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Abstract

Given a polynomial in several variables with rational integer
coefficients, we investigate the set of integer tuples where this
polynomial vanishes. One of the best know examples is
Fermat's equation ™ 4+ y" = z". Another family is given by
the so—called Pell-Fermat equations 22 — dy? = +1 already
considered by Brahmagupta (598 - 670) and Bhaskaracharya
(1114 - 1185). After a short historical survey on this subject
starting with Hilbert's 10th Problem, we describe the state of
the art concerning integer points on curves f(z,y) = k,
including work of Thue, Siegel, Gel'fond, Baker, Schmidt.
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Diophantus of Alexandria (~ 250 +50)

Diophantine quadruples : (1,3,8,120) zy + 1 is a square :
4=2%9=3% 121 =11%, 25 =52, 361 = 19%, 961 = 312.

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford University Press, Oxford, sixth ed., 2008.

Revised by D. R. Heath-Brown and J. H. Silverman.

https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/

[m] = = =

DA
3/58


https://mathshistory.st-andrews.ac.uk/Biographies/Diophantus/

Diophantus of Alexandria : example

Find an integer n such that 10n + 9 and 5n + 4 are squares :

> =10n+9, y*=5n+4

z? — 2% = 1.

n=0,(z,y) =(3,2), 22 =9, y* = 4.
n =28, (1,y) = (17,12), 22 = 289, 42 = 144, 24> = 288.

n = 33292, (z,y) = (577,408),
22 =332929, y? = 166464, 2y = 332928,

Next ones : n = 1130,976, n = 13051463 040.
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Rational solutions to 2 — 2y? = 1

/\ y:t(:v+1),t6(@/jl \

2% (z + 1) = 2 — 1,
2 (z+1) =0 — 1,

142 2t

YT I Do YT 1o

2 1 17
t==, 1-22=—=, 1+2>=—, Jy) = (17,12).
. g lre=T (ny)=(17,12)
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Pythagorean triples

WV Parametrisation of the circle :
| 2 + y2 -1

rational points on the circle
y=tx+1):

Euclid
~325 BC — ~ 265 BC

t?—1 ot m

Pythagoras equation a? + 0*> = ¢ (ref. : Hardy and Wright)
m>mn >0,

a=m?—n% b=2mn, c=m>+n’
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Integer solutions to 22 — 2y = 1

2 — 2% = 1.

Pell-Fermat equation
(z,y) = (3,2)
(34+2v2)? =17+12v2, 172 —2.122 =289 — 288 = 1.
(342v2)% = 994+70v2, 992 —2.70% = 9801 —2-4000 = 1.

(34+2V/2)° = 577+408V2, 5772-2.408% = 2329292166 464 = 1.



An interesting street number

The puzzle itself was about a street in the town of Louvain in
Belgium, where houses are numbered consecutively. One of the
house numbers had the peculiar property that the total of the
numbers lower than it was exactly equal to the total of the
numbers above it. Furthermore, the mysterious house number was
greater than 50 but less than 500.

) Srinivasa Ramanujan
Prasanta Chandra Mahalanobis 1887 — 1920

1893 - 1972

http://mathshistory.st-andrews.ac.uk/Biographies/Mahalanobis.html
https://www.math.auckland.ac.nz/~butcher/miniature/miniature2.pdf
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Street number : examples

Examples :
e House number 6 in a street with 8 houses :

1+2+3+44+5=15, T7+8=15.
e House number 35 in a street with 49 houses. To compute
S =1424+3+---4+324+33+34

write
S=34+33+32+---+3+2+1
so that 25 = 34 x 35 :

34 % 35
X299 _ 595.

1+2+3+-- 434 =

On the other side of the house,
49 x 50 _ 35 x 36

= 1225 - 630 = 595.
2 2

36+37+---+49 =




Other solutions to the puzzle

e House number 1 in a street with 1 house.

e House number O in a street with 0 house.

