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Professeur Émérite, Sorbonne Université,
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Abstract

Given a polynomial in several variables with rational integer
coefficients, we investigate the set of integer tuples where this
polynomial vanishes. One of the best know examples is
Fermat’s equation xn + yn = zn. Another family is given by
the so–called Pell–Fermat equations x2 − dy2 = ±1 already
considered by Brahmagupta (598 - 670) and Bhāskārāchārya
(1114 - 1185). After a short historical survey on this subject
starting with Hilbert’s 10th Problem, we describe the state of
the art concerning integer points on curves f(x, y) = k,
including work of Thue, Siegel, Gel’fond, Baker, Schmidt.
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Diophantus of Alexandria (∼ 250 ±50)

Diophantine quadruples : (1, 3, 8, 120) xy + 1 is a square :
4 = 22, 9 = 32, 121 = 112, 25 = 52, 361 = 192, 961 = 312.

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford University Press, Oxford, sixth ed., 2008.
Revised by D. R. Heath-Brown and J. H. Silverman.

https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/
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Diophantus of Alexandria : example

Find an integer n such that 10n+ 9 and 5n+ 4 are squares :

x2 = 10n+ 9, y2 = 5n+ 4

x2 − 2y2 = 1.

n = 0, (x, y) = (3, 2), x2 = 9, y2 = 4.

n = 28, (x, y) = (17, 12), x2 = 289, y2 = 144, 2y2 = 288.

n = 33 292, (x, y) = (577, 408),
x2 = 332 929, y2 = 166 464, 2y2 = 332 928.

Next ones : n = 1130, 976, n = 13 051 463 040.
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Rational solutions to x2 − 2y2 = 1

y = t(x+ 1), t ∈ Q

2t2(x+ 1)2 = x2 − 1,

2t2(x+ 1) = x− 1,

x =
1 + 2t2

1− 2t2
, y =

2t

1− 2t2
·

t =
2

3
, 1− 2t2 =

1

9
, 1 + 2t2 =

17

9
, (x, y) = (17, 12).
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Pythagorean triples

Euclid
∼325 BC – ∼ 265 BC

Parametrisation of the circle :
x2 + y2 = 1
rational points on the circle
y = t(x+ 1) :

x =
t2 − 1

t2 + 1
, y =

2t

t2 + 1
·

Pythagoras equation a2 + b2 = c2 (ref. : Hardy and Wright)
m > n > 0,

a = m2 − n2, b = 2mn, c = m2 + n2.

Credit photo
https://mathshistory.st-andrews.ac.uk/Biographies/Euclid/
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Integer solutions to x2 − 2y2 = 1

x2 − 2y2 = 1.

Pell–Fermat equation

(x, y) = (3, 2)

(3 + 2
√
2)2 = 17 + 12

√
2, 172 − 2 · 122 = 289− 288 = 1.

(3+2
√
2)3 = 99+70

√
2, 992−2 ·702 = 9801−2 ·4000 = 1.

(3+2
√
2)5 = 577+408

√
2, 5772−2·4082 = 232 929−2·166 464 = 1.
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An interesting street number
The puzzle itself was about a street in the town of Louvain in

Belgium, where houses are numbered consecutively. One of the

house numbers had the peculiar property that the total of the

numbers lower than it was exactly equal to the total of the

numbers above it. Furthermore, the mysterious house number was

greater than 50 but less than 500.

Prasanta Chandra Mahalanobis

1893 – 1972

Srinivasa Ramanujan

1887 – 1920

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html

https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf

8 / 58

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html
https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf


Street number : examples
Examples :
• House number 6 in a street with 8 houses :

1 + 2 + 3 + 4 + 5 = 15, 7 + 8 = 15.

• House number 35 in a street with 49 houses. To compute

S := 1 + 2 + 3 + · · ·+ 32 + 33 + 34

write
S = 34 + 33 + 32 + · · ·+ 3 + 2 + 1

so that 2S = 34× 35 :

1 + 2 + 3 + · · ·+ 34 =
34× 35

2
= 595.

On the other side of the house,

36+ 37+ · · ·+49 =
49× 50

2
− 35× 36

2
= 1225− 630 = 595.
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Other solutions to the puzzle

• House number 1 in a street with 1 house.

• House number 0 in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will
each student get a banana ?

The puzzle requests the house number between 50 and 500.
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Street number

Let m be the house number and n the number of houses :

1 + 2 + 3 + · · ·+ (m− 1) = (m+ 1) + (m+ 2) + · · ·+ n.

m(m− 1)

2
=
n(n+ 1)

2
− m(m+ 1)

2
·

This is 2m2 = n(n+ 1). Complete the square on the right :

8m2 = (2n+ 1)2 − 1.

