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Abstract

Let f1, . . . , fL be analytic functions and ζ1, . . . , ζL be points where the functions are defined.
Sharp upper bounds are known for the absolute value of the determinant of the L× L matrix(

fλ(ζµ)
)

1≤λ,µ≤L
.

These estimates play an important role in transcendental number theory. We give a report on this
topic and we announce a new application to integer valued entire functions on a set of products.

1. Historical survey

In his proof of the transcendence of the number e, Ch. Hermite [He 1873] constructed explicitly
polynomials A0, A1, . . . , An in Q[z] such that the function A0(z) + A1(z)ez + · · · + An(z)enz has
a zero of high multiplicity at the origin. This construction was then developed by Hermite’s
student H. Padé, and the so-called Padé approximants now play an important role in the theory of
Diophantine approximation (see W. van Assche’s lectures in these proceedings) as well as in other
parts of mathematics.

The need for explicit formulae in Hermite’s proof has been a long time an obstacle to further
progress in transcendental number theory. In 1929, C.L. Siegel published his fundamental paper [Si
1929]; in the first part of it, he proves his well known result on integer points on algebraic curves (in
particular there are only finitely many such points if the curve has positive genus). In the second
part, he introduces E and G functions, and extends Hermite’s method to these functions. In the
proofs of these results in both parts, the main tool, which is emphasized in the introduction of the
paper [Si 1929], arises from Thue’s work [T 1908] on Diophantine approximation: it is the so-called
Dirichlet’s box principle, which is used to prove the following auxiliary result:

Lemma 1.1. (Thue–Siegel) – Let

y1 = a11x1 + · · ·+ a1nxn
...

ym = am1x1 + · · ·+ amnxn
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be m linear forms in n variables with rational integer coefficients. Assume n > m. If the absolute
values of the mn coefficients aij are all bounded from above by a natural integer A, then the system
of linear equations y1 = 0, . . ., ym = 0 has a solution in rational integers x1, . . . , xn, not all of which
are 0, but with absolute value less than

1 + (nA)m/(n−m).

This device enabled Siegel to replace the explicit construction of Hermite by a much simpler
argument. Given an analytic function f near the origin, if we want to ensure the existence of
polynomials A0, A1, . . . , An in C[z], not all zero, where Ai has degree ≤ Di, (0 ≤ i ≤ n), such that
the function A0(z) +A1(z)f(z) + · · ·+An(z)f(z)n has a zero of multiplicity ≥ m at the origin, it is
sufficient (by elementary linear algebra) to require D0 + · · ·+Dn +n ≥ m. Moreover, if the Taylor
coefficients of f at the origin are all rational numbers, then A0, A1, . . . , An exist in Z[z]. Now from
lemma 1.1 one deduces the existence of such polynomials together with an upper bound for the
absolute values of their coefficients. For instance, if, say, D0 + · · · + Dn + n ≥ 2m, then, roughly
speaking, this upper bound is of the order of magnitude of a common denominator of the first m
coefficients in the Taylor expansion of f .

Siegel’s construction of an auxiliary function has been quite influential in the theory of tran-
scendental numbers. Before telling this story, we need first to speak on Pólya’s work on integer
valued entire functions [Po 1915], which led to Gel’fond’s proof of the transcendence of eπ [Ge
1929].

In 1915, G. Pólya [Po 1915] proved that an entire function f in C which is not a polynomial
and takes integer values (in Z) at the points 0, 1, 2, . . . satisfies

lim sup
R→∞

√
R

2R
|f |R > 0,

where |f |R stands for sup|z|=R |f(z)|. Therefore

lim sup
R→∞

1
R

log |f |R ≥ log 2.

The stronger estimate
lim sup
R→∞

2−R|f |R > 0,

which was conjectured by Pólya, has been obtained by G.H. Hardy [Ha 1917]. Three years later,
Pólya improved the estimate and reached the lower bound

lim sup
R→∞

2−R|f |R ≥ 1,

which shows that 2z is the transcendental entire function of least growth order which maps N into
Z. Further refinements are due to a number of authors (including G. Pólya, D. Sato, E.G. Straus,
A. Selberg, Ch. Pisot, F. Carlson, F. Gross,. . . ).

