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2.2.5 Elementary symmetric functions

References for this section are [2, 5].
Let L be the field Q(x1, . . . , xn) of rational fractions in n variables over Q.

The elementary symmetric functions s1, . . . , sn ∈ Q[x1, . . . , xn] are defined by

(X − x1)(X − x2) · · · (X − xn) = Xn − s1Xn−1 + s2X
n−2 − · · ·+ (−1)nsn.

For instance
s1 = x1 + · · ·+ xn, sn = x1 · · ·xn

and

s2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn.

More generally, for 1 ≤ k ≤ n, the k-th elementary symmetric function in n
variables is

sk =
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

The general polynomial of degree n is f(X) = (X − x1)(X − x2) · · · (X − xn).
Further, let K denote the subfield Q(s1, . . . , sn) of L. The polynomial f has its
coefficients in K and its splitting field over K is L. Since f has degree n, the
Galois group of L over K is (isomorphic to) a subgroup of Sn. As a consequence
[L : K] ≤ n!.

Any permutation of {1, . . . , n} induces an automorphism of L which fixes
each of sk (1 ≤ k ≤ n). Hence K is contained in the subfield LSn of L fixed
by Sn. According to Galois theory, the extension L/LSn has degree n! Hence
K = LSn and L is an extension of K of degree n! and Galois group Sn.

A rational function F (x1, . . . , xn) ∈ L is called symmetric if it is invariant
under Sn. Hence we have proved:

Proposition 2.25. A rational function F (x1, . . . , xn) ∈ Q(x1, . . . , xn) is sym-
metric if and only if there exists a rational function G in n variables such that

F (x1, . . . , xn) = G(s1, . . . , sn).

The rational function G is unique. If F is a polynomial, then G is also a
polynomial. An algorithm for computing it is given in exercise 37, § 14.6 of [2].

Exercise 2.26. Prove that the elements s1, . . . , sn are algebraically independent
over Q.

12Updated: October 12, 2007
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2.2.6 Modules over principal rings

References for this section are [2, 3, 5].
Let A be a ring (commutative with unit, as usual), M a A–module, N1 and

N2 submodules of M . By definition M is the direct sum of N1 and N2 if the
map (x1, x2) 7→ x1 +x2 is an isomorphism of A-modules of N1×N2 onto M . In
this case we write M = N1⊕N2. This means M = N1 +N2 and N1∩N2 = {0}.

A free A–module is a A-module having a basis. Example like Z/2Z (and
more generally any finite abelian group viewed as a Z–module) or Q show that
modules over Z may not have a basis.

When A is a domain and M a A-module, the rank of M is the maximal
number of elements in M which are linearly independent over A. If we denote
by K the field of fractions of A and if M is a free A–module, then one can
embed M into a K-vector space V and the rank of a submodule N of M is the
dimension of the K–vector space spanned by N in V . For instance the rank of
M itself is the number of elements in any basis of M over A.

Proposition 2.27 (Free modules over a PID). Let A be a PID, M a free A-
module of rank m and N a sub–A-module of M . Then N is free of rank n ≤ m.
Moreover there exists a basis {e1, . . . , em} of M as a A-module and there exists
elements a1, . . . , an in A such that {a1e1, . . . , anen} is a basis of N over A and
ai divides ai+1 in A for 1 ≤ i < n.

The ideals a1A ⊃ a2A ⊃ · · · ⊃ anA of A are called the invariant factors of
the sub–A-module N of M : they do not depend on the basis (a1, . . . , en) of M
satisfying the conditions of Proposition 2.27.

2.2.7 Geometry of numbers: subgroups of Rn.

References for this section are [1, 4, 6].

Lemma 2.28. A subgroup G of Rn is discrete in Rn if and only if there exists
an open subset U of Rn containing 0 such that G ∩ U is discrete.

Exercise 2.29. 1. Check that a non discrete subgroup of R is dense in R
2. Give the list of closed subgroups of R.
3. Let G be a finitely generated subgroup of R. Give a necessary and sufficient
condition on the rank of G for G to be dense in R.
4. Let ϑ ∈ R. Give a necessary and sufficient condition on ϑ for the subgroup
Z + Zϑ to be dense in R.

