Eighth course: september 25, 2007. 11

2.2.4 Algebraic preliminaries: algebraic and transcendental elements, algebraic independence

Content

Rings: domains (no zero divisor), Euclidean rings, examples (\mathbb{Z} , k[X], $\mathbb{Z}[i]$), PID (domain where any ideal is principal), UFD (unique factorization domain), further example ($\mathbb{Z}[X]$, $k[X_1, \ldots, X_n]$).

Fields. Vector spaces, modules. Example: \mathbb{Z} -module = abelian group.

Extensions of fields. Subrings, subfields. Intersection of subrings, subfields, submodules, vector subspaces. Subrings or subfield generated by a subset: A[E], k(E) (and modules or vector spaces spanned by a subset). Special cases where $E = \{\alpha_1, \ldots, \alpha_n\}$: finitely generated ring or field extension: $A[\alpha_1, \ldots, \alpha_n]$, $k(\alpha_1, \ldots, \alpha_n)$. Simple extension (n = 1).

Finite extension, example: $\mathbb{Q}(i)/\mathbb{Q}$. Degree [K:k] of a finite extension K/k. Multiplicativity of the degree for $K_1 \subset K_2 \subset K_3$.

Algebraic element over a field k: equivalent properties. Transcendental element, examples: e is transcendental over \mathbb{Q} ; also X in the field of rational fractions over the complex field is transcendental over \mathbb{C} . Irreducible (monic) polynomial of an algebraic element. For α in \mathbb{C} , we have $k(\alpha) = k[\alpha]$ iff α is algebraic; computing the inverse of an algebraic element using Euclidean division and Bézout's Theorem.

Sum and product of algebraic elements: prove that they are algebraic either by linear algebra or by means of the theorem of the elementary symmetric functions (see § 2.2.5). Field $\overline{\mathbb{Q}}$ of algebraic numbers, algebraic closure.

Example of an algebraic extension which is not finite: $\overline{\mathbb{Q}}/\mathbb{Q}$. Algebraic extension, any finite extension is algebraic.

Algebraically independent or dependent elements (algebraically free subset). Examples: numbers, functions. Transcendence degree, transcendence basis of a finitely generated extension. Properties: additivity of the transcendence degree for $K_1 \subset K_2 \subset K_3$. Transcendence degree 0 means algebraic extension.

Corollary: algebraic independence over $\mathbb Q$ is equivalent to algebraic independence over $\overline{\mathbb Q}$.

The transcendence degree of k(E)/k is $\geq n$ if and only if there exists in E a set of at least n algebraically independent elements over k.

Exercise 2.21. Show that the field $\overline{\mathbb{Q}}$ is an algebraic extension of \mathbb{Q} which is not finite.

¹¹Updated: October 12, 2007

Hint. One of many solutions is to check that for any $n \geq 1$ the polynomial $X^n - 2$ is irreducible.

A more challenging solution is to check that the numbers \sqrt{m} , where m ranges over the squarefree integers, are linearly independent over \mathbb{Q} . One may show by induction that if a_1, \ldots, a_n are positive squarefree integers > 1 which are pairwise relatively prime, then the 2^n numbers

$$\sqrt{\prod_{i\in I} a_i}, \quad I\subset \{1,\ldots,n\},$$

are linearly independent over \mathbb{Q} . Hence the field $\mathbb{Q}(\sqrt{a_1},\ldots,\sqrt{a_n})$ has degree 2^n over \mathbb{Q} .

Exercise 2.22. Let R and S be two rational fractions in k(T). Show that there exists a non-zero polynomial $F \in k[X,Y]$ such that F(R,S) = 0. Deduce that any set of at least two elements in k(T) consists of algebraically dependent elements, hence k(T) has transcendence degree 1 over k. Generalize to $k(T_1,\ldots,T_n)$

Exercise 2.23. Let t_1, \ldots, t_n be algebraically independent complex numbers. Check that any subset of $\{t_1, \ldots, t_n\}$ consists of algebraically independent element. Check that for any P and Q in $\overline{\mathbb{Q}}[X_1, \ldots, X_n]$ for which $Q(t_1, \ldots, t_n) \neq 0$ and such that the rational fraction R = P/Q is not constant, the number $R(t_1, \ldots, t_n)$ is transcendental.

Exercise 2.24. Check that an entire function (which means a complex function which is analytic in all of \mathbb{C}) is transcendental if and only if it is not a polynomial. Check that a meromorphic function in \mathbb{C} is transcendental if and only if it is not a rational function.

References

[1] Bùi Xuân Hải – Lý Thuyết Trườing & Galois, Nha xuat ban Dai học Quọc gia NXB ĐHQG Tp HCM 2007.

There is a also good collection of Lecture Notes which are available on the internet. A list can be found at the URL

http://www.numbertheory.org/ntw/lecture_notes.html.

See for instance

Algebraic Number Theory and commutative algebra, Lecture Notes by Robert Ash

and

Course Notes by Jim Milne: Algebraic number theory.