 and write

ϑh =
r∑

j=0

ahjξj (0 ≤ h ≤ m).
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In particular a00 = 1 and a0j = 0 for 1 ≤ j ≤ m. Define

c = max
0≤j≤r

m∑

h=0

|ahj |

and let ε satisfy 0 < ε< 1/(r + 1)!cr. Let L0, . . . , Lm be the m + 1 linearly
independent linear forms in m + 1 variables with integer coefficients given
by the assumption of Corollary 16. Write

Lk(X0, . . . , Xm) =
m∑

h=0

#khXh (0 ≤ k ≤ m).

By assumption max0≤k,h≤m |#kh| ≤ H. Consider the m + 1 linear forms
Λ0, . . . ,Λm in r + 1 variables Y0, . . . , Yr defined by

Λk(Y0, . . . , Yr) = λk0Y0 + · · · + λkrYr (0 ≤ k ≤ m)

with

λkj =
m∑

h=0

#khahj .

The connexion between the linear forms L0, . . . , Lm in ZX0 + · · ·+ZXm on
the one side and and Λ0, . . . ,Λm in ZY0 + · · · + ZYr on the other side is

Λk(Y0, . . . , Yr) = Lk




r∑

j=0

a0jYj , . . . ,
r∑

j=0

amjYj



 (0 ≤ k ≤ m).

Since 1, ξ1, . . . , ξr are Q–linearly independent, the r+1 columns of the (m+
1)× (r+1) matrix

(
ahj

)
0≤h≤m
0≤j≤r

are linearly independent in Qm+1, hence this
matrix has rank r+1, and therefore the rank of the set of m+1 linear forms
Λ0, . . . ,Λm is r + 1. By construction

Λk(1, ξ1, . . . , ξr) = Lk(1, ϑ1, . . . , ϑm) (0 ≤ k ≤ m).

Applying Corollary 15 to the point (1, ξ1, . . . , ξr) with r + 1 independent
linear forms among Λ0, . . . ,Λm, we deduce

max
0≤k≤m

|Λk(1, ξ1, . . . , ξr)| ≥
1

(r + 1)!H̃r

with
H̃ = max

0≤k≤m
H(Λk) = max

0≤k≤m
0≤j≤r

|λkj | ≤ cH.

Again, from the choice of ε, one concludes Hκ < Hr, hence r > κ.
Corollary 16 follows.
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2.3.2 Nesterenko’s Criterion for linear independence

In 1985, Yu.V. Nesterenko [10], obtained a variant of Proposition 14 (Siegel’s
linear independence criterion). There are two main differences: on the one
hand, Nesterenko does not need m + 1 linearly independent forms, but he
needs only one; at the same time he does not only assumes an upper bound
for the value of this linear form at the point (1, ϑ1, . . . , ϑm), but also a
lower bound. On the other hand, for Nesterenko it is not sufficient to have
infinitely many linear forms as in Siegel’s Proposition 14, but he needs a
sequence of such forms (for all sufficiently large n, and not only for infinitely
many n). A simplification of the original proof by Nesterenko was proposed
by F. Amoroso and worked out by P. Colmez. A new approach, which at
the same time simplifies further the argument and yields refinements, is due
to S. Fischler and W. Zudilin [5].

The main reference for this section is [1].

Theorem 18 (Nesterenko linear independence criterion). Let c1, c2, τ1, τ2

be positive real numbers and σ(n) a non–decreasing positive function such
that

lim
n→∞

σ(n) =∞ and lim sup
n→∞

σ(n + 1)
σ(n)

= 1.

Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm. Assume that, for all sufficiently large integers
n, there exists a linear form with integer coefficients in m + 1 variables

Ln(X) = #0nX0 + #1nX1 + · · · + #mnXm,

which satisfies the conditions

H(Ln) ≤ eσ(n) and c1e
−τ1σ(n) ≤ |Ln(1, ϑ)| ≤ c2e

−τ2σ(n).

