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http ://www.math.sc.chula.ac.th/~icart2008/ Markoff’s equation occurred initially in the study of

minima of quadratic forms at the end of the XIX-th
century and the beginning of the XX—th century. It was
investigated by many a mathematician, including Lagrange,
. Hermite, Korkine, Zolotarev, Markoff, Frobenius, Hurwitz,
On the Markoff HQCQH_OS Cassels. The solutions are related with the
mdw + @w + Nw — w,&@ ~ Lagrange-Markoff spectrum, which consists of those
quadratic numbers which are badly approximable by
rational numbers. It occurs also in other parts of
Michel Waldschmidt mathematics, in particular free groups, Fuchsian groups
and hyperbolic Riemann surfaces (Ford, Lehner, Cohn,
Rankin, Conway, Coxeter, Hirzebruch and Zagier. . .).
We discuss some aspects of this topic without trying to
cover all of them.

http://www.math. jussieu.fr/~miw/
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Abstract The sequence of Markoft numbers
A Markoff number is a Andrei Andreyevich Markoff
It is easy to check that the equation 2 + 3% + 2% = 3zyz, positive integer = such that . Cmmmwgwqu

there exist two positive
integers « and y satisfying

where the three unknowns x, y, z are positive integers, has
infinitely many solutions. There is a simple algorithm which
produces all of them. However, this does not answer to all
questions on this equation : in particular Frobenius asked
whether it is true that for each integer z > 0, there is at
most one pair (z,y) such that © <y < z and (z,y,2) is a
solution. This question is an active research topic nowadays.

22+ + 2% = 3ayz.

For instance 1 is a Markoff
number, since

(r,y,2) =(1,1,1) is a
solution.

Photos :
http ://www-history.mcs.st-andrews.ac.uk/history/



The On-Line Encyclopedia of Integer Sequences

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897,
4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666,
43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, ...

The sequence of Markoff Neil J. A. Sloane
numbers is available on the
web

The On-Line
Encyclopedia

of Integer Sequences

Integer points on a surface

Given a Markoff number z, there exist infinitely many pairs
of positive integers = and y satisfying

22+ y? + 22 = 3ayz.

This is a cubic equation in the 3 variables (z,y, z), of which
we know a solution (1,1, 1).

There is an algorithm producing all integer solutions.

Markoft’s cubic variety

The surface defined by ALA. Markoff (1856-1922)
Markoff’s equation

2? +y? + 2% = 3ayz.

is an algebraic variety with
many automorphisms :
permutations of the
variables, changes of signs
and

A.\va\u\wv = AWQN - .H.Vw\qu.

Algorithm producing all solutions

Let (m,my,ms) be a solution of Markoff’s equation :

m? + Sm + SW = 3mmims.
Fix two coordinates of this solution, say m; and ms. We
get a quadratic equation in the third coordinate m, of
which we know a solution, hence the equation

2+ Sm + SW = 3zmims.

has two solutions, x = m and, say, x = m’, with
m +m’ = 3mymy and mm’ = m? + m2. This is the cord
and tangente process.

Hence another solution is (m',my, ms) with
m' = 3mimy — m.



Three solutions derived from one

Starting with one solution (m,my, ms), we derive three new
solutions :

(m',my,ma), (m,m},ms), (m,mq,m)).

If the solution we start with is (1,1, 1), we produce only
one new solution, (2,1,1) (up to permutation).

If we start from (2,1, 1), we produce only two new
solutions, (1,1,1) and (5,2,1) (up to permutation).

A new solution means distinct from the one we start with.

New solutions

We shall see that any solution different from (1,1,1) and
from (2,1, 1) yields three new different solutions — and we
shall see also that in each other solution the three numbers
m, my and mo are pairwise distinct.

Two solutions are neighbors if they share two components.

Markoff’s tree

Assume we start with (m, mq, ms) satisfying m > my > mo.
We shall check

my >my >m>m'.

