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2.2.2 Diophantine approximation and applications

Diophantine approximation is the study of the approximation of real or complex
numbers by rational or algebraic numbers. It has its early sources in astronomy,
with the study of movement of the celestials bodies, and in the computations
of π.

The number π occurs more or less explicitly in a number of ancient docu-
ments from different civilisations. In the Bible there is an implicit value 3. The
Rhind Papyrus around 2000 BC gives an approximate value 28/34 = 3.1604 . . .

In the early times in India, ancient Hindu and Jaina mathematicians consid-
ered this question. Sometimes between the 8th and the 4th century, the Indian
sacred texts Sulvasūtras from Baudhāyana give 3, 088. Also in India, around
500 BC, Suryaprajnapati (a Jaina mathematician) gives

√
10 = 3.162 . . .

The value of π was studied in ancient Greece (especially by Archimedes
around 2500 BC), also in China where the approximation 355/113 = 3.1415929 . . .
was known. In the Vth Century AC Aryabhat.̄ıya, Āryabhat.a I had the approx-
imation 3.1416 and he suggested that π might be irrational. One century later
Bhāskara I suggests a negative solution to the problem of squaring the cir-
cle. In the XIIth century Bhāskarācārya (Bhāskara II) has the approximation
3927/1250 = 3.1416.

It is remarkable that Madhava (1380–1420) knew a series which gave him
11 exact decimals 3.14159265359 (while Viète in 1579 had 9 decimals only).
A number of other mathematicians in Europa studied this question (including
Leibniz and Gregory).

Getting sharp rational approximations is now easy using the continued frac-
tion expansion of π = 3.1415926535898 . . . which starts with

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1 . . . ]

The sequence of rational approximations we get by truncating this expansion is

3,
22
7

, 333
106

, 355
113

, . . .

Computation of billions of decimals of π have been performed: it serves as a test
for computers, and produces also good candidates for random sequences, even
if proofs are not available that such sequences satisfy the required properties.

Another type of approximation for π is due to Ramanujan:

63
25

(
17 + 15

√
5

7 + 15
√

5

)
= 3.141 592 653 805 . . .
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which is a root of P (x) = 168 125x2 − 792 225x + 829 521. Of course we know
from Lindemann’s Theorem that such estimate will not produce an exact value,
since

π = 3.141 592 653 589 . . .

is not root of a polynomial with integer coefficients.
One recent (1997) formula for π produces efficiently its digits in base 16:

π =
∑
n≥0

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
2−4n.

For computing a number with a sharp accuracy, one wishes to get many
decimals (or binary digits) with a number of operations as small as possible. As
we have seen for Diophantine questions, the cost is measured by the denominator
q: one investigates how well ξ can be approximated in terms of q. So the notion
of complexity is very different in these two points of view.

Diophantine approximation occurs in many different disguises (a very good
reference here is [3]). It plays a crucial role in the question of small divisors
and dynamical systems, introduced by H. Poincaré. See in particular [4]. In
the study of the periods of Saturn orbits (Cassini divisions), Diophantine ap-
proximation is also there. It plays a role in the question of the stability of
the solar system, in resonance in astronomy, in the problems of engrenages, in
quasi-cristals, in the acoustic of concert halls, in calendars (bissextile years).

We give now an example of application of the question of rational approxi-
mations to log2 3 to musical scales.

The successive harmonics of a note of frequency n are the vibrations with
frequencies 2n, 3n, 4n, 5n, . . . with decreasing intensity. The successive octaves
of a note of frequency n are vibrations with frequencies 2n, 4n, 8n, 16n. . .

Using octaves, one replaces each note by a note with frequency in a given
interval, say [n, 2n). The classical choice in Hertz is [264, 528). For simplicity
we take rather [1, 2). Hence a note with frequency f is replaced by a note with
frequency r with 1 ≤ r < 2, where

f = 2ar, a = [log2 f ] ∈ Z, r = 2{log2 f} ∈ [1, 2).