Then dimQ(Q + Qϑ1 + · · · + Qϑm) ≥ (1 + τ1)/(1 + τ1 − τ2).

The main result of [1], which relies on the arguments in [5], is the fol-
lowing.

Theorem 19. Let ξ = (ξi)i≥0 be a sequence of real numbers with ξ0 = 1,
(rn)n≥0 a non–decreasing sequence of positive integers, (Qn)n≥0, (An)n≥0

and (Bn)n≥0 sequences of positive real numbers such that limn→∞A1/rn
n =∞

and, for all sufficiently large integers n,

QnBn ≤ Qn+1Bn+1.
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Assume that, for any sufficiently large integer n, there exists a linear form
with integer coefficients in rn + 1 variables

Ln(X) = #0nX0 + #1nX1 + · · · + #rnnXrn

such that
rn∑

i=0

|#in| ≤ Qn, 0 < |Ln(ξ)| ≤ 1
An

and
|Ln−1(ξ)|
|Ln(ξ)| ≤ Bn.

Then An ≤ 2rn+1(BnQn)rn for all sufficiently large integers n.

One deduces from Theorem 19 a slight refinement of Theorem 18 where
the condition lim supn→∞

σ(n+1)
σ(n) = 1 is relaxed, the cost being to replace

σ(n) by σ(n + 1) in the upper bound for |Ln(1, ϑ)|.

Corollary 20. Let τ1, τ2 be positive real numbers and σ(n) a non–decreasing
positive function such that limn→∞ σ(n) = ∞. Let ϑ = (ϑ1, . . . , ϑm) ∈ Rm.
Assume that, for all sufficiently large integers n, there exists a linear form
with integer coefficients in m + 1 variables

Ln(X) = #0nX0 + #1nX1 + · · · + #mnXm

which satisfies the conditions

H(Ln) ≤ eσ(n) and e−(τ1+o(1))σ(n) ≤ |Ln(1, ϑ)| ≤ e−(τ2+o(1))σ(n+1).

Then dimQ(Q + Qϑ1 + · · · + Qϑm) ≥ (1 + τ1)/(1 + τ1 − τ2).

Further consequences of Theorem 19 are given in [1]. See also Corollary
30 below;

3 Criteria for transcendence

The main Diophantine tool for proving transcendence results is Liouville’s
inequality.

3.1 Liouville’s inequality

Recall that the ring Z[X] is factorial, its irreducible elements of positive
degree are the non-constant polynomials with integer coefficients which are
irreducible in Q[X] (i.e. not a product of two non-constant polynomials
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in Q[X]) and have content 1. The content of a polynomial in Z[X] is the
greatest common divisor of its coefficients.

The minimal polynomial of an algebraic number α is the unique irre-
ducible polynomial P ∈ Z[X] which vanishes at α and has a positive leading
coefficient.

The next lemma is one of many variants of Liouville’s inequality (see,
for instance, [7, 13, 15, 9, 11]), which is close to the original one of 1844.

Lemma 21. Let α be a real algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,

∣∣∣∣α−
p

q

∣∣∣∣ ≥
1

(c + ε)qd
·

Proof. Let q be a sufficiently large positive integer and let p be the nearest
integer to qα. In particular

∣∣∣∣α−
p

q

∣∣∣∣ ≤
1
2
·

Denote a0 the leading coefficient of P and by α1, . . . , αd its the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

qdP (p/q) = a0q
d

d∏

i=1

(
p

q
− αi

)
. (22)

Also

P ′(α) = a0

d∏

i=2

(α− αi).

The left hand side of (22) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate

∣∣∣∣αi −
p

q

∣∣∣∣ ≤ |αi − α| + 1
2q

·

We deduce

1 ≤ qda0

∣∣∣∣α−
p

q

∣∣∣∣
d∏

i=2

(
|αi − α| + 1

2q

)
.
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For sufficiently large q the right hand side is bounded from above by

qd

∣∣∣∣α−
p

q

∣∣∣∣ (|P ′(α)| + ε).