Set x = 2n+ 1, y = 2m. Then

x2 − 2y2 = 1.
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Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single
one between 50 and 500).
Sequence of balancing numbers (number of the house)
https://oeis.org/A001109

0, 1, 6, 35,204, 1189, 6930, 40391, 235416, 1372105, 7997214 . . .

This is a linear recurrence sequence un+1 = 6un − un−1 with
the initial conditions u0 = 0, u1 = 1.

The number of houses is https://oeis.org/A001108

0, 1, 8, 49,288, 1681, 9800, 57121, 332928, 1940449, . . .
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OEIS

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/A001597 http://oeis.org/A001333

13 / 58

http://oeis.org/A001597
http://oeis.org/A001333


Brahmagupta (598 – 670)
Brāhmasphut.asiddhānta : Solve in integers the equation

x2 − 92y2 = 1

The smallest solution is

x = 1151, y = 120.

Composition method : samasa – Brahmagupta identity

(a2 − db2)(x2 − dy2) = (ax+ dby)2 − d(ay + bx)2.

http://mathworld.wolfram.com/BrahmaguptasProblem.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Bhāskara II or Bhāskārāchārya (1114 - 1185)

L̄ılāvat̄ı Ujjain (India)

Bijaganita, (1150)

x2 − 61y2 = 1

x = 1766 319 049, y = 226 153 980.

Cyclic method Chakravala : produces a solution to Pell’s
equation x2 − dy2 = 1 starting from a solution to
a2 − db2 = k with a small k.
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Reference to Indian mathematics

André Weil
Number theory :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004
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Pell’s equation x2 − dy2 = ±1

John Pell

1610 – 1685

It is often said that Euler mistakenly attributed Brouncker’s
work on this equation to Pell. However the equation appears in
a book by Rahn which was certainly written with Pell’s help :
some say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation.

Johann Rahn (1622 - 1676) was a Swiss mathematician who
was the first to use the symbol ÷ for division.

https://mathshistory.st-andrews.ac.uk/Biographies/Pell/

https://fr.wikipedia.org/wiki/John_Pell
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On the equation x2 − dy2 = ±1 : history

Lord William Brouncker

1620–1684

Pierre de Fermat

1601–1665

Correspondence from Pierre de Fermat to Brouncker.

1657 : letter of Fermat to Frenicle de Bessy (1604–1674).

https://mathshistory.st-andrews.ac.uk/Biographies/
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History (continued)

Leonard Euler

1707–1783

Joseph–Louis Lagrange

1736–1813

L. Euler : Book of algebra in 1770 + continued fractions

The complete theory of the equation x2 − dy2 = ±1 was
worked out by Lagrange.

https://mathshistory.st-andrews.ac.uk/Biographies/
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Solution of the equation x2 − dy2 = ±1
Let d be a positive integer, not a square. Then the equation
x2 − dy2 = ±1 has infinitely many non negative solutions in
integers (x, y).

There is a smallest positive fundamental solution (x1, y1) such
that all non negative solutions are obtained by writing

xν + yν
√
d = (x1 + y1

√
d)ν

with ν > 0.

The trivial solution (x, y) = (1, 0) is obtained with ν = 0.

The set of solutions (x, y) in Z× Z is given by

xν + yν
√
d = ±(x1 + y1

√
d)ν

with ν ∈ Z. They form a group ' {±1} × Z.
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Group law on a conic

The curve x2 − dy2 = 1 is a conic, and on a conic there is a
group law which can be described geometrically. The fact that
it is associative is proved by using Pascal’s Theorem.

Franz Lemmermeyer. Conics – a poor man’s elliptic curves.
https://arxiv.org/pdf/math/0311306.pdf
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Mahalanobis puzzle x2 − 2y2 = 1, x = 2n+ 1, y = 2m

Fundamental solution : (x1, y1) = (3, 2).
Other solutions (xν , yν) with

xν + yν
√
2 = (3 + 2

√
2)ν .

• ν = 0, trivial solution : x = 1, y = 0, m = n = 0.
• ν = 1, x1 = 3, y1 = 2, m = n = 1.
• ν = 2, x2 = 17, y2 = 12, n = 8, m = 6,

x2 + y2
√
2 = (3 + 2

√
2)2 = 17 + 12

√
2.