For instance a note with frequency 3 (which is a harmonic of 1) is at the octave
of a note with frequency 3/2. The musical interval [1, 3/2] is called fifth, the
ratio of the endpoints of the interval is 3/2.

The musical interval [3/2, 2] is the fourth, with ratio 4/3.
The successive fifths are the notes in the interval [1, 2], which are at the

octave of notes with frequency

1, 3, 9, 27, 81 . . .

namely:
1, 3/2, 9/8, 27/16, 81/64 . . .

We shall never come back to the initial value 1, since the Diophantine equation
3a = 2b has no solution in positive integers a, b. We cannot solve exactly the
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equation 2a = 3b in positive rational integers a and b, but we can look for powers
of 2 which are close to powers of 3.

There are just three solutions to the equation 3x − 2y = ±1 in positive
integers x and y, namely 3 − 2 = 1, 4 − 3 = 1 and 9 − 8 = 1. This question
leads to the study of so-called exponential Diophantine equations, which include
the Catalan’s equation xp − yq = 1 where x,y, p and q are unknowns in Z all
≥ 2 (this was solved recently, the only solution is 32 − 23 = 1, as suggested in
1844 by E. Catalan, the same year when Liouville produced the first examples
of transcendental numbers). A generalisation of this question is a conjecture
of Pillai, according to which for any fixed positive k ∈ Z there are only finitely
many x,y, p and q in Z, all ≥ 2, with xp−yq = k. It is easy to check that Pillai’s
conjecture is equivalent to the fact that in the increasing sequence (un)n≥1 of
perfect powers (namely integers of the form ab with a ≥ 1 and b ≥ 2), the
difference between two consecutive terms un+1 − un tends to infinity.

Instead of looking at Diophantine equations, one can consider rather the
question of approximating 3a by 2b from another point of view. The fact that
the equation 3a = 2b has no solution in positive integers a, b means that the
logarithm in basis 2 of 3:

log2 3 = (log 3)/ log 2 = 1.58496250072 . . . ,

which is the solution x of the equation 2x = 3, is irrational. Powers of 2 which
are close to powers of 3 correspond to rational approximations a/b to log2 3:

log2 3 ' a/b, 2a ' 3b.

Hence it is natural to consider the continued fraction expansion

log2 3 = [1; 1, 1, 2, 2, 3, 1, 5, . . . ]

The first approximations we obtain by truncating this expansion are

[1] = 1, [1; 1] = 2, [1; 1, 1] =
3
2
, [1; 1, 1, 2] =

8
5

= 1.6.

This last approximation suggest to consider a = 3 and b = 5:

28 = 256 is not too far from 35 = 243.

The approximation of (3/2)5 = 7.593 . . . by 23 means that 5 fifths produces
almost to 3 octaves.

The next approximation is

[1; 1, 1, 2, 2] = 1 +
1

1 +
1

1 +
1

2 +
1
2

=
19
12

= 1.5833 . . .
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It is related to the fact that 219 is close to 312:

219 = 524 288 ' 312 = 531 441, (3/2)12 = 129.74 . . . is close to 27 = 128.

In music it means that twelve fifths is a bit more than seven octaves. The comma
of Pythagoras is 312/219 = 1, 01364. It produces an error of about 1.36%, which
most people cannot ear.

A further remarkable Diophantine approximation is

53 = 125 ' 27 = 128, (5/4)3 = 1.953 ' 2.

meaning that three thirds (ratio 5/4) produce almost one octave. This approxi-
mation can be written 210 = 1024 ' 103. It plays an important role in comput-
ers (kilo octets), of course, but also in acoustic: multiplying the intensity of a
sound by 10 means adding 10 decibels. Multiplying the intensity by k, amounts
to add d decibels with 10d = k10. Since 210 ' 103, doubling the intensity, is
close to adding 3 decibels.