The same proof yields the next result.
Define the height H(P ) of a polynomial P with complex coefficients (any

number of variables) as the maximum modulus of its coefficients.

Proposition 23 (Liouville’s inequality). Let α1, . . . , αm be algebraic num-
bers. There exists a constant c = c(α1, . . . , αm) > 0 such that, for any
polynomial P ∈ Z[X1, . . . , Xm] satisfying P (α1, . . . , αm) (= 0, the inequality

|P (α1, . . . , αm)| ≥ H−ce−cd

holds with H = max{2, H(P )} and d the total degree of P .

The constant c can be explicitly computed (see, for instance, [4, 16]),
but this is not relevant here.

The corollary below (which is [11] Prop. 3.1) is useful for proving tran-
scendence results.

Corollary 24. Let ϑ1, . . . , ϑm be complex numbers C. Let σ(n) and λ(n)
be two non–decreasing positive real functions with limn→∞ σ(n) = ∞ and
limn→∞ λ(n)/σ(n) = ∞. Assume that there exists a sequence (Pn)n≥0 of
polynomials in Z[X1, . . . , Xm], with Pn of degree ≤ σ(n) and height H(Pn) ≤
eσ(n), such that, for infinitely many n,

|Pn(ϑ1, . . . , ϑm)| ≤ e−λ(n).

Then one at least one of the numbers ϑ1, . . . , ϑm is transcendental.

3.2 Transcendence criterion of A. Durand

Liouville’s result is not a necessary and sufficient condition for transcen-
dence. One way of extending the irrationality criterion of Proposition 1 into
a transcendence criterion is to replace rational approximation by approxi-
mation by algebraic numbers. For instance, given an integer d, one gets a
criterion for ϑ not being algebraic of degree ≤ d by considering algebraic
approximation of ϑ by algebraic numbers of degree ≤ d. One may also let d
vary and get a transcendence criterion as follows.

22



Define the height of a H(α) of an algebraic number α as the height of
its irreducible polynomial in Z[X], and the size s(α) as

s(α) := [Q(α) : Q] + log H(α).

The following result (we shall not use it and we do not include a proof) is
due to A. Durand [2, 3].

Proposition 25. Let ϑ be a complex number. The following conditions are
equivalent
(i) ϑ is transcendental.
(ii) For any κ > 0 there exists and algebraic number α such that

0 < |ϑ− α| < e−κs(α).

(iii) There exists a sequence (αn)n≥0 of pairwise distinct algebraic numbers
such that

lim
n→∞

log |ϑ− αn|
s(αn)

= −∞.

Another way of getting transcendence criteria for a number ϑ (resp. cri-
teria for ϑ not being of degree ≤ d) is to consider polynomial approximations
|P (ϑ)| by polynomials in Z[X] (resp. by polynomials of degree ≤ d).

4 Criteria for algebraic independence

4.1 Small transcendence degree: Gel’fond’s criterion

Gel’fond’s criterion (see, for instance, [7, 15, 9, 11]) is a powerful tool to
prove the algebraic independence of at least two numbers.

A slightly refined version (due to A. Chantanasiri) is the following one.
Define the size t(P ) of a polynomial P ∈ C[X] as

t(P ) := log H(P ) + (log 2) deg P.

Theorem 26 (Gel’fond’s transcendence Criterion). Let ϑ ∈ C and let γ be
a real number with γ > 1. Let (dn)∞n=1 and (tn)∞n=1 be two non–decreasing
sequences of real numbers with limn→∞ tn =∞. Assume that there exists a
sequence (Pn)n≥0 of polynomials in Z[X] with Pn of degree ≤ dn and size
t(Pn) ≤ tn such that, for all sufficiently large integer n,

|Pn(ϑ)| ≤ e−γ(dntn+dn+1tn+dntn+1).

