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2 Irrationality Criteria

2.1 Statement of a criterion

Proposition 4. Let ¥ be a real number. The following conditions are equiv-

alent:

(i) ¥ is irrational.

(ii) For any e > 0, there exists (p,q) € Z* such that ¢ > 0 and
0<l|gd—p|l<e

(iii) For any € > 0, there exist two linearly independent linear forms in two
variables

Lo(Xo,X1) = apXo +bo X1 and L1(Xo,X1) = a1 Xo + b1 X1,
with rational integer coefficients, such that
max{|Lo(1,19)] , ]L1(1,0)|} < €.
(iv) For any real number Q@ > 1, there exists an integer q in the range

1 <q < Q and a rational integer p such that

1
0<|q¥—p|l < —=-
| | 0

(v) There exist infinitely many p/q € Q such that
e
q q
(vi) There exist infinitely many p/q € Q such that
1
Vg2

ﬁ—p’<
q
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The implication (vi) = (v) is trivial. We shall prove (i) = (vi) later (in
the section on continued fractions). We now prove the equivalence between
the other conditions of Proposition [4] as follows:

(iv) = (i) = (iii) = (i) = (iv) = (v) and (v) = (ii).

Notice that given a positive integer ¢, there is at most one value of p
such that g9 — p| < 1/2, namely the nearest integer to ¢iJ. Hence, when we
approximate ¥ by a rational number p/q, we have only one free parameter
in Z~g, namely q.

In condition (v), there is no need to assume that the left hand side is
not 0: if one p/q € Q produces 0, then all other ones do not, and there are
again infinitely many of them.

Proof of (iv) = (ii). Using (iv) with @ satisfying @ > 1 and @ > 1/e, we
get (ii). O

Proof of (v) = (ii). According to (v), there is an infinite sequence of distinct
rational numbers (p;/g;)i>0 with g; > 0 such that

1
< P ——
V5¢;

For each ¢;, there is a single value for the numerator p; for which this in-
equality is satisfied. Hence the set of ¢; is unbounded. Taking ¢; > 1/e
yields (ii). O

=
qi

Proof of (ii) = (iii). Let e > 0. From (ii) we deduce the existence of (p, q) €
Z x Z with ¢ > 0 and ged(p, q) = 1 such that

0<l|gd—p|l<e

We use (ii) once more with € replaced by |¢ —p|. There exists (p,¢') € ZXZ
with ¢’ > 0 such that

0<|qV—7p'| <lgd—pl (5)

Define Lo(XQ,Xl) = pXo — le and Ll(Xo,Xl) = p,Xo — q,Xl. It only
remains to check that Ly(Xop, X1) and Lq(Xo, X1) are linearly independent.
Otherwise, there exists (s,t) € Z2\ (0,0) such that sLyp = tL;. Hence
sp=tp, sq =tq, and p/q = p'/q’. Since ged(p,q) = 1, we deduce ¢t = 1,
P’ =sp, ¢ =sqand ¢ — p’ = s(q¥ — p). This is not compatible with ().
O
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Proof of (iii) = (i). Assume 9 € Q, say ¥ = a/b with ged(a,b) =1 and b >
0. For any non—zero linear form L € Z X, + Z X, the condition L(1,7) # 0
implies |L(1,9)| > 1/b, hence for e = 1/b condition (iii) does not hold.

U

Proof of (i) = (iv) using Dirichlet’s box principle. Let @@ > 1 be a given
real number. Define N = [Q]: this means that N is the integer such
that N —1 < @ < N. Since Q > 1, we have N > 2.

Let ¥ € R\ Q. Consider the subset E of the unit interval [0, 1] which
consists of the N + 1 elements

0, {9}, {20}, {39}, ..., {(N — 1)}, 1.

Since ¢ is irrational, these N + 1 elements are pairwise distinct. Split the
interval [0, 1] into N intervals

J J+1 .
Ii=|=,—— 0<jJ<N-1).
J |:N7 N:| ( >7> )

One at least of these N intervals, say I;,, contains at least two elements of
E. Apart from 0 and 1, all elements {¢¥} in F with 1 < ¢ < N —1 are
irrational, hence belong to the union of the open intervals (j/N, (j+1)/N)
with 0 < j < N — 1.