We order the solution according to the largest coordinate.
Then two of the neighbors of (m,my, ms) are larger than
the initial solution, the third one is smaller.

Hence if we start from (1,1, 1), we produce infinitely many
solutions, which we organize in a tree : this is Markoff’s
tree.

This algorithm yields all the solutions

Conversely, starting from any solution other than (1,1, 1),
the algorithm produces a smaller solution.

Hence by induction we get a sequence of smaller and
smaller solutions, until we reach (1,1,1).

Therefore the solution we started from was in Markoff’s
tree.



First branches of Markoft’s tree Markoft’s tree up to 100 000
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Figure 10. The Tree of Markoff Solutions.
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FIGURE 2
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Markoff’s tree starting from (2, 5, 29) Markoft’s tree
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a? + b* + ¢ = 3abe

a
c 3ab-c
b
X% —3abX 4+ a® + 1% =
(X —¢)(X —3ab+c) .
194
13 7561
| g | 2
. i x.;l " o
e p 1 ™ R -
o <
1 m._.. 1 13

The Fibonacci sequence and the Markoff equation

The smallest Markoff number is 1. When we impose z = 1
in the Markoff equation 2 + 3> + 2% = 32y2, we obtain the
equation

22 +1y? + 1 = 3ay.

Going along the Markoff’s tree starting from (1, 1,1), we
obtain the subsequence of Markoff numbers

1, 2, 5, 13, 34, 89, 233, 610, 1597,4181, 10946, 28657, ...

which is the sequence of Fibonacci numbers with odd
indices

=1, Fs=2 F;=5, F; =13, Fy =34, F1;, =89, ...

18 /79

Leonardo Pisano (Fibonacci)

The Fibonacci sequence Leonardo Pisano (Fibonacci)

(F)n>o : (1170-1250)
0,1, 1,2 3, 5, 8,13, 21,

34, 55, 89, 144, 233.
is defined by

=0, Fy =1,

NU: = ﬁﬁlw + .Nudﬁlw A3 > Mv

19,

/79

Encyclopedia of integer sequences (again)
0,1, 1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, ..

The Fibonacci sequence is Neil J. A. Sloane
available online
The On-Line
Encyclopedia
of Integer Sequences

http ://www.research.att.com/~njas/sequences/A000045
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Fibonacci numbers with odd indices

Fibonacci numbers with odd indices are Markoff’s
numbers :

Foy3bmo1 — ﬁwt =(=1)" for m=>1

and
Fos+ F,1=3F, for m2>1.

Set y = Fy1, v = F, 1, @ = F,, 13, so that, for even m,
v+ =3y, a2’ =9y"+1

and
X2 —3yX+y*+1=(X —2)(X —2).

Order of the new solutions

Let (m,my,msy) be a solution of Markofl’s equation

2 2 2
m”~ 4+ mj +m5 = 3mmyms.

Denote by m’ the other root of the quadratic polynomial

X% — 3mymeX +mi +mj.

Hence
X2 —3mmeX +mi+m; = (X —m)(X —m)

and
I ! 2 2
m4+m = 3mime, Mmm =mj+m;.

3:#3\5

Let us check that if m; = mso, then my =msy =1 :

this holds only for the two exceptional solutions (1,1, 1),
(2,1,1).

Assume m; = my. We have

m? 4+ 2m] = 3mm; hence m* = (3m — 2)mj;.

Therefore m, divides m. Let m = km,;. We have
k? = 3km, — 2, hence k divise 2.

For k =1 we get m =my = 1.

For k =2 we get my =1, m = 2.

Consider now a solution distinct from (1,1,1) or (2,1,1) :
hence my # ms.

23 /79

Two larger, one smaller

Assume my > meo.
Question : Do we have m’ > mq or else m' < my ¢

Consider the number a = (my; — m)(my —m’).
Since m + m’ = 3myms,, and mm’ = m? + m3, we have

a=m3 —mi(m +m') + mm’

2 2 2
= 2mj + m5 — 3mima

= (2m} — 2mimy) + (m3 — mimy).