Proposition 2.30. Let G be a discrete subgroup of Rn. There exists an integer
t in the interval 0 ≤ t ≤ n and there exist elements e1, . . . , et in G, which are
linearly independent over R, such that G = Ze1 + · · ·+ Zet.

In particular e1, . . . , et are linearly independent over Z, hence G is free of
rank t. The integer t is the dimension of the R–subspace of Rn spanned by G.

Exercise 2.31. From Proposition 2.30, deduce that in a discrete subgroup of
Rn, linearly independent elements over Z are linearly independent over R.
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Definition. A discrete subgroup of Rn of maximal rank n is called a lattice) of
Rn.

Proof of Proposition 2.30. Denote by V the vector subspace of Rn over R spanned
by G, by t its dimension and let {f1, . . . , ft} be a maximal subset of G which is
free over R: it is a basis of V over Rn and G′ = Zf1 + · · · + Zft is a subgroup
of G. We show that G′ has finite index in G, which means that there are only
finitely many classes of G modulo G′.

Let K be the compact subset of Rn defined by

{u1f1 + · · ·+ utft ; 0 ≤ ui ≤ 1 (1 ≤ i ≤ t)}.

Since G is discrete, G ∩K is finite.
Let x ∈ G. Then x ∈ V , hence we can write x = x1f1 + · · · + xtft with

xi ∈ R. Let mi = [xi] be the integral part of xi:

mi ∈ Z, 0 ≤ xi −mi < 1 (1 ≤ i ≤ n).

Set x′ = m1f1 + · · ·+mtft. Then x′ ∈ G′ and x− x′ ∈ G∩K. Therefore there
are only finitely many classes of G modulo G′, which means that G′ has finite
index in G.

Denote by s the order of the finite group G/G′ and set f ′i = fi/s (1 ≤ i ≤ t).
We have

G′ = Zf1 + · · ·+ Zft ⊂ G ⊂ Zf ′1 + · · ·+ Zf ′t ,

and the conclusion follows from Proposition 2.27.

Theorem 2.32 (Structure of subgroups of Rn). Let G be an additive subgroup of
Rn. There exists a maximal vector subspace V of Rn over R which is contained
in the topological closure of G. Let d be the dimension of V and d + t the
dimension of the vector space spanned by G over R. Set G′ = G ∩ V . Then G′

is dense in V and there exists a discrete subgroup G′′ of G, of rank t, such that
G is the direct sum of G′ and G′′.

Exercise 2.33. Let x = (x1, . . . , xn) ∈ Rn. Consider the subgroup

G = Zn + Zx = {(a1 + a0x1, . . . , an + a0xn) ; (a0, . . . , an) ∈ Zn+1}

of Rn.
1. Show that G is discrete in Rn if and only if x ∈ Qn.
2. Deduce that the following properties are equivalent.
(i) 0 is an accumulation point of G.
(ii) For any ε > 0, there exist integers p1, . . . , pn, q, with q > 0, such that

0 < max
1≤i≤n

|qxi − pi| < ε.

(iii) A least one of the n numbers x1, . . . , xn is irrational.
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3. Check that G is dense in Rn if and only if the numbers 1, x1, . . . , xn are
linearly independent over Q.
Deduce that for any (ξ1, ξ2) ∈ R2 and for any ε > 0, there exist rational integers
p1, p2 and q with

|ξ1 − p1 − q
√

2| ≤ ε and |ξ2 − p1 − q
√

3| ≤ ε.

Let G be a lattice in Rn. For each basis e = {e1, . . . , en} of G the parallelo-
gram

Pe = {x1e1 + · · ·+ xnen ; 0 ≤ xi < 1 (1 ≤ i ≤ n)}

is a fundamental domain for G, which means a complete system of representa-
tive of classes modulo G. We get a partition of Rn as

Rn =
⋃
g∈G

(Pe + g) (2.34)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant ±1, hence the Lebesgue measure µ(Pe) of Pe does not de-
pend on e: this number is called the volume of the lattice G and denoted by
v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th
century as an application of his geometry of numbers.

Theorem 2.35 (Minkowski). Let G be a lattice in Rn and B a measurable
subset of Rn. Set µ(B) > v(G). Then there exist x 6= y in B such that x−y ∈ G.