If jo = N — 1, then the interval

1
1j0:1N1:[1—N, 1]

contains 1 as well as another element of E of the form {¢¥} with 1 < ¢ <
N —1. Set p=[g¥] + 1. Then we have 1 <¢< N —1< @ and

11
p—q¥ = [q]+1—[qV] —{q¥} =1—{qV}, hence 0<p—qv“<ﬁﬁa

Otherwise we have 0 < jo < N —2 and I, contains two elements {¢;9} and
{g20} with 0 < ¢; < g2 < N — 1. Set

=@ —q, p=|@pI] - |nd]
Then we have 0 < g=¢qo —q1 < N —1 < @ and

g9 — p| = {g20} ~{ @19} < 1/N < 1/Q.
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Remark. Theorem 1.A in Chap. II of [32] states that for any real number 9,
for any real number ) > 1, there exists an integer ¢ in the range 1 < ¢ < @
and a rational integer p such that

The proof given there yields strict inequality |¢¥ — p| < 1/Q in case @ is not
an integer. In the case where @ is an integer and 1 is rational, the result
does not hold with a strict inequality in general. For instance, if ¥ = a/b
with ged(a,b) = 1 and b > 2, there is a solution p/q to this problem with
strict inequality for Q = b+ 1, but not for Q) = b.

However, when @) is an integer and 9 is irrational, the number |q¥ — p|
is irrational (recall that ¢ > 0), hence not equal to 1/Q).

Proof of (iv) = (v). Assume (iv). We already know that (iv) = (i), hence
¥ is irrational.

Let {q1,...,qn} be a finite set of positive integers. We are going to show
that there exists a positive integer q € {qi, ..., qn} satisfying the condition
(v). Denote by || || the distance to the nearest integer: for x € R,

|z|| = min |z — al.
a€Z

Since ¥ is irrational, it follows that for 1 < j < N, the number ||g;?|| is
non—zero. Let @@ > 1 satisfy

~1
> i 1 .
Q> (i, ool

From (iv) we deduce that there exists an integer ¢ in the range 1 < ¢ < @
such that

1
0 < |lqvi]| < =-
lad]| 0
The right hand side is < 1/¢, and the choice of @ implies q & {q1,...,qn}.

O]

In the next section, we give another proof of (i) = (iv) which rests on
Minkowski geometry of numbers.
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2.2 Geometry of numbers

Recall that a discrete subgroup of R™ of maximal rank n is called a lattice
of R™.

Let G be a lattice in R". For each basis e = {ej,...,e,} of G the
parallelogram

Pe:{I1€1+"‘+$nen;0§xi<1(1§i§n)}

is a fundamental domain for G, which means a complete system of repre-
sentative of classes modulo G. We get a partition of R as

R" = [ J(Pe+9) (6)
geG

A change of bases of G is obtained with a matrix with integer coefficients
having determinant +1, hence the Lebesgue measure u(Pe) of Pe does not
depend on e: this number is called the volume of the lattice G and denoted
by v(G).

Here is an example of results obtained by H. Minkowski in the XIX-th
century as an application of his geometry of numbers.

Theorem 7 (Minkowski). Let G be a lattice in R"™ and B a measurable
subset of R"™. Assume p(B) > v(G). Then there exist © # y in B such that
x—yeqG.

Proof. From () we deduce that B is the disjoint union of the BN (Pe + g)
with ¢ running over G. Hence
w(B) =3 u (BN (Po+g)).
geG

Since Lebesgue measure is invariant under translation
w(BN(Petg)=p((—g+B)NF).

The sets (—g+ B) N Pe are all contained in Pe and the sum of their measures
is u(B) > p(Pe). Therefore they are not all pairwise disjoint — this is one
of the versions of the Dirichlet box principle). There exists g # ¢’ in G such
that

(—g+B)Nn(—g' + B) #0.

Let x and y in B satisty —g+z=—¢'+y. Thenz —y=9g—¢ € G\ {0}.
]
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From Theorem [7| we deduce Minkowski’s convex body Theorem (Theo-
rem 2B, Chapter II of [32]).

Corollary 8. Let G be a lattice in R™ and let B be a measurable subset
of R™, convex and symmetric with respect to the origin, such that u(B) >
2"(G). Then BN G # {0}.

Proof. We use Theorem [7| with the set
1
B/:§B:{x€Rn; 2z € B}.

We have pu(B') = 27" u(B) > v(G), hence by Theorem [7| there exists x # y
in B’ such that z—y € G. Now 2x and 2y are in B, and since B is symmetric
—2y € B. Finally B is convex, hence (2 —2y)/2 =2 —y € GN B\ {0}.

O

Corollary 9. With the notations of Corollary[8, if B is also compact in R™,
then the weaker inequality p(B) > 2"v(QG) suffices to reach the conclusion.