Then ϑ is algebraic and Pn(ϑ) = 0 for all sufficiently large n.
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A consequence is Lemma 3.5 of [11].

Corollary 27. Let ϑ ∈ C and let σ(n) be a non–decreasing unbounded
positive real function. Assume that there exists a sequence (Pn)n≥0 of poly-
nomials in Z[X] with Pn of size t(Pn) ≤ σ(n) such that, for all sufficiently
large integer n,

|Pn(ϑ)| ≤ e−5σ(n+1)2 .

Then ϑ is algebraic and Pn(ϑ) = 0 for all sufficiently large n.

This result is useful to prove that in some given set of specific numbers,
at least two numbers are algebraically independent ([11] § 3.3 Prop. 3.3).

Corollary 28. Let ϑ1, . . . , ϑm be complex numbers C. Let σ(n) and λ(n)
be two non–decreasing positive real function with limn→∞ σ(n) = ∞ and
limn→∞ λ(n)/σ(n+1)2 =∞. Assume that there exists a sequence (Pn)n≥0 of
polynomials in Z[X1, . . . , Xm], with Pn of degree ≤ σ(n) and height H(Pn) ≤
eσ(n), such that, for all sufficiently large n,

0 < |Pn(ϑ1, . . . , ϑm)| ≤ e−λ(n).

Then one at least two of the numbers ϑ1, . . . , ϑm are algebraically indepen-
dentl.

One should stress the following differences with Corollary 24: the conclu-
sion of Theorem 26 is that the transcendence degree of the field Q(ϑ1, . . . , ϑm)
is at least 2, while Liouville’s argument shows only that it is at least 1. There
is a price for that. On the one hand, the assumption limn→∞ λ(n)/σ(n +
1)2 =∞ is stronger than the assumption limn→∞ λ(n)/σ(n) =∞ in Corol-
lary 24 (what is important is the square, not the n+1 in place of n). On the
other hand, Liouville’s assumption is assumed to be satisfied for infinitely
many n, while Gel’fond requires it for all sufficiently large n.

4.2 Large transcendence degree

It took some time before an extension of Gell’fond’s transcendence crite-
rion could be extended into a criterion for large transcendence degree. One
approach suggested by S. Lang [7] involves his so-called transcendence type
(see [11] § 7.3): this is an assumption which amounts to avoid Liouville type
numbers. The idea is to prove algebraic independence by induction, but the
results which are obtained in this way are comparatively weak.

One might hope that assuming limn→∞ λ(n)/σ(n + 1)k = ∞ in Corol-
lary 28 would suffice to prove that the transcendence degree of the field
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Q(ϑ1, . . . , ϑm) is at least k. However this is not the case, as an example
from Khinchine (reproduced in Cassels book on Diophantine approxima-
tion) shows. The first one to obtain a criterion for large transcendence
degree was G.V. Chudnovskii in 1976. The original criterion was not sharp,
the estimate for the transcendence degree was the logarithm of the expected
one. A few years later Philippon reached the optimal exponent.

One of the main tools, in Nesterenko’s proof of his main result (Theorem
4.2 in [11]), is this criterion for algebraic independence due to Philippon ([11]
Chap. 6). Here is Corollary 6.2 of [11]. See also [12, 9].

Theorem 29. Let ϑ1, . . . , ϑm be complex numbers, σ(n) and S(n) be two
non–decreasing positive real functions and k be a real number in the range
1 ≤ k ≤ m. Assume that the functions

σ(n) and
S(n− 1)
σ(n)k

are non–decreasing and unbounded. Assume, further, that there exists a
constant c0 and a sequence (Pn)n≥0 of polynomials in Z[X] with Pn of size
t(Pn) ≤ σ(n) such that, for all sufficiently large n,

e−c0S(n−1) < |Pn(ϑ1, . . . , ϑm)| ≤ e−S(n).

Then the transcendence degree over Q of the field Q(ϑ1, . . . , ϑm) is > k− 1.