• ν = 3, x3 = 99, y3 = 70, n = 49, m = 35,

x3 + y3
√
2 = (3 + 2

√
2)3 = 99 + 70

√
2.
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Diophantus problem

Find an integer n such that 10n+ 9 and 5n+ 4 are squares :

x2 = 10n+ 9, y2 = 5n+ 4

x2 − 2y2 = 1 http://oeis.org/A001333

1, 3, 17, 99, 577, 3 363, 19 601, 114 243, 665 857, 3 880 899, . . .

x = 3, 17, 577, 3 363, 114 243, . . .

n =
x2 − 9

10
= 0, 28, 33 292, 1 130, 976, 1 305 146 304 . . .
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Pierre de Fermat

Pierre de Fermat
1601–1665

Andrew Wiles

Proof of Fermat’s last Theorem by Andrew Wiles (1993) : for
n > 3, there is no positive integer solution (a, b, c) to

an + bn = cn.
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Ramanujan – Nagell Equation

Srinivasa Ramanujan
1887 – 1920

Trygve Nagell
1895 – 1988
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Ramanujan – Nagell Equation

x2 + 7 = 2n

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32
112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768
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x2 +D = 2n

Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0,
D 6= 7, the equation
x2 +D = 2n has at most 2
solutions.

Roger Apéry
1916 – 1994

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2048

D = 2`+1 − 1, ` > 3 : (2` − 1)2 + 2`+1 − 1 = 22`
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x2 +D = 2n

Beukers (1980) : at most one solution otherwise.

Frits Beukers Mike Bennett

M. Bennett (1995) : considers the case D < 0.
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Diophantine equations : early historical survey

Pierre Fermat (1601 ? – 1665)

Leonhard Euler (1707 – 1783)

Joseph Louis Lagrange (1736 – 1813)

XIXth Century : Adolf Hurwitz, Henri Poincaré
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Hilbert’s 8th Problem

David Hilbert
1862 – 1943

Second International Congress
of Mathematicians in Paris.
August 8, 1900

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis

http://www.maa.org/sites/default/files/pdf/upload$_-$library/22/Ford/Thiele1-24.pdf
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Hilbert’s tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert’s 10th problem

Julia Robinson (1952)

Julia Robinson, Martin Davis, Hilary Putnam (1961)

Yuri Matijasevic (1970)

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
Does there exist an algorithm in order to decide whether a
Diophantine equation has a rational solution or not ?
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Diophantine equations : historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x, y) = m,

when F is homogeneous irreducible form over Q of degree > 3.
Mordell’s Conjecture (1922) : rational points on algebraic
curves
Siegel’s Theorem (1929) : integral points on algebraic curves

Axel Thue
1863 - 1922

Louis Mordell
1888 – 1972

Carl Ludwig Siegel
1896 - 1981
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Mordell’s Conjecture, Faltings’s Theorem

Mordell’s Conjecture : 1922. Faltings’s Theorem (1983).
The set of rational points on a number field of a curve of
genus > 2 is finite.

Louis Mordell
1888 – 1972

Gerd Faltings
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The group of rational points on an elliptic curve
Conjecture (Henri Poincaré, 1901) : finitely many points are
sufficient to deduce all rational points by the chord and
tangent method.

Henri Poincaré
1854 – 1912

Louis Mordell
1888 – 1972

Theorem (Mordell, 1922). If E is an elliptic curve over Q,
then the abelian group E(Q) is finitely generated : there exists
a nonnegative integer r (the Mordell-Weil rank of the curve
over Q) such that

E(Q) = E(Q)tors × Zr

and E(Q)tors is a finite group.
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Mordell–Weil Theorem
André Weil (1928) : generalization to number fields and
abelian varieties :
If A is an Abelian variety over a number field K, then the
abelian group A(K) is finitely generated :

A(K) = A(K)tors × Zr

with r > 0 while A(K)tors is a finite group.

Jacques Hadamard
1865 - 1963

André Weil
1906 – 1998

Weil’s thesis : 1928. Hadamard’s comment.
Reference : Antoine Chambert-Loir. La conjecture de Mordell : origines, approches, généralisations. Séminaire
Betty B., Septembre 2021 5e année, 2021–2022
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Axel Thue

Axel Thue
1863 - 1922

Thue (1908) : there are only
finitely many integer solutions
of

F (x, y) = m,

when F is homogeneous
irreducible form over Q of
degree > 3.
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Liouville’s inequality (1844)

Liouville’s inequality . Let α
be an algebraic number of
degree d > 2. There exists
c(α) > 0 such that, for any
p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd
· Joseph Liouville

1809–1882
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Liouville’s estimate for 3
√
2 :

For any p/q ∈ Q, ∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

Proof.
Since 3

√
2 is irrational, for p and q rational integers with q > 0,

we have p3 − 2q3 6= 0, hence

|p3 − 2q3| > 1.

Write

p3 − 2q3 = (p− 3
√
2q)(p2 +

3
√
2pq +

3
√
4q2).

If p 6 (3/2)q, then

p2 +
3
√
2pq +

3
√
4q2 < 6q2.