Ramanujan : if no banana is distributed to no student, will
each student get a banana ?

The puzzle requests the house number between 50 and 500.
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Street number

Let m be the house number and n the number of houses :

142434+ m—1)=m+1)+m+2)+- +n

m(m—1) nn+1) m(m+1)

2 2 2
This is 2m? = n(n + 1). Complete the square on the right :

8m*=(2n+1)* - 1.
Set x =2n+ 1, y = 2m. Then

2 — 2% = 1.
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Infinitely many solutions to the puzzle

Ramanujan said he has infinitely many solutions (but a single
one between 50 and 500).

Sequence of balancing numbers (number of the house)
https://oeis.org/A001109

0,1,6, 35,204, 1189, 6930,40391, 235416, 1372105, 7997214 . ..

This is a linear recurrence sequence u,, 1 = 6u,, — u,_1 with
the initial conditions ug = 0, u; = 1.

The number of houses is https://oeis.org/A001108

0,1,8,49,288,1681,9800, 57121, 332928, 1940449, . ..
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OEIS
013627 THE ON-LINE ENCYCLOPEDIA
2'3(?5%2 OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane

Neil J. A. Sloane’s encyclopaedia
http://oeis.org/A001597 http://oeis.org/A001333
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Brahmagupta (598 — 670)

Brahmasphutasiddhanta : Solve in integers the equation

r? —92y* =1

The smallest solution is

r=1151,  y=120.

Composition method : samasa — Brahmagupta identity

(a® — db®)(z* — dy®) = (ax + dby)* — d(ay + bz)>.

http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Bhaskara Il or Bhaskaracharya (1114 - 1185)
Lilavatr Ujjain (India)
Bijaganita, (1150)

2% — 61y =

x = 1766319049, y = 226153 980.

Cyclic method Chakravala : produces a solution to Pell's
equation 2% — dy? = 1 starting from a solution to

a? — db* = k with a small k.
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Reference to Indian mathematics

André Weil

Number theory : ANDRE WEIL
An approach through history. "'“_'_""": i
From Hammurapi to T ;
Legendre.

Birkhauser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004
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Pell’s equation z? — dy? = %1

John Pell

1610 - 1685
It is often said that Euler mistakenly attributed Brouncker's
work on this equation to Pell. However the equation appears in
a book by Rahn which was certainly written with Pell's help :
some say entirely written by Pell. Perhaps Euler knew what he
was doing in naming the equation.

Johann Rahn (1622 - 1676) was a Swiss mathematician who
was the first to use the symbol = for division.

https://mathshistory.st-andrews.ac.uk/Biographies/Pell/
https://fr.wikipedia.org/wiki/John_Pell
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On the equation 22 — dy? = %1 : history

Lord William Brouncker Pierre de Fermat
1620-1684 1601-1665

Correspondence from Pierre de Fermat to Brouncker.

1657 : letter of Fermat to Frenicle de Bessy (1604-1674).

https://mathshistory.st-andrews.ac.uk/Biographies/
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History (continued)

Leonard Euler Joseph—Louis Lagrange
1707-1783 1736-1813

L. Euler : Book of algebra in 1770 + continued fractions

The complete theory of the equation 2 — dy? = +1 was
worked out by Lagrange.

https://mathshistory.st-andrews.ac.uk/Biographies/
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Solution of the equation 2% — dy? = +1

Let d be a positive integer, not a square. Then the equation
22 — dy? = £1 has infinitely many non negative solutions in
integers (x,y).

There is a smallest positive fundamental solution (x1,1;) such
that all non negative solutions are obtained by writing

T, +yNd = (z1 +1y1Vd)"

with v > 0.
The trivial solution (z,y) = (1,0) is obtained with v = 0.