The special case k = 1 of this result is close (but weaker) than Corollary
24, the special case k = 2 of this result is close (but weaker) than Theorem
26 (where no lower bound was requested).

It is interesting to compare with the following criterion for algebraic
independence (Corollary 3.6 of [1]), which is a corollary of Theorem 19.

Corollary 30. Let ϑ1, . . . , ϑt be real numbers and (τd)d≥1, (ηd)d≥1 two se-
quences of positive real numbers satisfying

τd

dt−1(1 + ηd)
−→ +∞.

Further, let σ(n) be a non–decreasing unbounded positive real function. As-
sume that for all sufficiently large d, there is a sequence (Pn)n≥n0(d) of poly-
nomials in Z[X1, . . . , Xt], where Pn has degree ≤ d and length ≤ eσ(n), such
that, for n ≥ n0(d),

e−(τd+ηd)σ(n) ≤ |Pn(ϑ1, . . . , ϑt)| ≤ e−τdσ(n+1).

Then ϑ1, . . . , ϑt are algebraically independent.
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The proof of Corollary 30 is much easier than the proof of Theorem 29,
since it relies on linear elimination instead of polynomial elimination. Unfor-
tunately, Corollary 30 does not seem to suffice for the proof of Nesterenko’s
algebraic independence Theorem on q, P (q), Q(q) and R(q) (Theorem 4.2
of [11]).

Appendix: the resultant of two polynomials in one variable

The main tool for the proof of Gel’fond’s criterion is the resultant of two
polynomials in one variable.

Given two linear equations in two unknowns
{

a1x + b1y = c1,
a2x + b2y = c2,

in order to compute y, one eliminates x. This amounts to find the projection
on the y axis of the intersection point (x, y) of two lines in the plane. More
generally, linear algebra enables one so find the intersection point (unique
in general) of n hyperplanes in dimension n by means of a determinant.

Given two plane curves

f(x, y) = 0 and g(x, y) = 0

without common components, there are only finitely many intersection points;
the values y of the coordinates (x, y) of these points are roots of a polynomial
R in K0[Y ], where K0 is the base field. This polynomial is computed by
eliminating x between the two equations f(x, y) = 0 and g(x, y) = 0. The
ideal of K0[Y ] which is the intersection of K0[Y ] with the ideal of K0[X, Y ]
generated by f and g is principal, and R is a generator: there is a pair
(U, V ) of polynomials in K0[X, Y ] such that R = Uf + V g. If (U, V ) sat-
isfies this Bézout condition, then so does (U −Wg, V + Wf) for any W in
K0[X, Y ]. By Euclidean division in the ring K0[Y ][X] of U by g, one gets a
solution (U, V ) with deg U < deg g, and then deg V < deg f . When f and f
have no common factor, such a pair (U, , V ) is unique up to a multiplicative
constant. When f and g have their coefficients in a domain A0 in place of
a field K0, one takes for K0 the quotient field of A0 and one multiplies by
a denominator, so that U and V can be taken as polynomials in A0[X,Y ],
and then R ∈ A0.

The multiplicities of intersection of the two curves are reflected by the
multiplicities of zeros of the roots of R as a polynomial in Y .

It is useful to work with a ring A more general than A0[Y ]. Let A be a
commutative ring with unit. Denote by S the ring A[X] of polynomials in
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one variable with coefficients in A. For d a non-negative integer, let Sd be
the A–module of elements in S of degree ≤ d. Then Sd is a free A–module
of rank d + 1 with a basis 1, X, . . . , Xd.

Let P and Q be polynomials of degrees p and q respectively

P (X) = a0 + a1X + · · · + apX
p, Q(X) = b0 + b1X + · · · + bqX

q.

The homomorphism of A–modules

Sq−1 × Sp−1 −→ Sp+q−1

(U, V ) *−→ UP + V Q

has the following matrix in the given bases:




a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
...