Proof. From (2.34) we deduce that B is the disjoint union of the B ∩ (Pe + g)
with g running over G. Hence

µ(B) =
∑
g∈G

µ (B ∩ (Pe + g)) .

Since Lebesgue measure is invariant under translation

µ (B ∩ (Pe + g)) = µ ((−g +B) ∩ Pe) .

The sets (−g+B)∩Pe are all contained in Pe and the sum of their measures is
µ(B) > µ(Pe). Therefore they are not all pairwise disjoint – this is one of the
versions of the Dirichlet box principle). There exists g 6= g′ in G such that

(−g +B) ∩ (−g′ +B) 6= ∅.

Let x and y in B satisfy −g + x = −g′ + y. Then x− y = g − g′ ∈ G \ {0}.

Corollary 2.36. Let G be a lattice in Rn and let B be a measurable subset of
Rn, convex and symmetric with respect to the origin, such that µ(B) > 2nv(G).
Then B ∩G 6= {0}.
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Proof. We use Theorem 2.35 with the set

B′ =
1
2
B = {x ∈ Rn ; 2x ∈ B}.

We have µ(B′) = 2−nµ(B) > v(G), hence by Theorem 2.35 there exists x 6= y
in B′ such that x− y ∈ G. Now 2x and 2y are in B, and since B is symmetric
−2y ∈ B. Finally B is convex, hence (2x− 2y)/2 = x− y ∈ G ∩B \ {0}.

Remark. With the notations of Corollary 2.36, if B is also compact in Rn,
then the weaker inequality µ(B) ≥ 2nv(G) suffices to reach the conclusion. This
is obtained by applying Corollary 2.36 with (1 + ε)B for ε→ 0.

Exercise 2.37. Let m and n be positive integers.
a) Let tij for 1 ≤ i, j ≤ n be n2 real numbers with determinant ±1. Let
A1, . . . , An be positive real numbers with A1 · · ·An = 1. Show that there ex-
ists an non–zero element (x1, . . . , xn) in Zn such that

|x1ti1 + · · ·+ xntin| < Ai for 1 ≤ i ≤ n− 1

and
|x1t1n + · · ·+ xntnn| ≤ An.

Hint. First solve the system with the weaker inequality < in place of <

|x1ti1 + · · ·+ xntin| ≤ Ai for 1 ≤ i ≤ n

by using Corollary 2.36. Next use the same method but with An replaced with
An + ε for a sequence of ε which tends to 0.
b) Deduce the following result. Let ϑij (1 ≤ i ≤ n, 1 ≤ j ≤ m) be mn real
numbers. Let Q > 1 be a real number. Show that there exists rational integers
q1, . . . , qm, p1, . . . , pn with

1 ≤ max{|q1|, . . . , |qm|} < Qn/m

and
max

1≤i≤n
|ϑi1q1 + · · ·+ ϑimqm − pi| ≤

1
Q
·

Hint. Use a) with n replaced by n+m and for a triangular matrix (tij)1≤i,j≤m+n

with 1 on the diagonal.
c) Deduce that if ϑ1, . . . , ϑm are real numbers and H a real number > 1, then
there exists a tuple (a0, a1, . . . , am) of rational integers such that

0 < max
1≤i≤m

|ai| < H and |a0 + a1ϑ1 + · · ·+ amϑm| ≤ H−m.

d) Let ϑ be a real number with |ϑ| ≤ 1/2, d a positive integer and H a positive
integer. Show that there exists a non–zero polynomial P ∈ Z[X] of degree ≤ d
and coefficients in the interval [−H,H] such that

|P (ϑ)| ≤ H−d.
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We conclude this section with the definition of a rational subspace. Let
k ⊂ K be a field extension and n a positive integer. For a K-vector subspace
V of Kn, the two following properties are equivalent:
(i) There exists a basis of V which consists of elements in kn.
(ii) There exist linear forms L1, . . . , Lm with coefficients in k such that V is the
intersection of the hyperplans Li = 0, (1 ≤ i ≤ m).
When there properties are satisfied the subspace V is called rational over k.