Pólya’s proof involves the calculus of finite differences (discrete analog of differential equations):
he writes f(z) as an interpolation series

a0 + a1z + a2
z(z − 1)

2
+ · · ·+ an

(
z

n

)
+ · · · ,
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where
(
z
n

)
stands for the polynomial z(z − 1) · · · (z − n + 1)/n!. Gel’fond’s generalization [Ge

1929] dealt with entire functions f which take integer values in Z[i] at the Gaussian integers:
f(a+ ib) ∈ Z[i] for any (a, b) ∈ Z2. Such a function, he shows, either is a polynomial, or else grows
at least like an exponential in R2:

lim sup
R→∞

1
R2

log |f |R ≥ γ

where γ is a positive real number (an absolute constant, around 10−45). The example of Weierstraß
sigma function (which is the canonical product, vanishing on Z[i]), shows that the constant γ is
not greater than π/2. The exact value for γ has been obtained more than half a century later, by
F. Gramain [Gr 1981]: γ = π/(2e).

The connection with the transcendence of eπ arises through the function eπz: if eπ were an
algebraic number, then the function eπz would take algebraic values (in the field Q(eπ)) at all points
of Z[i].

Gel’fond’s proof of the transcendence of eπ = i−2i was the first step towards a complete
solution of Hilbert’s seventh problem on the transcendence of αβ (for algebraic α and β with α 6= 0,
logα 6= 0 and β 6∈ Q), by A.O. Gel’fond [Ge 1934] and Th. Schneider [Sc 1934]. Their proofs are
different, but both involve the construction of an auxiliary function using lemma 1.1.

Until recently, most proofs of transcendental number theory (including Baker’s work on lower
bounds for linear forms in logarithms of algebraic numbers — see [Ba 1966]) involved the construc-
tion of an auxiliary function by means of Dirichlet’s box principle. However, a few years ago, a
new device has been introduced in the theory: interpolation determinants. Such determinants are
related to exact Lagrangian interpolation formulae (see F. Calogero’s lectures at this workshop).
Here, they occur in a slightly different context.

One of the first occurrences of such determinants in the theory of diophantine approximation
relates to the following problem of D.H. Lehmer [Le 1933]. For an algebraic number α, that is a
root of an irreducible polynomial f(z) = a0z

d + a1z
d−1 + · · ·+ ad in Z[z], define

M(α) = |a0|
d∏
i=1

max{1, |αi|},

where α1, . . . , αd are the complex conjugates of α, namely the roots of f in C:

f(z) = a0(z − α1) · · · (z − αd).

It is easy to check (Kronecker) that M(α) = 1 if and only if α is either 0 or a root of unity. The
smallest known value > 1 for M(α) is 1.17628 . . ., which is the root of the polynomial

z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

Lehmer [Le 1933] asked whether, for each ε > 0, there exists an algebraic number α which sat-
isfies 1 < M(α) < 1 + ε. This question is still open. After the work of several mathematicians
(including C.L. Siegel, A. Schinzel, H. Zassenhaus, C.J. Smyth, P.E. Blanksby, H.L. Montgomery,
D. Boyd,. . . ), methods from transcendental number theory (involving the construction of an aux-
iliary function) have been introduced in this context by C.L. Stewart [St 1978] and developed by
E. Dobrowolski [Do 1979] who proved, for α 6= 0 of degree d which is not a root of unity,

M(α) > 1 +
1

1200

(
log log d

log d

)3

.
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A new proof of this estimate has been produced by D.C. Cantor and E.G. Straus [CS 1982], who
replace the auxiliary function by a tricky determinant, which turns out to be an interpolation
determinant.