The set of solutions (x,y) in Z X Z is given by
Ty + yu\/a - :|:($1 + yl\/a)y

with v € Z. They form a group ~ {+1} x Z.
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Group law on a conic

The curve 22 — dy? = 1 is a conic, and on a conic there is a
group law which can be described geometrically. The fact that
it is associative is proved by using Pascal's Theorem.

]
~.

R+,

Franz Lemmermeyer. Conics — a poor man’s elliptic curves.
https://arxiv.org/pdf/math/0311306.pdf
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Mahalanobis puzzle z? — 2y2 =1, z=2n+1,y=2m

Fundamental solution : (z1,y1) = (3, 2).
Other solutions (x,,y,) with

T, 4 V2 = (3 +2V2)".
o =0, trivial solution: x =1,y =0, m =n = 0.
ey =1, 1 =3, Y1 = 2, m=n = 1.
o =2, To =17, yo =12, n=38, m=06,
Ty 4 y2V2 = (34 2V2)? = 17+ 12V2.
o v =3, r3 =99, y3="70, n =49, m =35,

T3+ y3V2 = (34 2v/2)° = 99 4+ 70V2.
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Diophantus problem

Find an integer n such that 10n + 9 and 5n + 4 are squares :

2 =10n+9, 3> =5n+4

i 2y2 =1 http://oeis.org/A001333

1,3, 17,99, 577, 3363, 19601, 114243, 665857, 3880899, ...

x=3, 17, 577, 3363, 114243,...

n= =0, 28, 33292, 1130,976, 1305146304...
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Pierre de Fermat

:\(.
Andrew Wiles

Pierre de Fermat
1601-1665

Proof of Fermat's last Theorem by Andrew Wiles (1993) : for
n > 3, there is no positive integer solution (a, b, c) to

a+ bt =",
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Ramanujan — Nagell Equation

Srinivasa Ramanujan
1887 — 1920

Trygve Nagell
1895 — 1988

25 /58



Ramanujan — Nagell Equation

12+7
32 +7
52 4+ 7
112+ 7
1812 4+ 7

2+ T7=2"

24
25

215

16

32

128
32768
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2>+ D =2"
Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0,
D # 7, the equation
2?4+ D = 2™ has at most 2

solutions.
Roger Apéry
1916 — 1994
Examples with 2 solutions :
D =23: 32 4+23=32, 452 +23=2"=2048

D=2""—10>3: (26 —1)2 42041 — 1 =22
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24+ D=2

Beukers (1980) : at most one solution otherwise.

Frits Beukers Mike Bennett
M. Bennett (1995) : considers the case D < 0.
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Diophantine equations : early historical survey
Pierre Fermat (16017 — 1665)
Leonhard Euler (1707 — 1783)
Joseph Louis Lagrange (1736 — 1813)

XIXth Century : Adolf Hurwitz, Henri Poincaré
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Hilbert's 8th Problem

Second International Congress
of Mathematicians in Paris.
August 8, 1900

Twin primes,

Goldbach's Conjecture,

David Hilbert
1862 — 1943 Riemann Hypothesis

http://www.maa.org/sites/default/files/pdf/upload$_-$library/22/Ford/Thielel-24.pdf
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Hilbert's tenth problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert's 10th problem

Julia Robinson (1952)

Julia Robinson, Martin Davis, Hilary Putnam (1961)
Yuri Matijasevic (1970)

Remark : the analog for rational points of Hilbert's 10th
problem is not yet solved :

Does there exist an algorithm in order to decide whether a
Diophantine equation has a rational solution or not ?

32/58



Diophantine equations : historical survey
Thue (1908) : there are only finitely many integer solutions of

F(z,y) =m,

when F'is homogeneous irreducible form over QQ of degree > 3.