Hence
1 6 6q2|p− 3

√
2q|.
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Liouville’s estimate for 3
√
2 :

For any p/q ∈ Q, ∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

Proof.
We completed the proof in the case p 6 (3/2)q.
If p > (3/2)q, then∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 3

2
− 3
√
2 >

1

6
·
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Improving Liouville’s inequality
If we can improve the lower bound

|p3 − 2q3| > 1,

then we can improve Liouville’s estimate∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

6q3
·

What turns out to be much more interesting is the converse :
If we can improve Liouville’s estimate∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

6q3
,

then we can improve the lower bound

|p3 − 2q3| > 1.
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Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d > 3, the exponent d of
q in the denominator of the right hand side was replaced by κ
with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√
d by C.L. Siegel in 1921,

•
√
2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any κ > 2 by K.F. Roth in 1955.
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Thue– Siegel– Roth Theorem

Axel Thue
1863 - 1922

Carl Ludwig Siegel
1896 - 1981

Klaus Friedrich Roth
1925 – 2015

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.
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Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number α and for any ε > 0, there exists q0 > 0
such that, for p/q ∈ Q with q > q0, we have

|α− p/q| > q−2−ε.
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Thue equation and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√
2 : ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

4 q2.5
·
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Mike Bennett http://www.math.ubc.ca/~bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > 1

4 q2.5
·

For any (x, y) ∈ Z2 with
x > 0,

|x3 − 2y3| >
√
x.
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Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ 6 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y3| > c2 x
3−κ

for any (x, y) ∈ Z2 having x > 0.
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Thue’s equation and approximation

Let f ∈ Z[X] be an irreducible polynomial of degree d and let
F (X,Y ) = Y df(X/Y ) be the associated homogeneous binary
form of degree d. Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x, y) ∈ Z2 verifying

F (x, y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ 6 κ

qd

is finite.
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Thue equation

Condition (i) above :

For any integer k 6= 0, the set of (x, y) ∈ Z2 verifying

F (x, y) = k

is finite.

can also be phrased by stating that for any positive integer k,
the set of (x, y) ∈ Z2 verifying

0 < |F (x, y)| 6 k

is finite.
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Schmidt’s Subspace Theorem (1970)

For m > 2 let L0, . . . , Lm−1

be m independent linear
forms in m variables with
algebraic coefficients. Let
ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · ·Lm−1(x)| 6 |x|−ε}
is contained in the union of
finitely many proper
subspaces of Qm.

Wolfgang M. Schmidt
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Effectivity

The Theorem of Thue–Siegel–Roth–Schmidt is not effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.

Faltings’s Theorem is not effective : so far, there is no known
effective bound for the solutions (x, y) ∈ Q2 of a Diophantine
equation f(x, y) = 0, where f ∈ Z[X,Y ] is a polynomial such
that the curve f(x, y) = 0 has genus > 2.

Even for integral points, there is no effective version of Siegel’s
Theorem on integral points on a curve of genus > 2.
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Number of solutions

G. Rémond (2000) : explicit
upper bound for the number
of solutions in Faltings’s
Theorem.

Gaël Rémond
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Effective version of Siegel’s Theorem (genus 1)

A. Baker and J. Coates. Integer points on curves of genus 1.
Proc. Camb. Philos. Soc. 67, 595–602 (1970).

Alan Baker
1939 – 2018

John Coates
(1945 – 2022)
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Gel’fond–Baker method

While Thue’s method was based on the non effective
Thue–Siegel–Roth Theorem, Baker and Fel’dman followed an
effective method introduced by A.O. Gel’fond, involving lower
bounds for linear combinations of logarithms of algebraic
numbers with algebraic coefficients.

Alexandre Ossipovitch Gel’fond
1906–1968

Alan Baker
1939 – 2018
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing difference

α1
b1 · · ·αnbn − 1

is essentially the same as a lower bound for a nonvanishing
number of the form

b1 logα1 + · · ·+ bn logαn,

since ez − 1 ∼ z for z → 0.
The first nontrivial lower bounds were obtained by
A.O. Gel’fond. His estimates were effective only for n = 2 : for
n > 3, he needed to use estimates related to the
Thue–Siegel–Roth Theorem.
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Explicit version of Gel’fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel’fond.
in his lower bound for∣∣α1

b1α2
b2 − 1

∣∣ .
Andrzej Schinzel

1937–1921

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel’fond.
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Alan Baker (1939 – 2018)

Alan Baker
1939 – 2018

In 1968, A. Baker succeeded
to extend to any n > 2 the
transcendence method used
by A.O. Gel’fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue’s equations have
been derived.
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Professeur Émérite, Sorbonne Université,
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