Later, M. Laurent [Lau 1989] (see also [Pi 1993]) introduced interpolation determinants for
proving the following transcendence result, due to S. Lang [La 1966], [La 1966] and K. Ramachandra
[Ra 1968], [Ra 1969]:

Six exponentials theorem. – Let x1, . . . , xd be Q-linearly independent complex numbers and
y1, . . . , y` be also Q-linearly independent complex numbers. Assume d` > d+ `. Then one at least
of the d` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is transcendental.

The name six exponentials theorem comes from the fact that the relevant values for (d, `) are
(2, 3) or (3, 2). As explained in chapter 2 (p. 19–20) of [La 1966], this problem already occurs in
the work of L. Alaoglu and P. Erdős [AE 1944] related to Ramanujan’s superior highly composite
numbers [R 1915] (see also [W 1987] and [W 1992] for further information on this subject), and
Siegel apparently knew it already in 1944.

Here is a sketch of proof of the following irrationality statement:

• Let x1, . . . , xd be Q-linearly independent real numbers and y1, . . . , y` be also Q-linearly inde-
pendent real numbers. Assume d` > d+ `. Then one at least of the d` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is irrational.

The idea of proof, using interpolation determinants, is as follows. Let N be a sufficiently large
positive integer. Define T = N `, S = Nd, L = Nd`. Consider the set of functions

F =
{
e(t1x1+···+tdxd)z ; (t1, . . . , td) ∈ Nd, 0 ≤ ti < T, (1 ≤ i ≤ d)

}
and the set of points

P =
{
s1y1 + · · ·+ s`y` ; (s1, . . . , s`) ∈ N`, 0 ≤ sj < S, (1 ≤ j ≤ `)

}
.

Choose any ordering F = {f1, f2, . . . , fL} and P = {ζ1, ζ2, . . . , ζL} for each of these two sets.
Consider the determinant ∆L of the L× L matrix(

fλ(ζµ)
)

1≤λ,µ≤L
.

The set F is a Chebyshev system (see W. van Assche’s lectures; see also Pólya’s result in lemma
2.1 of chapter 2 in [W 1992]). That means that this determinant ∆L does not vanish.

Assume now that the d` numbers exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `) are rational; let D ≥ 1 be a
common denominator. Then DLTS∆L ∈ Z, hence ∆L ≥ D−LTS . Now if we prove |∆L| < e−L

2
,

we shall reach a contradiction (for L large enough), thanks to the hypothesis (1/d) + (1/`) < 1.
Here is the desired upper bound for the absolute value of the interpolation determinant.
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Lemma 1.2. (M. Laurent) – Let r and R be two real numbers with 0 < r ≤ R, f1, . . . , fL be
functions of one complex variable, which are analytic in the disk |z| ≤ R of C, and let ζ1, . . . , ζL
belong to the disk |z| ≤ r. Then the determinant

∆ = det

 f1(ζ1) . . . fL(ζ1)
...

. . .
...

f1(ζL) . . . fL(ζL)


is bounded from above by

|∆| ≤
(
R

r

)−L(L−1)/2

L!
L∏
λ=1

|fλ|R.

The proof is an easy application of Schwarz lemma; see [Lau 1989], lemme 3, as well as [W
1992], chap. 2, lemma 2.2.

Such estimates are available in many other situations; in particular derivatives can be included,
and functions of several variables can be considered. A rather general estimate, including further
refinements (e.g. in relation with Baker’s method) is given in [W 1997a], Proposition 5.1.

The above sketch of proof has a wide range of applications. Here is a sample.
M. Laurent [Lau 1994] succeeded to refine existing bounds for linear forms in two logarithms.

In a later joint paper with M. Mignotte and Yu.V. Nesterenko [LMN 1995], they produce a very
sharp explicit lower bound for |αb11 α

b2
2 − 1| for non zero algebraic numbers α1, α2 and rational

integers b1, b2. This estimate is invaluable for several Diophantine problems, and for instance has
been used in a number of papers solving explicitly (families of) Diophantine equations. A lower
bound for the p-adic absolute value has also been achieved by M. Laurent and Y. Bugeaud [BuLau
1995].

