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2.2.5 Elementary symmetric functions

References for this section are [2, 5].

Let L be the field Q(x1,...,x,) of rational fractions in n variables over Q.
The elementary symmetric functions si,...,8, € Q[x1,...,x,] are defined by
(X =2 (X —22) (X =) = X" — 51 X" f 5, X2 — oo (=1)"s,.

For instance
S1 =21+ -+ Tn, Sp =T1 T

and
Sg = T1x2 + 1x3 + -+ XT1Tp + T2T3 + - F T2Tp + -+ Tp—1Tp.

More generally, for 1 < k < n, the k-th elementary symmetric function in n

variables is
S = Z L Lyt Ty, -
11 <tp <o <ip

The general polynomial of degree n is f(X) = (X — x1)(X — z2) - (X — zp,).
Further, let K denote the subfield Q(sy, ..., s,) of L. The polynomial f has its
coefficients in K and its splitting field over K is L. Since f has degree n, the
Galois group of L over K is (isomorphic to) a subgroup of &,,. As a consequence
[L: K] <nl

Any permutation of {1,...,n} induces an automorphism of L which fixes
each of s; (1 < k < n). Hence K is contained in the subfield L6~ of L fixed
by &,,. According to Galois theory, the extension L/ LS» has degree n! Hence
K = LS and L is an extension of K of degree n! and Galois group &,,.

A rational function F(x1,...,2,) € L is called symmetric if it is invariant
under &,,. Hence we have proved:

Proposition 2.25. A rational function F(z1,...,2,) € Q(x1,...,2,) i sym-
metric if and only if there exists a rational function G in n variables such that

F(zy1,...,xn) = G(s1,...,8n).

The rational function G is unique. If F' is a polynomial, then G is also a
polynomial. An algorithm for computing it is given in exercise 37, § 14.6 of [2].

Exercise 2.26. Prove that the elements s1, ..., S, are algebraically independent
over Q.

12Updated: October 12, 2007
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2.2.6 Modules over principal rings

References for this section are [2, 3, 5].

Let A be a ring (commutative with unit, as usual), M a A-module, N; and
Ny submodules of M. By definition M is the direct sum of Ny and Ns if the
map (x1,x2) — Z1 + T2 is an isomorphism of A-modules of N7 x Ny onto M. In
this case we write M = Ny @ N. This means M = N; + Ny and Ny NNy = {0}.

A free A-module is a A-module having a basis. Example like Z/2Z (and
more generally any finite abelian group viewed as a Z-module) or Q show that
modules over Z may not have a basis.

When A is a domain and M a A-module, the rank of M is the maximal
number of elements in M which are linearly independent over A. If we denote
by K the field of fractions of A and if M is a free A—module, then one can
embed M into a K-vector space V' and the rank of a submodule N of M is the
dimension of the K—vector space spanned by N in V. For instance the rank of
M itself is the number of elements in any basis of M over A.

Proposition 2.27 (Free modules over a PID). Let A be a PID, M a free A-
module of rank m and N a sub—A-module of M. Then N is free of rank n < m.
Moreover there exists a basis {e1,...,em} of M as a A-module and there exists
elements ay,...,a, in A such that {ajeq,...,ane,} is a basis of N over A and
a; divides a;1q1 in A for 1 <i<mn.

The ideals a1 A D asA D -+- D an A of A are called the invariant factors of
the sub—A-module N of M: they do not depend on the basis (a1, ...,e,) of M
satisfying the conditions of Proposition 2.27.

2.2.7 Geometry of numbers: subgroups of R".
References for this section are [1, 4, 0].

Lemma 2.28. A subgroup G of R"™ is discrete in R™ if and only if there exists
an open subset U of R™ containing 0 such that GNU is discrete.

Exercise 2.29. 1. Check that a non discrete subgroup of R is dense in R

2. Give the list of closed subgroups of R.

3. Let G be a finitely generated subgroup of R. Give a necessary and sufficient
condition on the rank of G for G to be dense in R.

4. Let 9 € R. Give a necessary and sufficient condition on ¥ for the subgroup
Z + 79 to be dense in R.

Proposition 2.30. Let G be a discrete subgroup of R™. There exists an integer
t in the interval 0 < t < n and there exist elements eq,...,e; in G, which are
linearly independent over R, such that G = Zey + - - - + Ze,.

In particular eq,...,e; are linearly independent over Z, hence G is free of
rank ¢. The integer ¢ is the dimension of the R—subspace of R" spanned by G.

Exercise 2.31. From Proposition 2.30, deduce that in a discrete subgroup of
R™, linearly independent elements over Z are linearly independent over R.
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Definition. A discrete subgroup of R™ of mazimal rank n is called a lattice) of
R™,

Proof of Proposition 2.30. Denote by V the vector subspace of R™ over R spanned
by G, by t its dimension and let {f1,..., f;} be a maximal subset of G which is
free over R: it is a basis of V over R” and G' = Zf; + --- + Zf; is a subgroup
of G. We show that G’ has finite index in G, which means that there are only
finitely many classes of G modulo G'.