... · · ·
...

...
... . . . ...

ap−1 ap−2 · · · 0 bp−1 bp−2 · · · b0

ap ap−1 · · · 0 bp bp−1 · · · b1

0 ap · · · 0 bp+1 bp · · · b2
...

... · · ·
...

...
... . . . ...

0 0 · · · a0 bq−1 bq−2 · · · bq−p

0 0 · · · a1 bq bq−1 · · · bq−p+1

0 0 · · · a2 0 bq · · · bq−p+2
...

... · · ·
...

...
... . . . ...

0 0 · · · ap 0 0 · · · bq





The q first columns are the components, in the basis (1, X, . . . , Xp+q−1), of
P,XP, . . . , Xq−1P , while the p last columns are the components, in the same
basis, of Q, XQ, . . . ,Xp−1Q. The main diagonal is (a0, . . . , a0, bq, . . . , bq).

Definition. The resultant of P and Q is the determinant of this matrix. We
denote it by Res(P,Q). The universal resultant is the resultant of the two
polynomials

U0 + U1X + · · · + UpX
p, et V0 + V1X + · · · + VqX

q,

in the ring Apq = Z[U0, U1, . . . , Up, V0, V1, . . . , Vq] of polynomials with coef-
ficients in Z in p + q + 2 variables. One deduces the resultant of P and Q
by specialisation, i.e. as the image under the canonical homomorphism from
Apq to A which maps Ui to ai and Vj to bj . When the characteristic is 0,
this canonical homomorphism is injective.

The above determinant suffices to deduce:
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Proposition 31. The universal resultant is a polynomial in

U0, U1, . . . , Up, V0, V1, . . . , Vq

which is homogeneous of degree q in U0, . . . , Up, and homogeneous of degree
p in V0, . . . , Vq.

Proposition 32. There exist two polynomials U and V in S, of degrees < q
and < p respectively, such that the resultant R = Res(P,Q) of P and Q can
be written R = UP + V Q.

It follows that if P and Q have a common zero in some field containing
A, then Res(P,Q) = 0. The converse is true. It uses the following easy
property, whose is left as an exercise.

Proposition 33. Let A0 be a ring, A = A0[Y1, . . . , Yn] the ring of polynomi-
als in n variables with coefficients in A0, and P , Q elements in A0[Y0, . . . , Yn],
homogeneous of degrees p and q respectively. Consider P and Q as elements
in A[Y0] and denote by R = ResY0(P,Q) ∈ A their resultant with respect to
Y0. Then R is homogeneous of degree pq in Y1, . . . , Yn.

From these properties we deduce:

Proposition 34. . – If

P (X) = a0

p∏

i=1

(X − αi) and Q(X) = b0

q∏

j=1

(X − βj),

then
Res(P,Q) = aq

0b
p
0

∏p
i=1

∏q
j=1(αi − βj)

= (−1)pqbp
0

∏q
j=1 P (βj)

= aq
0

∏p
i=1 Q(αi).

Proof. Without loss of generality one, may assume that A is the ring of poly-
nomials with coefficients in Z in the variables a0, b0, α1, . . . , αp, β1, . . . , βq.
In this factorial ring, αi − βj is an irreducible element which divides R =
Res(P,Q) (indeed, if one specializes αi = βj , then the resultant vanishes).
Now

aq
0b

p
0

p∏

i=1

q∏

j=1

(αi − βj)

is homogenous of degree q in the coefficients of P and of degree p in the
coefficients of Q. Therefore it can be written cR with some c ∈ Z. Finally
the coefficient of the monomial ap

0b
q
0 is 1, hence c = 1.
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Corollary 35. Let K be a field containing A in which P and Q completely
split in factors of degree 1. Then the resultant Res(P,Q) is zero if and only
if P and Q have a common zero in K.

Corollary 36. If the ring A is factorial, then Res(P,Q) = 0 if and only if
P and Q have a common irreducible factor.
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