This method also works for estimating |αb11 · · ·αbnn − 1| with n ≥ 2 [W 1992]; in the case n = 1
the method yields lower bounds for the height of algebraic numbers [MiW 1993], [Ma 1996a], [Ma
1996b], [V 1996], [BuMiNo 1995], [Am 1996], [Am 1997], [Bu 1997].

An other type of application arises in the work of P. Corvaja [Co 1992] related to the Thue-
Siegel-Roth theorem on Diophantine approximation.

A new proof of Pólya’s above mentioned result on integer valued entire functions has been
obtained in [W 1993] by means of interpolation determinants; in this paper a method is derived
in order to extrapolate with such determinants (see next section). Recently, interpolation determi-
nants have been used by P. Philippon [Ph 1997] who proves very general results of transcendence
and algebraic independence for values of entire functions of one variable, including most of known
results as well as new ones.

Another kind of Diophantine approximation estimate for values of functions of several variables
related to algebraic groups is given in [W 1997a]. The “duality” between Gel’fond’s method and
Schneider’s one for the solution of Hilbert’s seventh problem now reduces to a transposition of the
interpolation matrix, using the identity(

d

dz

)σ (
zτetz

)
z=s

=
(
d

dz

)τ (
zσesz

)
z=t

.

The main result of [W 1997a] contains a theorem of Wüstholz which has been used by F. Beukers
and J. Wolfart [BW 1988] in order to prove transcendence results for the values of hypergeometric
functions; therefore the statements of [BW 1988] can now be proved by means of interpolation
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determinants. By the way, these attempts by Beukers and Wolfart to prove general transcendence
results related to hypergeometric functions led them to discover new algebraic values, like

2F1

(
1/12, 5/12, 1/2 ; 1323/1331

)
=

3
4

4
√

11.

2. Pólya’s theorem with interpolation determinants

In this section we give a sketch of proof for the following weak form of Pólya’s theorem:
• If an entire function f satisfies f(N) ⊂ Z and

lim sup
R→∞

1
R

log |f |R = 0,

then f ∈ Q[z].

Let T be a sufficiently large positive integer and T0 a positive integer which is sufficiently large
compared with T . Set L = T0T , and consider the following set {f1, . . . , fL} of entire functions(

z

τ

)
f t(z), (0 ≤ τ < T0, 0 ≤ t < T ).

Introduce the matrix
M =

(
fλ(n)

)
1≤λ≤L
n≥0

with L rows and infinitely many columns. Our goal is to prove that the rank of M is < L. From
this fact we shall deduce that there exist rational integers a1, . . . , aL, not all of which are zero, such
that the entire function F = a1f1 + · · · + aLfL vanishes on N. Our hypothesis on |f |R, together
with Schwarz lemma, yields F = 0. This means that f1, . . . , fL are linearly dependent over Q, i. e.
that f is an algebraic function, and since f is entire, it easily follows that f is a polynomial.

We first check that the rank of the square matrix constructed with the first L columns of M
is < L. Indeed, the determinant ∆ of this matrix, namely

∆ = det
(
fλ(n)

)
1≤λ≤L
0≤n<L

,

is a rational integer; now lemma 1.2 together with our hypothesis on |f |R easily imply |∆| < 1;
therefore ∆ = 0.

Now we want to extrapolate, in order to prove by induction that for any M ≥ L, the rank of
the L×M matrix (

fλ(n)
)

1≤λ≤L
0≤n<M

is < L. The key step is again a Schwarz lemma. We denote by SL the group of permutations of
{1, . . . , L} (symmetric group of order L!).