However 2m? < 2m?ms and m2 < m2ms, hence a < 0.
1 1M 2 1ma,

This means that
myq is in the interval defined by m and m'.

24 /79



Order of the solutions

If m > my, we have m; > m’ and the new solution

(m/,my, ms) is smaller than the initial solution (m,mq,ms).
If m < my, we have m; < m’ and the new solution

(m/,my, my) is larger than the initial solution (m,my,ms).

| 2 | 29
W ¥ Wz
¥ oz I oo §
= 2R
| ¥ | 13

Prime factors

Remark. Let m be a Markoff number with
m? + Sw + SW = 3mmims.

The same proof shows that the GCD of m, m; and ms is 1 :
indeed, if p divides my, my and m, then p divides the new
solutions which are produced by the preceding process —
going down in the tree shows that p would divide 1.

The odd prime factors of m are all congruent to 1 modulo 4
(since they divide a sum of two relatively prime squares).
If m is even, then the numbers
m  3m—2 3m+42

) )

9

2 4 8

are odd integers.

Markoft’s Conjecture

The previous algorithm produces the sequence of Markoff
numbers. Each Markoff number occurs infinitely often in
the tree as one of the components of the solution.

According to the definition, for a Markoff number m > 2
there exist a pair (mq,ms) of positive integers with
m > my > mgy such that m? +m? + m3 = 3mmyms.

Question : Given m, is such a pair (my, ms) unique ?

The answer is yes, as long as m < 1

Frobenius’s work

Markoff’s Congjecture does
not occur in Markoff’s 1879
and 1880 papers but in
Frobenius’s one in 1913.

OHom

Ferdinand Georg Frobenius

(1849-1917)




Special cases

The Conjecture has been Arthur Baragar
proved for certain classes of
Markoff numbers m like
P+ 2

3

T

v,

for p prime.

A. Baragar (1996),

P. Schmutz (1996),

J.O. Button (1998),

M.L. Lang, S.P. Tan (2005),
Ying Zhang (2007).

http ://www.nevada.edu/ baragar/

Powers of a prime number

Anitha Srinivasan, 2007

A really simple proof of the
Markoff conjecture for prime
powers

Number Theory Web

Created and maintained by

Keith Matthews, Brisbane, Australia
www.numbertheory.org/pdfs/simpleproof . pdf

The state of the art

10/09/2007, 04/12/2007 : Norbert Riedel
http ://fr.arxiv.org/abs/0709.1499v2
http ://fr.arxiv.org/abs/0709.1499
A triple (a,b,c) of positive integers is called a
Markoff triple iff it satisfies the diophantine
equation a® + b*> + ¢* = abc. Recasting the Markoff
tree, whose vertices are Markoff triples, in the
framework of integral upper triangular 3 X 3
matrices, it will be shown that the largest member
of such a triple determines the other two uniquely.
This answers a question which has been open for
almost 100 years.

Flaw in the proof discovered by Serge Perrine.

29 /79 31/79

Why the coefficient 37

Let n be a positive integer.

If the equation x* + y* + z* = nwyz has a solution in
positive integers, then

either n = 3 and x, y, z are relatively prime,

orn =1 and the GCD of the numbers x, y, z is 3.

Friedrich Hirzebruch & Don Zagier,
The Atiyah—Singer Theorem and elementary number theory,
Publish or Perish (1974)

30/79 32/179



Markoft type equations

Bijection between the solutions for n = 1 and those for
n=3:

o if 27 +1y? + 2% = 3zyz, then (3x, 3y, 32) is solution of
X?+Y?24+ 7%= XY Z, since
(32)* + (3y)* + (32)" = (37)(3y)(32).

oif X? + V24 7Z? = XYZ, then X, Y, Z are multiples of 3
and (X/3)2 + (Y/3)? + (Z/3)* = 3(X/3)(Y/3)(Z/3).