Exercise 2.38. Let ϑ1, . . . , ϑm be real numbers. Assume that 1, ϑ1, . . . , ϑm
are linearly independent over Q. Let V be a vector subspace of Rm+1 which is
rational over Q and has dimension ≤ m.
a) Check that the intersection of V with the real line R(1, ϑ1, . . . , ϑm) is {0}.
b) Deduce that

‖(x0, x1, . . . , xm)‖ = max
1≤i≤m

|x0ϑj − xj |

defines a norm on V .

2.2.8 Elimination Theory, Resultant.

References for this section are [2, 5, 7].
Let k be a field and P , Q two polynomials in Q[X] of degrees n and m

respectively. Since k[X] is a UFD, we can decompose P and Q as products
of irreducible polynomials. The ideal I generated by P and Q is principal,
generated by the greatest common divisor of P and Q (this gcd is unique up to
a constant, it is unique if we require that it is monic. Bézout’s Theorem states
that this gcd can be written as UP + V Q with U and V in k[X], and Euclide’s
algorithms gives a solution (U, V ) with degU < degQ and deg V < degP . This
ideal is k[X] if and only if the monic gcd is 1, which means also that P and Q
have no common zero in an algebraic closure of k.

Assume gcd(P,Q) = 1. The problem with Euclide’s algorithm is that it
is efficient for numerical purposes, when the polynomials P and Q are given,
but it is not so efficient for giving estimates for the coefficients of U and V .
Fortunately there is another efficient algorithm to compute U and V such that
PU +QV is a non–zero constant in k. Write

P = anX
n + an−1X

n−1 + · · ·+ a0, Q = bmX
m + bm−1X

m−1 + · · ·+ b0

and

U = um−1X
m−1+um−2X

m−2+· · ·+u0, V = vn−1X
n−1+vn−2X

n−2+· · ·+v0.

Consider the coefficients u0, u1, . . . , um−1, v0, v1, . . . , vn−1 of U and V as m+n
unknowns which should satisfy the system of m + n equations given by the
fact that the coefficients of X,X2, . . . , Xm+n−1 in PU +QV is zero, while the
constant coefficient is not zero. The determinant of the matrix of this system is
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not zero, since there is a solution by Bézout’s Theorem. Here is the matrix

an an−1 · · · · · · a1 a0 0 · · · 0
0 an · · · · · · a2 a1 a0 · · · 0
...

...
. . . . . .

...
...

...
. . .

...
0 0 · · · an an−1 an−2 an−3 · · · a0

bm bm−1 · · · b1 b0 0 0 · · · 0
0 bm · · · · · · b1 b0 0 · · · 0
...

...
. . .

...
...

. . .
...

...
...

. . . . . .
...

0 0 · · · 0 bm bm−1 bm−2 · · · b0


There are m rows with the coefficients of P and n rows 13 with the coefficients of
Q, the diagonal is (an, . . . , an, b0, . . . , b0). This matrix can be considered for any
pair (P,Q) of polynomials with coefficients in any domain A. The determinant
R of this matrix is then an element in A which is called the resultant of P and Q.
The determinant is invariant by linear combinations of the columns: multiplying
the k–th column by Xm+n−k, adding to the last column and expanding the
determinant shows that there are polynomials U and V such that R = PU+QV .
The resultant is not zero if and only if U and V are relatively prime in k[X],
where k is the quotient field of A.

Exercise 2.39. a) Using the Cauchy–Schwarz inequality∣∣∣∣∣∑
i

xiyi

∣∣∣∣∣
2

≤

∣∣∣∣∣∑
i

xi

∣∣∣∣∣
2

·

∣∣∣∣∣∑
i

yi

∣∣∣∣∣
2

,

show that the absolute value of a determinant with complex coefficients is bounded
by the product of the Euclidean norms of its columns.
b) For a polynomial P = anX

n + an−1X
n−1 + · · ·+ a0 in C[X], define

‖P‖ = (|an|2 + · · ·+ |a0|2)1/2.

Let P and Q be two non–constant polynomials in Z[X] of degrees n and m
respectively. Show that the two following properties are equivalent:
(i) P and Q are relatively prime in Q[X].
(ii) For any ϑ ∈ C,

(m+ n)‖P‖m‖Q‖n max{|P (ϑ)|, |Q(ϑ)|} > 1.
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