Mordell's Conjecture (1922) : rational points on algebraic
curves

Siegel's Theorem (1929) : integral points on algebraic curves

Axel Thue Louis Mordell Carl Ludwig Siegel
1863 - 1922 1888 — 1972 1896 - 1981
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Mordell's Conjecture, Faltings's Theorem

Mordell's Conjecture : 1922. Faltings's Theorem (1983).
The set of rational points on a number field of a curve of
genus > 2 is finite.

n\“‘l\

Louis Mordell Gerd Faltings

1888 — 1972
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The group of rational points on an elliptic curve

Conjecture (Henri Poincaré, 1901) : finitely many points are
sufficient to deduce all rational points by the chord and
tangent method.

i

Henri Poincaré Louis Mordell
1854 — 1912 1888 — 1972

Theorem (Mordell, 1922). If E is an elliptic curve over Q,
then the abelian group E(Q) is finitely generated : there exists
a nonnegative integer r (the Mordell-Weil rank of the curve
over Q) such that

B(Q) = B(Q)ions X Z'
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Mordell-Weil Theorem

André Weil (1928) : generalization to number fields and
abelian varieties :

If A is an Abelian variety over a number field K, then the
abelian group A(K) is finitely generated :

A(K) = A(K )yors X Z7
with 7 > 0 while A(K ) is a finite group.

ﬁm

Jacques Hadamard André Weil
1865 - 1963 1906 — 1998

Weil’s thesis : 1928. Hadamard's comment.
Reference : ANTOINE CHAMBERT-LOIR. La conjecture de Mordell : origines, approches, généralisations. Séminaire
Betty B., Septembre 2021 5e année, 2021-2022
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Axel Thue

Axel Thue
1863 - 1922

Thue (1908) : there are only
finitely many integer solutions
of

F(z,y) =m,
when F'is homogeneous

irreducible form over QQ of
degree > 3.
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Liouville's inequality (1844)

Liouville’s inequality . Let o
be an algebraic number of
degree d > 2. There exists
c(a) > 0 such that, for any

p/q € Q with q > 0,

> ——. Joseph Liouville
q 1809-1882
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Liouville's estimate for v/2 :
For any p/q € Q,

1
5/5_12‘>_.

q|  6¢*

Proof.
Since v/2 is irrational, for p and ¢ rational integers with ¢ > 0,
we have p? — 2¢* # 0, hence

P’ —2¢°| > 1.
Write
P’ = 2¢° = (p = V2q) (0 + V2pq + V4¢*).
If p < (3/2)q, then
P* + V2pq + Vg < 6%
Hence
1 < 6¢°|p — V/2q].
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Liouville's estimate for v/2 :

For any p/q € Q,

Proof.
We completed the proof in the case p < (3/2)q.
If p> (3/2)q, then

N

3 1
>—— V2>
q 2 V2 6
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Improving Liouville's inequality
If we can improve the lower bound
P’ —2¢° > 1
then we can improve Liouville's estimate

1
_Iz‘>_
6¢°

What turns out to be much more interesting is the converse :

If we can improve Liouville's estimate
1
_Z 6 —,

then we can improve the lower bound

Ip* —2¢°| > 1

41 /58



Improvements of Liouville’s inequality

In the lower bound

for av real algebraic number of degree d > 3, the exponent d of
¢ in the denominator of the right hand side was replaced by x
with

e any K > (d/2) + 1 by A. Thue (1909),

e 2¢/d by C.L. Siegel in 1921,

e \/2d by F.J. Dyson and A.O. Gel'fond in 1947,

e any x > 2 by K.F. Roth in 1955.
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Thue— Siegel- Roth Theorem

Axel Thue Carl Ludwig Siegel  Klaus Friedrich Roth
1863 - 1922 1896 - 1981 1925 - 2015

For any real algebraic number «, for any € > 0, the set of
p/q € Q with |a — p/q| < ¢~ 2~ is finite.
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Thue— Siegel- Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number « and for any € > 0, there exists gg > 0
such that, for p/q € Q with ¢ > ¢o, we have

la—p/q| > q "
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Thue equation and Diophantine approximation

Liouville's estimate for the rational Diophantine approximation

of /2 :
- 1
9¢3

NP

q

for sufficiently large q.