The squares modulo 3 are 0 and 1. If X, Y and Z are not
multiples of 3, then X? +Y? + Z? is a multiple of 3.

If one or two (not three) integers among X, Y, Z are
multiples of 3, then X2 + Y? + Z? is not a multiple of 3.

Equations 2% 4+ ay® + b2* = (14 a + b)zy=

If we insist that (1,1, 1) is a solution, then up to
permutations there are only two more Diophantine
equations of the type

v +ay’ + b2 = (1 +a+b)ayz

having infinitely many integer solutions, namely those with
(a,b) = (1,2) and (2,3) :

2?4+ y* + 222 =4ayz and 2% + 297 + 32% = 6ayz

e 22 + 1 + 22 : tessalation of the plane by equilateral
triangles

o 27 + 12 + 222 = 4dayz : tessalation of the plane by isoceles
rectangle triangles

o 22 + 2y? + 322 = 6ayz : tessalation ?

Laurent’s phenomenon

Connection with Laurent polynomials.

James Propp, The combinatorics of frieze patterns and
Markoff numbers,

http ://fr.arxiv.org/abs/math/0511633

If f, g, h are Laurent polynomials in two variables x and v,
i.e., polynomials in =, 7', 5, 4!, in general

h(f(z.y), g(z,y))

is not a Laurent polynomial :

\ASHHM.:H&.TW
T x
A&+~vw+H
x 2t 4+ 322+ 1
\Q?&v B .ﬁ.fw B x(z?2+1) .
x
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Hurwitz's equation (1907)

For each n > 2 the set K, of positive integers k for which
the equation

2, 2 2
i tay+- 4, =kvyo-x,

has a solution in positive integers is finite.
The largest value of k in K, is n — with the solution

(L,1,...,1).
Examples :
Mﬂw” AH“ wwu
N.ANH A_MH“ %Wu

K:={1, 2, 3,5, 7}.



Hurwitz’s equation

When there is a solution in positive integers, there are
infinitely many solutions, which can be organized in finitely
many trees.

A. Baragar proved that there exists such equations which
require an arbitrarily large number of trees
J. Number Theory (1994), 49 No 1, 27-44.

The analog for the rank of elliptic curves over the rational
number field is yet a conjecture.

Growth of Markoft’s sequence

1978 : order of magnitude of Harvey Cohn
m, my and msy for

m? + m? + m3 = 3mmym,
with m; < moy < m,

log(3my) + log(3ms) = log(3m) + o(1)

To identify primitive words
in a free group with two
generators, H. Cohn used
Markoff forms.

x +—log(3z) : (my1,ma,m) — (a,b,c) with a4+ b~ c.

38/79

Euclidean tree
Start with (0,1, 1). From a triple (a, b, ¢) satisfying
a+b=cand a <b<c, one produces two larger such

triples (a,c,a + ¢) and (b, ¢, b+ ¢) and a smaller one
(a,b—a,b) or (b—a,a,b).

(0,1,1)
)

QMWV

DO

1
|
(1,1,
|
(1,2

|

39/79

Markoff and Euclidean trees

AN 7’ N s N s N/ N 7 N 7 N/ /
(1,13,34)  (5,13,194)  (2,29,169)  (5,29,433) (1,4,5) G4 @5 - (3,58

~ - ~ - ~ -
-

(1,15,13) (2,5,29) (1,3,4) (2.3,5)

FIGURE 2. THE MARKOFF TREE AND THE EUCLID TREE

Tom Cusik & Mary Flahive,
The Markoff and Lagrange spectra,
Math. Surveys and Monographs 30, AMS (1989).



Growth of Markoft’s sequence

Don Zagier (1982) :
estimating the number of
the Markoff triples bounded
by x :

c(logz)* 4+ O(log z(loglog x)?),
c=0,18071704711507. ..