Let K be the compact subset of R™ defined by

{U1f1+"'+utft§Oguigl(lgigt)}'

Since G is discrete, G N K is finite.
Let z € G. Then x € V, hence we can write x = x1f1 + -+ + x4 f; with
x; € R. Let m; = [z;] be the integral part of z;:

m; €4, 0<uz;—m; <1 (1<i<n).

Set o' =mqf1 +---+myf;. Then 2’ € G’ and x — 2’ € G N K. Therefore there
are only finitely many classes of G modulo G’, which means that G’ has finite
index in G.
Denote by s the order of the finite group G/G’ and set f! = f;/s (1 <1i <t).
We have
G =Zfi+ - +Zfi CGCLfi+ - +1Lf],

and the conclusion follows from Proposition 2.27.
O

Theorem 2.32 (Structure of subgroups of R™). Let G be an additive subgroup of
R™. There exists a mazimal vector subspace V' of R™ over R which is contained
in the topological closure of G. Let d be the dimension of V and d + t the
dimension of the vector space spanned by G over R. Set G' = GNV. Then G’
is dense in 'V and there exists a discrete subgroup G” of G, of rank t, such that
G is the direct sum of G' and G" .

Exercise 2.33. Let x = (x1,...,z,) € R". Consider the subgroup
G=7"+7x={(a1 +apx1,...,an + aoxy) ; (ag,...,a,) € Z"*}

of R™.

1. Show that G is discrete in R™ if and only if x € Q".

2. Deduce that the following properties are equivalent.

(i) 0 is an accumulation point of G.
(i1) For any € > 0, there exist integers pi,...,pn, q, with ¢ > 0, such that

0< llélia;(n lgz; — pi| < e.

(iii) A least one of the n numbers x1,...,x, is irrational.
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3. Check that G is dense in R™ if and only if the numbers 1,x1,...,x, are
linearly independent over Q.

Deduce that for any (£1,&2) € R? and for any € > 0, there exist rational integers
p1, p2 and q with

& —p1 —qV2| <e and |&—p1 —qV3| <e

Let G be a lattice in R™. For each basis € = {e1,...,e,} of G the parallelo-
gram
Po={x1e1+ - t+apen,; 0<z; <1 (1<i<n)}

is a fundamental domain for G, which means a complete system of representa-
tive of classes modulo GG. We get a partition of R™ as

R =t (2.34)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant +1, hence the Lebesgue measure u(Pe) of Pe does not de-
pend on e: this number is called the volume of the lattice G and denoted by
v(@G).

Here is an example of results obtained by H. Minkowski in the XIX-th
century as an application of his geometry of numbers.

Theorem 2.35 (Minkowski). Let G be a lattice in R™ and B a measurable
subset of R™. Set u(B) > v(G). Then there exist x # y in B such that t—y € G.

Proof. From (2.34) we deduce that B is the disjoint union of the B N (Pe + g)
with g running over GG. Hence

p(B)=> (BN (Pe+g)).
geG

Since Lebesgue measure is invariant under translation
p(BN(Petg) =pn((=g+B)NFe).

The sets (—g + B) N P, are all contained in Pe and the sum of their measures is
w(B) > pu(Pe). Therefore they are not all pairwise disjoint — this is one of the
versions of the Dirichlet box principle). There exists g # ¢’ in G such that

(—g+B)N(—g + B) #0.

Let  and y in B satisfy —g+xz=—¢'+y. Thenz —y=g— ¢ € G\ {0}.
O

Corollary 2.36. Let G be a lattice in R™ and let B be a measurable subset of
R™, convexr and symmetric with respect to the origin, such that u(B) > 2"v(G).
Then BN G # {0}.

69



Proof. We use Theorem 2.35 with the set
1
B/:§B:{$€R"; 2z € B}.

We have u(B’) = 27"u(B) > v(G), hence by Theorem 2.35 there exists = # y
in B’ such that z —y € G. Now 2z and 2y are in B, and since B is symmetric
—2y € B. Finally B is convex, hence (2z — 2y)/2 =z —y € GN B\ {0}.

O

Remark. With the notations of Corollary 2.36, if B is also compact in R™,
then the weaker inequality p(B) > 2™v(G) suffices to reach the conclusion. This
is obtained by applying Corollary 2.36 with (1 + €)B for e — 0.

Exercise 2.37. Let m and n be positive integers.

a) Let tij for 1 < 4,5 < n be n2 real numbers with determinant +1. Let
Aq, ..., A, be positive real numbers with Ay ---A, = 1. Show that there ex-
ists an non—zero element (x1,...,2,) in Z" such that

|x1tin + -+ Xntin| < A; for 1<i<n-—1
and

Hint. First solve the system with the weaker inequality < in place of <
|z1tin + -+ antin| <A for 1<i<n

by using Corollary 2.36. Next use the same method but with A,, replaced with
Ay, + € for a sequence of € which tends to 0.

b) Deduce the following result. Let ¥;; (1 < i <mn, 1 < j < m) be mn real
numbers. Let Q > 1 be a real number. Show that there exists rational integers
Q1y---sQms Ply---,Pn With

1 <max{|qi], ..., |gm|} < Q™™

and

1
1211222 |1911Q1 ﬂzQO pz| > Q

Hint. Use a) with n replaced by n+m and for a triangular matriz (tij)lgi,jngrn
with 1 on the diagonal.