Proof. Assume p(B) = 2"v(G). Fore > 0, set B, = (1+€)B = {(1+¢€)t; t €
B}. Since p(Be) > 2"v(G), we deduce from Corollary[§| B.NG # {0}. Since
Bc is compact and G discrete, B. NG \ {0} is a finite non-empty set. Also

B.NGC BNG

for ¢ < e. Hence there exists ¢t € G \ {0} such that ¢ € B, for all € > 0.
Define te € B by t = (1 + €)t.. Since B is compact, there is a sequence
€, — 0 such that ., has a limit in B. But lim,_,ote =t. Hence ¢t € B.

O

Remark. The example of G = Z" and B = {(z1,...,2,) € R"; |2;| < 1}
shows how sharp are Corollaries [§ and [9}

Minkowski’s Linear Forms Theorem (see, for instance, [32] Chap. II § 2
Th. 2C) is the following result.

Theorem 10 (Minkowski’s Linear Forms Theorem). Suppose that 9;; (1 <
i,7 < n) are real numbers with determinant £1 . Suppose that Ai,..., A,
are positive numbers with Ay --- A, = 1. Then there exists an integer point

z=(1,...,2,) # 0 such that
[Wi1x1 + -+ Dinxn| < A; (1<i<n-—1)
and

|29n1x1 R 19nnxn| < A,.
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Proof. We apply Corollary |8 with A,, replaced with A, + € for a sequence
of € which tends to 0. O

Here is a consequence of Theorem

Corollary 11. Let ¥4, ...,%, be real numbers. For any real number Q > 1,
there exist p1,...,Pm,q in Z such that 1 < q < @ and
i 1
max |9¥; — bi < .
1<i<m q qQl/m

Proof of Corollary[11. We apply Theorem to the n x n matrix (with
n=m+1)

1 00 --- 0
—191 1 0 0
—292 01 0
Oy 00 e 1
corresponding to the linear forms Xy and —¢;Xp + X; (1 < i < m), and
with AO = Q’ Al e Am — Q—l/m'

O]

Proof of (i) = (iv) in Proposition |4| using Minkowski’s geometry of numbers.
Let € > 0. The subset

Ce = {(zo. 1) € R?; |mo| < Q, |zo? — 21| < (1/Q) + €}

of R? is convex, symmetric and has volume > 4. By Minkowski’s Convex
Body Theorem (Corollary [§| below), it contains a non-zero element in Z2.
Since C, is also bounded, the intersection C, N Z? is finite. Consider a non—
zero element (zg,z1) in this intersection with |xg¥ — z1| minimal. Then
(xo,x1) € C, for all € > 0, hence |xgd — x1| < 1/Q + € for all € > 0. Since
this is true for all € > 0, we deduce |zo — z1| < 1/Q. Finally, since 9 is
irrational, we also have |zo¥ — z1| # 1/Q. O

2.3 Irrationality of at least one number

Proposition 12. Let ¥4, ...,v,, be real numbers. The following conditions
are equivalent:
(i) One at least of V1,...,0y, is irrational.

(ii) For any € > 0, there exist p1,...,Pm,q in Z with ¢ > 0 such that

0< max. lq¥; — pi| < e.
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(iii) For any € > 0, there exist m + 1 linearly independent linear forms
Lo,..., Ly in m + 1 variables with coefficients in Z in m + 1 variables
Xo, ..., Xm, such that

0131}%};1 ‘Lk(l,ﬁl, . ,ﬁm)‘ < €.

(iv) For any real number Q@ > 1, there exists pi,...,pm,q in Z such that
1<q¢<@Q and

0 < max |qV¥; —
1§i<m’q !

pil < 1
Ql/m

(v) There is an infinite set of ¢ € Z, q > 0, for which there exist p1,...,pm

m 2 satisfying
1
q1+1/m '

0 -2

q
We shall prove Proposition [12|in the following way:

<

0 < max
1<i<m

i) = ()

0 (v)
7
(i) < (i)
Proof of (iv) = (v). We first deduce (i) from (iv). Indeed, if (i) does not
hold and ¥; = a;/b € Q for 1 <1i < m, then the condition

12%%”(]2 bi b

implies q¥; — p; = 0 for 1 < i < m, hence (iv) does not hold as soon as
Q>

Let {q1,...,qn} be a finite set of positive integers. Using (iv) again, we
are going to show that there exists a positive integer ¢ & {q1,...,qn} satis-
fying the condition (v). Recall that || - || denotes the distance to the nearest
integer. From (i) it follows that for 1 < j < N, the number maxi<;<m ||g; 3|
is non—zero. Let @ > 1 be sufficiently large such that

—1/m ; 9.
Q < Din max fg;vi].