Conjecture : the n-th Markoff number m,, is

my ~ AY"  with A =10,5101504 - - -

11 /79

Historical origin : rational approximation

Hurwitz’s Theorem Adolf Hurwitz
(1891) : For any real (1859-1919)
irrational number x, there
exist infinitely many rational
numbers p/q such that

r——| <

= Vo

P 7 1

Golden ratio
d=(1++5)/2=
1,6180339887498948482. ..
Hurwitz’s result is optimal.

The Fibonacci sequence and the Golden ratio

Formula of A. De Moivre (1730), L. Euler (1765),
J.P.M. Binet (1843) :

oL (15v5) 1 (1=
=2 NA G

n

13 /79

Formula of De Moivre-Euler—Binet

Abraham de Leonhard Euler Jacques Philippe
Moivre (1707-1783) Marie Binet
(1667-1754) (1786-1856)

1
F,, is the nearest integer to —®".

44 /79



Quadratic relation

One checks by induction
F2 . —FyuF,—F}=(-1)" forall n>0.

The left hand side is the value at (F,, 1, F},) of the
quadratic form

X2 XY - V2= (X —®Y)(X +d'Y).

The sequence u,, = F,,.1/F,, n > 1 converges to the Golden
ratio ® and
F2.y = FuiFy— F2 = F2(u, — ®)(u, + 7).

Quotients of consecutive Fibonacci numbers

One deduces

1 1 1

F?2|® —u,| = ——

n® = ) 4w, 11D 5
Hence ” )
lim F2 @ — 2 = —_.

Continued fractions

The sequence u,, = F), 1/ F, is also defined by
1
u =1, u, =1+ v (n>2).
Up—1
Hence
Up=1+ =1+ : —
1+ 1+ 1
Unp—2 1+
Up—3
=[1,1,...,1] n times

Hurwitz’s result is optimal
Hurwitz’s result

1
5552@553& IEV <— forallze R\ Q

q—00 pEZ /\W

is optimal : there is equality for x = &.
For |¢® — p| < 1, we have

1<|¢*+pg—p°| =[qg® —p|- (¢® " +p)
with
@@ p=q(@+ ) +p—qd < qV5+1,

hence
1< ]q® —p|- (¢V5+1).

Notice that P(X) = X? — X — 1 has discriminant 5 and
P'(®) = VA = /5.

48/
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Liouville’s inequality Markoft’s constant

An irrational real number x is badly approzimable by

rational numbers if its Markoff’s constant is finite. This
Liouville’s inequality. Let Joseph Liouville, 1844 means that there exists v > 0 such that, for any p/q € Q,
a be an algebraic number of
degree d > 2, P € Z[X] its
minimal polynomial,
c=|P'(a)| and e > 0. There
exists qo such that, for any

P

T — =

q

1
ol

>

For instance Liouville’s numbers have an infinite Markoff’s

p/q € Q with q > qq, constant.
A real number is badly approximable if and only if the
a—Pl> 1 . sequence (a,),>o of partial quotients in its continued
q| T (ete)q? fraction expansion
xr = |ag, ai, az, ...,Gp,...]
is bounded.
19 /79
Markoft’s constant Badly approximable numbers

For z € R\ Q denote by \(z) € [v/5, +00] the least upper
bound of the numbers v > 0 such that there exist infinitely

many p/q € Q satisfying

Any quadratic irrational real number has a finite Markoff’s
constant (= is badly approximable).

H ?wm53W:oézérmﬁwgggmou&mﬁHmm_&mmggobcgdmam
7 5 of degree > 3 which are badly approximable.

It is not known whether there exist real algebraic numbers
This means of degree > 3 which are not badly approximable . ..

e = _EWWWXQ 5%% lqz — @_V One conjectures that any irrational real number which is
. ! ! not quadratic and which is badly approximable is
transcendental.

Hurwitz : A(x) > /5 for any = and A\(®) = /5.



Lebesgue measure

The set of badly Henri Léon Lebesgue

approximable real numbers (1875-1941)
has zero measure for SR
Lebesgue’s measure.