Lemma 2.1. – Let F = (f1, . . . , fL) be an analytic mapping from C to CL. Let ζ0, . . . , ζN be
pairwise distinct complex numbers, 0 = n0 ≤ n1 < n2 < · · · < nL = N non-negative integers and
r1, . . . , rL, E1, . . . , EL positive real numbers with

Eµ > 1 and rµ ≥ max
0≤i≤nµ

|ζi| for 1 ≤ µ ≤ L;
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define Rµ = 2Eµrµ, (1 ≤ µ ≤ L). Assume, for 0 ≤ ν < L and nν ≤ n < nν+1, that the L× (ν + 1)
matrix: (

F (ζn1), . . . , F (ζnν ), F (ζn)
)

has rank ≤ ν. Then

∣∣∣∣det
(
fλ(ζnµ)

)
1≤λ,µ≤L

∣∣∣∣ ≤ L!

(
L∏
µ=1

E−nµµ

)
max
τ∈SL

L∏
λ=1

|fλ|Rτ(λ) .

3. On integer valued functions on sets of products of complex numbers

Let X and Y be two infinite subsets of C and f an entire function such that f(xy) ∈ Z for any
x ∈ X and y ∈ Y . Assuming some growth condition on f , we deduce that f must be a polynomial.

We denote by D(0, R) the disc {z ∈ C ; |z| ≤ R}. The following result is proved in [W 1997b].

Theorem 3.1. Let α, β, %, c1, c2 be positive real numbers satisfying

1
α

+
1
β
≤ 1
%
.

There exists a constant η > 0 with the following property. Assume X and Y are subsets of C such
that

Card
(
X ∩D(0, R)

)
≥ c1Rα

and

Card
(
Y ∩D(0, R)

)
≥ c2Rβ

for any sufficiently large R. Further, let f be an entire function such that f(xy) ∈ Z for any
(x, y) ∈ X × Y . Furthermore, assume

(1.2) log |f |R ≤ ηR%

for any sufficiently large R. Then f is a polynomial.

Example. Let x1, . . . , xd be Q-linearly independent real numbers, and y1, . . . , y` be also Q-linearly
independent real numbers. We deduce from Theorem 3.1 that for d` > d+ `, one at least of the d`
numbers exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `) is not in Z (compare with the six exponentials theorem).

The proof of this corollary runs as follows: assume that the d` numbers exiyj are all rational
integers. Choose f(z) = ez and

X = {t1x1 + · · ·+ tdxd ; (t1, . . . , td) ∈ Nd} and Y = {s1y1 + · · ·+ s`y` ; (s1, . . . , s`) ∈ N`},

where N stands for the set of non-negative rational integers. We apply theorem 3.1 with α = d,
β = `, c1 = (|x1|+ · · ·+ |xd|)−1, c2 = (|y1|+ · · ·+ |y`|)−1, and any % > 1.

The main tool in the proof of theorem 3.1 is lemma 2.1.
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Concluding remarks

A large number of related problems have been studied and would deserve more attention. In
the study of integer valued entire functions, derivatives can be considered. For instance the study
of arithmetic values of solutions of differential equations is a wide and fruitful subject. Also special
values of functions satisfying certain functional equations have been extensively studied. The
existence of p-adic analogues as well as of q-analogues (work by Bundschuh, Gramain, Bézivin,. . . )
is worth to be quoted. Another active area nowadays involves fields of finite characteristic, with
Carlitz functions and Drindfeld modules.

Some variants of theorem 3.1 are available; for instance products xy may be replaced by sums
x+ y, but in this case exponential sums come into the picture, as shown by the example

N∑
n=1

ane
nz with X = Y = log(N>0).

Finally, again in connection with theorem 3.1, it would be interesting to answer the following
question and solve the corresponding functional equation:

? Which entire functions f : C → C satisfy the following property: there exist two positive
integers δ and λ such that the image of Cδ × Cλ into Cδλ under the mapping

(z1, . . . , zδ ; w1, . . . , wλ) 7−→
(
f(zhwk)

)
1≤h≤δ, 1≤k≤λ

is not Zariski-dense?
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