We use (iv): there exists an integer ¢ in the range 1 < g < @ such that

|| < Q Ym,
0< [max, lqvill < Q
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The right hand side is < ¢~'/™, and the choice of Q implies ¢ & {q1, ..., qn}-
]

Proof of (v) = (ii). Given e > 0, there is a positive integer ¢ > max{1,1/e™}
satisfying the conclusion of (v). Then (ii) follows. O

Proof of (ii) = (iii). Let e > 0. From (ii) we deduce the existence of (p1, ..., Pm,q)
in Z™*t! with ¢ > 0 such that

0< R lq; — pi| < e.

Without loss of generality we may assume ged(pi,...,pm,q) = 1. Define
Ly,...,Ly by Li(Xo,...,Xm) =piXo—qX; for1 <i<m. Then Lq,..., L,
are m linearly independent linear forms in m + 1 variables with rational
integer coeflicients satisfying

0< 1212-%},{71|Li(1’191""’79m)’ <e.

We use (ii) once more with € replaced by

12?21’[4(1»191,--~ﬂ9m)| :1211.2%};1|q792'*pi|'

Hence there exists p!,...,p,, ¢ in Z with ¢’ > 0 such that
/ /
9 — P, 9 — pil. 1
0<1r§;g;1|q i — il <128£§1‘q i — Dil (13)
It remains to check that one at least of the m linear forms
Li(Xo,..., Xm) =p;Xo— q¢X;

for 1 <1i < m is linearly independent of L1, ..., L. Otherwise, for 1 <i <
m, there exist rational integers s;,t;1, ..., tim, with s; # 0, such that

Si(p/iXO - q/Xz) = tilLl +--+ tszm
= (tip1 + - + timpm) Xo — ¢(tn X1 + - - + i Xom).

These relations imply, for 1 < i <m,
sid = qtii, tr; =0 and s;p; =pity for 1 <k<m, k#i,

meaning that the two projective points (py : -+ : pm : q) and (p} : -+ : p),

q') are the same. Since ged(ps, ..., Pm,q) = 1, it follows that (p},...,p.,, ")

is an integer multiple of (pi,...,Pm,q). This is not compatible with .
O
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Proof of (iii) = (i). We proceed by contradiction. Assume (i) is not true:
there exists (ai,...,am,b) € Z™! with b > 0 such that ¥y = a;/b for
1 <k < m. Use (iii) with e = 1/b: we get m + 1 linearly independent linear
forms Lg,...,L,, in ZXg+ -+ + ZX,,. One at least of them, say L, does
not vanish at (1,91,...,%,). Then we have

0< |Lk(b,a1,...,am)| = b’Lk(l,ﬁl,...,ﬁm)’ < be =1.

Since Lg(b,a1,...,an) is a rational integer, we obtain a contradiction.
O

Proof of (i) = (iv). Use Corollary From the assumption (i) we deduce

9; — pi| # 0.
@éggnlqz pil #0

O]

Remark. This proof of the implication (i) = (iv) in Proposition [12{ (com-
pare with [32] Chap. II § 2 p. 35) relies on Minkowski’s linear form Theorem.
Another proof of (i) = (iv) in the special case where Q'™ is an integer,
by means of Dirichlet’s box principle, can be found in [32] Chap. II Th. 1E
p. 28. A third proof (using again the geometry of numbers, but based on a
result by Blichfeldt) is given in [32] Chap. II § 2 p. 32.

3 Criteria for linear independence

3.1 Hermite’s method

Let ¢4,...,9,, be real numbers and aq, aq, ..., a, rational integers, not all
of which are 0. The goal is to prove that, under certain conditions, the
number

L=ay+ a1+ +anpdy

is not 0.
Hermite’s idea (see [I§] and [I3] Chap. 2 § 1.3) is to approximate si-
multaneously 91, ..., 9, by rational numbers p;/q, ..., pm/q with the same

denominator g > 0.
Let q,p1,...,pm be rational integers with ¢ > 0. For 1 < k < m set

€k = qU; — Pk-
Then qL = M + R with

M = apqg +aipr + -+ ampm € Z
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and
R=a1e1+ -+ amem € R.

If M # 0 and |R| < 1 we deduce L # 0.

One of the main difficulties is often to check M # 0. This question
gives rise to the so-called zero estimates or non-vanishing lemmas. In the
present situation, we wish to find a (m + 1)-tuple (¢, p1,...,pm) such that
(p1/4, - -,pm/q) is a simultaneous rational approximation to (¥1,...,9,),
but we also require that it lies outside the hyperplane agXg 4+ a1 X1 + - +
amXm = 0 of Q™. Our goal is to prove the linear independence over Q
of 1,91,...,Yn; hence this needs to be checked for all hyperplanes. The
solution to this problem is to construct not only one tuple (¢, p1,...,Pm)
in Z™*1\ {0}, but m + 1 such tuples which are linearly independent. This
yields m + 1 pairs (M, Ry) (k =0,...,m) in place of a single pair (M, R).
From (ag,...,am) # (0,...,0), one deduces that one at least of My, ..., M,,
is not 0.