Properties of the Markoff’s constant

We have
Mz +1) = MNax) : a+~|il.&l§
q q
and
p p
AN—z) = Az Iallg._.;“
s et
Also A(1/z) = A(z)
1
mh,;é; {J.
r . p qr q

The modular group

The multiplicative group
generated by the three
matrices

11 1 0 01
0 1)’ 0 -1/’ 10
is the group GLy(Z) of 2 x 2

matrices

A@ @v éwgoommm&mbnmg
c d

Z and determinant +1.

J-P. SERRE — Cours d’arithmétique, Coll. SUP, Presses
Universitaires de France, Paris, 1970.
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a b ax + b

c d T cr +d
Aw MVRH&LvH Aw IOHV&He Aw WVHHW
Mo +1) = \z) A—z) = \(z) A1/z) = Az)

Consequence : Let © € R\ Q and let a, b, ¢, d be rational
integers satisfying ad — bc = +1. Set

axr +0b

V= wrd

Then A(z) = A(y).



Hurwitz’s work (continued)

The inequality A(z) > /5
for all real irrational x is
optimal for the Golden ratio
and for all the noble
irrational numbers whose
continued fraction expansion
ends with an infinite
sequence of 1’s — these
numbers are the roots of the
quadratic polynomials
having discriminant 5 :

Adolf Hurwitz, 1891

o=[1,1,1,...] = [1].

The first elements of the spectrum

Hurwitz’s inequality A\(xz) > /5 is optimal for the Golden
ratio @ and all the numbers related to ® by a homography
of determinant +1 :

@&.:v. @@

For all the other real numbers we have \(z) > 2/2. This is
optimal for

V2 = 1,414213562373095048801688724209698078 . . .
whose continued fraction expansion is

152, 2, ...,2, ...] =[1;2].

Minima of quadratic forms

Let f(X,Y) =aX?+bXY + cY? be a quadratic form with
real coefficients. Denote by A(f) its discriminant b* — 4ac.

Consider the minimum m(f) of | f(x,y)| on Z*\ {(0,0)}.
Assume A(f) # 0 and set

C(f) =m(f)/VIA)]

Let o and o' be the roots of f(X 1) :

f(X,)Y)=a(X —aY)(X —aY),

@)= {30+ vam) }.

59 /79

Example with A < 0

The form
fX,)Y)=X>+ XY +Y?
has discriminant A(f) = —3 and minimum m(f) = 1, hence
m(f) 1
Cf) = i = =
VIADL V3
For A < 0, the form
_ JIBl e >
JXY) =\ 5+ XY +Y?)

has discriminant A and minimum +/|A|/3. Again

60 /79



Definite quadratic forms (A < 0)

If the discriminant is negative, J.L.. Lagrange and Ch.
Hermite (letter to Jacobi, August 6, 1845) proved

C(f) < 1/+/3 with equality for f(X,Y) = X%+ XY + V2
For each o € (0,1/+/3], there exists such a form f with
c(f) =e

Joseph-Louis Charles Hermite  Carl Gustav
Lagrange (1822-1901) Jacob Jacobi
(1736-1813) (1804-1851)

Example with A > 0

The form
f(X,)Y)=X*- XY - Y?

has discriminant A(f) = 5 and minimum m(f) = 1, hence

_om(f) 1
“D=Vap =
For A > 0, the form
fX)Y) = WANM — XY —-Y?)

has discriminant A and minimum /A /5. Again

Indefinite quadratic forms (A > 0)

Assume A > 0

A. Korkine and

E.I.. Zolotarev proved in
1873 CO(f) < 1/4/5 with
equality for

fo(X,Y)= X2 - XY - Y2
For all forms which are not
equivalent to fy under
GL(2,Z), they prove

C(f) < 1/v5.

1/4/5 = 0,447 213 595 . ...
1/v/8=10,353 553 391. ..

Gap!

Indefinite quadratic forms (A > 0).

The works by Korkine and
Zolotarev inspired Markoff
who pursued the study of
this question.