Mike Bennett (1997) : for any p/q € Q,
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Mike Bennett

http://www.math.ubc.ca/~bennett/

For any p/q € Q,

\3/_—’3‘> !

A q2.5'

For any (x,y) € Z* with
x>0,

j2° = 24° > V.
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Connection between Diophantine approximation
and Diophantine equations
Let x satisfy 0 < v < 3.

The following conditions are equivalent :
(i) There exists c; > 0 such that

3/—_2’>ﬁ
q q"

for any p/q € Q.
(ii) There exists ¢y > 0 such that

2% — 207 > ¢y 2*

for any (x,1) € Z* having x > 0.
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Thue's equation and approximation

Let f € Z[X] be an irreducible polynomial of degree d and let
F(X,Y)=Yf(X/Y) be the associated homogeneous binary
form of degree d. Then the following two assertions are
equivalent :

(1) For any integer k # 0, the set of (z,y) € Z* verifying

F(z,y) =k
is finite.
(17) For any real number x > 0 and for any root « € C of f,
the set of rational numbers p/q verifying

K
a—=l <=

is finite.
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Thue equation

Condition (i) above :

For any integer k # 0, the set of (x,1) € 7* verifying
F(z,y) =k
is finite.

can also be phrased by stating that for any positive integer k,
the set of (x,y) € Z* verifying

0 < |F(z,y)] <k

is finite.
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Schmidt’s Subspace Theorem (1970)

Form > 2 let L, ..., Ly_1
be m independent linear
forms in m variables with
algebraic coefficients. Let

€ > 0. Then the set

{x=(x0,...,Tm1) €EZ™;

Wolfgang M. Schmidt
[ Lo(x) -+ L1 (%) ] < [x]}

is contained in the union of

finitely many proper

subspaces of Q™.
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Effectivity

The Theorem of Thue=Siegel-Roth—Schmidt is not effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.

Faltings's Theorem is not effective : so far, there is no known
effective bound for the solutions (,y) € Q? of a Diophantine
equation f(x,y) =0, where f € Z[X,Y] is a polynomial such
that the curve f(x,y) = 0 has genus > 2.

Even for integral points, there is no effective version of Siegel's
Theorem on integral points on a curve of genus > 2.
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Number of solutions

G. Rémond (2000) : explicit
upper bound for the number
of solutions in Faltings's
Theorem.

Gaél Rémond
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Effective version of Siegel's Theorem (genus 1)

A. Baker and J. Coates. Integer points on curves of genus 1.

Proc. Camb. Philos. Soc. 67, 595-602 (1970).

Alan Baker John Coates
1939 — 2018 (1945 — 2022)
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Gel'fond—Baker method

While Thue's method was based on the non effective
Thue=Siegel-Roth Theorem, Baker and Fel’dman followed an
effective method introduced by A.O. Gel'fond, involving lower
bounds for linear combinations of logarithms of algebraic
numbers with algebraic coefficients.

Alexandre Ossipovitch Gel'fond Alan Baker
1906-1968 1939 - 2018
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing difference
o — 1

is essentially the same as a lower bound for a nonvanishing
number of the form

bllogal + "'+bnlogan7

since ¢ — 1 ~ z for z — 0.

The first nontrivial lower bounds were obtained by

A.O. Gel'fond. His estimates were effective only for n = 2 : for
n > 3, he needed to use estimates related to the
Thue—Siegel-Roth Theorem.
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Explicit version of Gel'fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel'fond.
in his lower bound for

|O[1b1042b2 — 1‘ .

Andrzej Schinzel
1937-1921

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel'fond.

u]
o)
I
i
it
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Alan Baker (1939 - 2018)

Alan Baker
1939 — 2018

In 1968, A. Baker succeeded
to extend to any n > 2 the
transcendence method used
by A.O. Gel'fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue's equations have
been derived.
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