It turns out (Proposition [14] below) that nothing is lost by using such
arguments: existence of linearly independent simultaneous rational approx-
imations for ¥4, ..., 4,, are characteristic of linearly independent real num-
bers 1,91, ...,9m.

3.2 Rational approximations
The following criterion is due to M. Laurent [22].

Proposition 14. Let 9 = (V4,...,%,) € R™. Then the following condi-
tions are equivalent:
(i) The numbers 1,91, ...,Yy, are linearly independent over Q.
(ii) For any e > 0, there exist m+1 linearly independent elements ug, uy, . .., Uy,
in Z™Y say

w; = (Gis P1is--->Pmi) (0 <3 <m)

with q; > 0, such that

max ﬁk—% << (0 <i<m). (15)
1<k<m qi qi
The condition of linear independence on the elements ug,ui,...,u,,
means that the determinant
qgo P10 " Pmo
dm Pim ° Pmm
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is not 0.
For 0 < i <m, set

r, = (p“ me> c Q™.

qi ’ qi
Further define, for z = (x1,...,2,,) € R™,
|z| = max |x;].
1<i<m

Also for = (z1,...,2,) € R™ and y = (y1,...,ym) € R™ set

Q*g: (l‘l *yla"'axmiym)a
so that
lz —y| = 1211;221@2' — il

Then the relation in Proposition |14| can be written

W—rl < (0<i<m)
(2
The easy implication (which is also the useful one for Diophantine appli-
cations: linear independence, transcendence and algebraic independence)
is (ii) = (i) . We shall prove a more explicit version of it by check-
ing that any tuple (q,p1,...,pm) € Z™ ', with ¢ > 0, producing a tuple
(p1/4, - pm/q) € Q™ of sufficiently good rational approzimations to ¥ sat-

isfies the same linear dependence relations as 1,91, ..., 0.
Lemma 16. Let ¥1,...,9,, be real numbers. Assume that the numbers
1,%1,..., %, are linearly dependent over Q: let a,by,..., b, be rational in-

tegers, not all of which are zero, satisfying
a+bv+--+ b0, =0.

Let € be a real number satisfying

m -1
0<e< (Z |bk|> .
k=1

Assume further that (q,p1,...,pm) € Z™ satisfies ¢ > 0 and

Wy — < e.
lrgr%%!q k—Pr| <€

Then
aq +bipr + - + bympm = 0.
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Proof. In the relation

qa+> bepe =Y bi(pr — qVr),
k=1 k=1

the right hand side has absolute value less than 1 and the left hand side is

a rational integer, so it is 0.
O

Proof of (ii) = (i) in Proposition |1}, Let
aXo+ b1 X1+ + b X

be a non—zero linear form with integer coefficients. For sufficiently small e,
assumption (ii) show that there exist m + 1 linearly independent elements
u; € Z™*! such that the corresponding rational approximation satisfy the
assumptions of Lemma Since ug, . .., u,, is a basis of Q™1 one at least
of the L(u;) is not 0. Hence Lemma (16| implies

a+bd+ -+ b9y, 0.
O

Proof of (i) = (ii) in Proposition[1f} Let ¢ > 0. By Corollary there
exists u = (q,p1,...,pm) € Z™H! with ¢ > 0 such that

-
q

max
1<k<m

<

€
q
Consider the subset E. C Z™*! of these tuples. Let V. be the Q-vector
subspace of Q™ *! spanned by E..

If V., # Q™T!, then there is a hyperplane agxg + a1y + - - + apTm = 0
containing E.. Any u = (q,p1,...,Pm) in E. has

aoq + aip1 + -+ ampm = 0.
For each n > 1/¢, let uw = (qn, Pin, - - -, Pmn) € Ee satisfy

1
—

nqn

_ P
qn

max
1<k<m

Then

m
ag+a1191+---+am19m:z:ak (ﬁk—pkn> .
el qn

28



Hence
m

a0+ 0191 + -+ G| < —— 3 Jag].
n 3 —
The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1,794,...,9,, are Q-linearly dependent, which means that (i)
does not hold.
Therefore, if (i) holds, then V. = Q™!  hence there are m + 1 linearly
independent elements in E..

O]
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