¢) Deduce that if ¥1,...,9, are real numbers and H a real number > 1, then
there exists a tuple (ag,as,...,an) of rational integers such that

0< max |a;| <H and |ag+a191+ - +apdn| < H ™
1<i<m

d) Let 9 be a real number with |9| < 1/2, d a positive integer and H a positive
integer. Show that there exists a non—zero polynomial P € Z[X] of degree < d
and coefficients in the interval [—H, H| such that

|P(9)| < H™<.
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We conclude this section with the definition of a rational subspace. Let
k C K be a field extension and n a positive integer. For a K-vector subspace
V of K", the two following properties are equivalent:
(i) There exists a basis of V' which consists of elements in k™.
(ii) There exist linear forms L, ..., L,, with coefficients in k such that V is the
intersection of the hyperplans L; =0, (1 <i < m).
When there properties are satisfied the subspace V is called rational over k.

Exercise 2.38. Let 9¥1,...,9,, be real numbers. Assume that 1,94,...,%,
are linearly independent over Q. Let V be a vector subspace of R™+! which is
rational over Q and has dimension < m.
a) Check that the intersection of V with the real line R(1,91,...,9,,) is {0}.
b) Deduce that

||(£Co,$6’1, s 7xm)H = 12?;} |$019j - xj‘

defines a norm on V.

2.2.8 Elimination Theory, Resultant.

References for this section are [2, 5, 7].

Let k be a field and P, @ two polynomials in Q[X] of degrees n and m
respectively. Since k[X] is a UFD, we can decompose P and @ as products
of irreducible polynomials. The ideal Z generated by P and @ is principal,
generated by the greatest common divisor of P and @ (this ged is unique up to
a constant, it is unique if we require that it is monic. Bézout’s Theorem states
that this ged can be written as UP + V@ with U and V in k[X], and Euclide’s
algorithms gives a solution (U, V) with degU < deg @ and degV < deg P. This
ideal is k[X] if and only if the monic ged is 1, which means also that P and @
have no common zero in an algebraic closure of k.

Assume ged(P,Q) = 1. The problem with Euclide’s algorithm is that it
is efficient for numerical purposes, when the polynomials P and @ are given,
but it is not so efficient for giving estimates for the coefficients of U and V.
Fortunately there is another efficient algorithm to compute U and V such that
PU + QV is a non—zero constant in k. Write

P=a,X"4a, 1 X" 14+ day, Q=0bp,X"+byp 1 X" 1. 4
and
U=t 1 X" o X" 24 tug, V=00 X" 0, 20X 24 .

Consider the coefficients ug, u1, ..., Um—1, Vg, V1,-..,0p—1 of U and V as m+n
unknowns which should satisfy the system of m + n equations given by the
fact that the coefficients of X, X?2,...,X™t" 1 in PU + QV is zero, while the
constant coefficient is not zero. The determinant of the matrix of this system is
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not zero, since there is a solution by Bézout’s Theorem. Here is the matrix

Ap  Qp—1 - ¢ ai ao 0 0
0 an . . as aq ap e 0
0 0 . Ap Ap—-1 QAp—2 Ap—3 *°° ao

bm bm—l e bl bO 0 0 T 0
0 0 .. 0 bn  bm-1 bm—2 - bo

There are m rows with the coefficients of P and n rows '® with the coefficients of
Q, the diagonal is (ay, . .., an, bo, ..., bg). This matrix can be considered for any
pair (P, Q) of polynomials with coefficients in any domain A. The determinant
R of this matrix is then an element in A which is called the resultant of P and Q.
The determinant is invariant by linear combinations of the columns: multiplying
the k-th column by X™+t"~* adding to the last column and expanding the
determinant shows that there are polynomials U and V such that R = PU+QV.
The resultant is not zero if and only if U and V are relatively prime in k[X],
where k is the quotient field of A.

Exercise 2.39. a) Using the Cauchy—Schwarz inequality

Z Tili Z i Z Yi

show that the absolute value of a determinant with complex coefficients is bounded
by the product of the FEuclidean norms of its columns.
b) For a polynomial P = a, X™ 4+ a, 1 X" 1+ -+ ag in C[X], define

2 2 2
S .

)

1Pl = (lan]® + - + laol)'/2.

Let P and @Q be two non—constant polynomials in Z[X] of degrees n and m
respectively. Show that the two following properties are equivalent:

(i) P and Q are relatively prime in Q[X].

(ii) For any ¥ € C,

(m +n)|[P™|QII" max{|P(9)], |Q(I)} > 1.
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