He produced infinitely many
values C'(f;),1=0,1,...,
between 1/+/5 and 1/3, with
the same property as fj.
These values form a
sequence which converges to
1/3. He constructed them by
means of the tree of
solutions of the Markoff
equation.

Egor Ivanovich Zolotarev

(1847-1878)

AL Markoff, 1879 and 1880.




Indefinite quadratic forms (A > 0) Fuchsian groups and hyperbolic Riemann surfaces

Assume f((X,Y) =aX? +0XY + c¢V? € R[X, Y] with

a has discriminant A . ‘
>0 >0 Markoff’s tree can be seen as Lazarus Immanuel Fuchs

the dual of the triangulation (1833-1902)
of the hyperbolic upper half
plane by the images of the
Then fundamental domain of the
|z — a'y| ~| y| - |a — modular invariant under the

and o — o/ = VAJa. action of the modular group

If | f(x,y)| is small with y # 0, then z/y is close to a root of
f(X,1), say a.

Hence
x
o] = e — el — @l ~AVE fo -
65 /79 67 /79
Lagrange spectrum and Markoff spectrum Triangulation of polygons, metric properties of
Markoff spectrum = set of values taken by @OJAOU@@
1
|QC& = VA(f)/m(f) Harold Scott Robert Alexander John Horton
MacDonald Rankin Conway

when [ runs over the set of quadratic forms Coxeter (1915-2001)
az® + bry + cy? with real coefficients of discriminant (1907-2003)

A(f) =b* —4ac > 0 and m(f) = inf ;. y)ez2\ g0y | (2, ¥)]-
Lagrange spectrum = set of values taken by Markoff’s
constant (!)

A(z) = 1/liminf ¢(min |gz — p|)

q—00 PEZ

when = runs over the set of real numbers.

The Markoff spectrum contains the Lagrange spectrum.
The intersection with the intervall [v/5, 3] is the same for
both of them, and is a discrete sequence.

& ﬁw@ |
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Ford circles

The Ford circle associated to Lester Randolph Ford
the irreducible fraction p/q (1886-1967)

is tangent to the real axis at
the point p/q and has radius

1/2¢%.

Ford circles associated to
two consecutive elements in
a Farey sequence are Amer. Math. Monthly
tangent. (1938).

Farey sequence of order 5

Complex continued fraction

The third generation of Asmus Schmidt’s complex
continued fraction method.

Continued fractions and hyperbolic geometry

S




The Geometry of Markoff Numbers Free groups.

Fricke proved that if A and B are two generators of I', then
g . their traces satisfy

(trA)? + (trB)? + (trAB)? = (trA)(trB)(trAB)

Harvey Cohn showed that quadratic forms with a Markoff
constant C'(f) €]1/3,1/+/5] are equivalent to

cx® + (d — a)zy — by?

where
a b
Caroline Series, c d
The Geometry of Markoff Numbers, )
The Mathematical Intelligencer 7 N.3 (1985), 20-29. is a generator of I
Fricke groups Fundamental domain of a punctured disc

The subgroup I' of SLy(Z) generated by the two matrices

11 2 1
(1) = ()

is the free group with two generators.

The Riemann surface quotient of the Poincaré upper half
plane by I' is a punctured torus. The minimal lengths of the

closed geodesics are related to the C'(f), for f indefinite e o th pncned
quadratic form.
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A simple curve on a punctured disc International Conference on Algebra and Related Topics
(ICART 2008) May 29, 2008

http ://www.math.sc.chula.ac.th/~icart2008/

On the Markoff Equation
22+ + 2% = 3ayz

Maichel Waldschmidt

http://www.math. jussieu.fr/~miw/

Figure 1. A simple curve on the punctured torus.

-
~
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Markoff and Diophantine approximation

J.W.S. Cassels, John William Scott Cassels
An introduction to
Diophantine approzimation,
Cambridge Univ. Press
(1957)

~
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