A further example of application of continued fractions given in [3] deals
with electric networks. The resistance of a network in series

◦ R1−−−→• R2−−−→◦

is the sum R1 +R2. The resistance R of the parallel network

◦−−−→•−−−→•yR1

y R2

◦−−−→•−−−→•

satisfies
1
R

=
1
R1

+
1
R2
·

The resistance U of the circuit

◦−−−→• R−−−→•y1/S

y 1/T

◦−−−→•−−−→•

is given by

U =
1

S +
1

R+
1
T

·

The resistance of the following network is given by a continued fraction

[R0;S1, R1, S2, R2 . . . ]
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for the circuit
◦ R0−−−→• R1−−−→• R2−−−→• · · ·y1/S1

y1/S2

◦−−−→•−−−→•−−−→• · · ·

For instance when Ri = Sj = 1 we get the quotients of consecutive Fibonacci
numbers.

This fact provides a connexion between electric networks, and continued
fractions, it has a surprising consequence on the problem of decomposition of
a square into squares (squaring the square!): electric networks and continued
fractions were used to find the first solution to the problem of decomposing a
geometric integer square into distinct integer squares.
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We conclude this list of applications of Diophantine questions with a connex-
ion between a problem raised by K. Mahler in 1967 and theoretical computer
science.

Mahler notices that an integer power of e is never an integer, since e is
transcendental. He asks whether there exists an absolute constant c > 0 such
that, for a and b positive integers,

|eb − a| > a−c?

This is not yet solved. Mahler’s conjecture arises by considering the numbers
log a− ba for a = 1, . . . , A, where ba is the nearest integer to log a , for growing
values of A, and assuming that these numbers are evenly distributed in the
interval (−1/2, 1/2). Instead we could consider the numbers eb − ab for b =
1, . . . , B, where ab is the nearest integer to eb , for growing values of B, and
assume that these numbers are evenly distributed in the interval (−1/2, 1/2).
For this reason I suggested that Mahler’s conjecture may not be the best possible
estimate and that the following stronger estimate would be valid:

|eb − a| > b−c.

But this is not true, as pointed out to me by Iam Ho on September 27, 2007: if
a denotes the integral part of eb, then we have

0 < eb − a < 1, 0 < a(b− log a) < eb − a < eb(b− log a),

hence

0 < b− log a <
eb − a
a

<
1
a
·

The question of a lower bound for |eb− a| was considered first by K. Mahler
(1953, 1967), then by M. Mignotte (1974), and more recently by F. Wielonsky
(1997). The sharpest known estimate on Mahler’s problem is

|eb − a| > b−20b.

In a joint work with Yu.V. Nesterenko [2] in 1996, we considered an extension of
this question when a and b are rational numbers. A refinement of our estimate
has been obtained by S. Khemira in 2005 and is currently being sharpened in a
joint work of S. Khemira and P. Voutier.

Define H(p/q) = max{|p|, q}. Then for a and b in Q with b 6= 0, the estimate
is

|eb − a| ≥ exp{−1, 3 · 105(logA)(logB)}

where A = max{H(a), A0}, B = max{H(b), 2}. The numerical value of the
absolute constant A0 will be explicitly computed.

There is a connexion with the question of exact rounding of the elementary
functions in theoretical computer science. A reference to the Arénaire project
in Computer Arithmetic is
http://www.ens-lyon.fr/LIP/Arenaire/
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This team works on validated scientific computing: arithmetic. reliability, ac-
curacy, and speed. Their goal is to improve the available arithmetic on comput-
ers, processors, dedicated or embedded chips, and they want to achieve more
accurate results or getting them more quickly. This has implication in power
consumption as well as reliability of numerical software.

Further applications of Diophantine Approximation include (see [1]): equidis-
tribution modulo 1, discrepancy, numerical integration, interpolation, approxi-
mate solutions to integral and differential equations.

References

[1] Hua Loo Keng & Wang Yuan – Application of number theory to nu-
merical analysis, Springer Verlag (1981).
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