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2 Irrationality Criteria

2.1 Statement of a criterion

Proposition 4. Let ϑ be a real number. The following conditions are equiv-
alent:
(i) ϑ is irrational.
(ii) For any ε > 0, there exists (p, q) ∈ Z2 such that q > 0 and

0 < |qϑ− p| < ε.

(iii) For any ε > 0, there exist two linearly independent linear forms in two
variables

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

(iv) For any real number Q > 1, there exists an integer q in the range
1 ≤ q < Q and a rational integer p such that

0 < |qϑ− p| <
1
Q
·

(v) There exist infinitely many p/q ∈ Q such that
∣∣∣∣ϑ−

p

q

∣∣∣∣ <
1
q2

·

(vi) There exist infinitely many p/q ∈ Q such that
∣∣∣∣ϑ−

p

q

∣∣∣∣ <
1√
5q2

·
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The implication (vi) ⇒ (v) is trivial. We shall prove (i) ⇒ (vi) later (in
the section on continued fractions). We now prove the equivalence between
the other conditions of Proposition 4 as follows:

(iv) ⇒ (ii) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (v) and (v) ⇒ (ii).

Notice that given a positive integer q, there is at most one value of p
such that |qϑ− p| < 1/2, namely the nearest integer to qϑ. Hence, when we
approximate ϑ by a rational number p/q, we have only one free parameter
in Z>0, namely q.

In condition (v), there is no need to assume that the left hand side is
not 0: if one p/q ∈ Q produces 0, then all other ones do not, and there are
again infinitely many of them.

Proof of (iv) ⇒ (ii). Using (iv) with Q satisfying Q > 1 and Q ≥ 1/ε, we
get (ii).

Proof of (v) ⇒ (ii). According to (v), there is an infinite sequence of distinct
rational numbers (pi/qi)i≥0 with qi > 0 such that

∣∣∣∣ϑ−
pi

qi

∣∣∣∣ <
1√
5q2

i

·

For each qi, there is a single value for the numerator pi for which this in-
equality is satisfied. Hence the set of qi is unbounded. Taking qi ≥ 1/ε
yields (ii).

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p, q) ∈
Z× Z with q > 0 and gcd(p, q) = 1 such that

0 < |qϑ− p| < ε.

We use (ii) once more with ε replaced by |qϑ−p|. There exists (p′, q′) ∈ Z×Z
with q′ > 0 such that

0 < |q′ϑ− p′| < |qϑ− p|. (5)

Define L0(X0, X1) = pX0 − qX1 and L1(X0, X1) = p′X0 − q′X1. It only
remains to check that L0(X0, X1) and L1(X0, X1) are linearly independent.
Otherwise, there exists (s, t) ∈ Z2 \ (0, 0) such that sL0 = tL1. Hence
sp = tp′, sq = tq′, and p/q = p′/q′. Since gcd(p, q) = 1, we deduce t = 1,
p′ = sp, q′ = sq and q′ϑ− p′ = s(qϑ− p). This is not compatible with (5).

17



Proof of (iii) ⇒ (i). Assume ϑ ∈ Q, say ϑ = a/b with gcd(a, b) = 1 and b >
0. For any non–zero linear form L ∈ ZX0 + ZX1, the condition L(1, ϑ) (= 0
implies |L(1, ϑ)| ≥ 1/b, hence for ε = 1/b condition (iii) does not hold.

Proof of (i) ⇒ (iv) using Dirichlet’s box principle. Let Q > 1 be a given
real number. Define N = )Q*: this means that N is the integer such
that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

Let ϑ ∈ R \ Q. Consider the subset E of the unit interval [0, 1] which
consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N + 1 elements are pairwise distinct. Split the
interval [0, 1] into N intervals

Ij =
[

j

N
,

j + 1
N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j + 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =
[
1− 1

N
, 1

]

contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤
N − 1. Set p = +qϑ,+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p−qϑ = +qϑ,+1−+qϑ,−{qϑ} = 1−{qϑ}, hence 0 < p−qϑ <
1
N
≤ 1

Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = +q2ϑ, − +q1ϑ,.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ}−{ q1ϑ}| < 1/N ≤ 1/Q.
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Remark. Theorem 1.A in Chap. II of [32] states that for any real number ϑ,
for any real number Q > 1, there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

∣∣∣∣ϑ−
p

q

∣∣∣∣ ≤
1

qQ
·

The proof given there yields strict inequality |qϑ−p| < 1/Q in case Q is not
an integer. In the case where Q is an integer and ϑ is rational, the result
does not hold with a strict inequality in general. For instance, if ϑ = a/b
with gcd(a, b) = 1 and b ≥ 2, there is a solution p/q to this problem with
strict inequality for Q = b + 1, but not for Q = b.

However, when Q is an integer and ϑ is irrational, the number |qϑ − p|
is irrational (recall that q > 0), hence not equal to 1/Q.

Proof of (iv) ⇒ (v). Assume (iv). We already know that (iv) ⇒ (i), hence
ϑ is irrational.

Let {q1, . . . , qN} be a finite set of positive integers. We are going to show
that there exists a positive integer q (∈ {q1, . . . , qN} satisfying the condition
(v). Denote by ‖ ·‖ the distance to the nearest integer: for x ∈ R,

‖x‖ = min
a∈Z

|x− a|.

Since ϑ is irrational, it follows that for 1 ≤ j ≤ N , the number ‖qjϑ‖ is
non–zero. Let Q > 1 satisfy

Q >

(
min

1≤j≤N
‖qjϑ‖

)−1

.

From (iv) we deduce that there exists an integer q in the range 1 ≤ q < Q
such that

0 < ‖qϑi‖ ≤
1
Q
·

The right hand side is < 1/q, and the choice of Q implies q (∈ {q1, . . . , qN}.

In the next section, we give another proof of (i) ⇒ (iv) which rests on
Minkowski geometry of numbers.
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2.2 Geometry of numbers

Recall that a discrete subgroup of Rn of maximal rank n is called a lattice
of Rn.

Let G be a lattice in Rn. For each basis e = {e1, . . . , en} of G the
parallelogram

Pe = {x1e1 + · · · + xnen ; 0 ≤ xi < 1 (1 ≤ i ≤ n)}

is a fundamental domain for G, which means a complete system of repre-
sentative of classes modulo G. We get a partition of Rn as

Rn =
⋃

g∈G

(Pe + g) (6)

A change of bases of G is obtained with a matrix with integer coefficients
having determinant ±1, hence the Lebesgue measure µ(Pe) of Pe does not
depend on e: this number is called the volume of the lattice G and denoted
by v(G).

Here is an example of results obtained by H. Minkowski in the XIX–th
century as an application of his geometry of numbers.

Theorem 7 (Minkowski). Let G be a lattice in Rn and B a measurable
subset of Rn. Assume µ(B) > v(G). Then there exist x (= y in B such that
x− y ∈ G.

Proof. From (6) we deduce that B is the disjoint union of the B ∩ (Pe + g)
with g running over G. Hence

µ(B) =
∑

g∈G

µ (B ∩ (Pe + g)) .

Since Lebesgue measure is invariant under translation

µ (B ∩ (Pe + g)) = µ ((−g + B) ∩ Pe) .

The sets (−g+B)∩Pe are all contained in Pe and the sum of their measures
is µ(B) > µ(Pe). Therefore they are not all pairwise disjoint – this is one
of the versions of the Dirichlet box principle). There exists g (= g′ in G such
that

(−g + B) ∩ (−g′ + B) (= ∅.

Let x and y in B satisfy −g + x = −g′ + y. Then x− y = g − g′ ∈ G \ {0}.
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From Theorem 7 we deduce Minkowski’s convex body Theorem (Theo-
rem 2B, Chapter II of [32]).

Corollary 8. Let G be a lattice in Rn and let B be a measurable subset
of Rn, convex and symmetric with respect to the origin, such that µ(B) >
2nv(G). Then B ∩G (= {0}.

Proof. We use Theorem 7 with the set

B′ =
1
2
B = {x ∈ Rn ; 2x ∈ B}.

We have µ(B′) = 2−nµ(B) > v(G), hence by Theorem 7 there exists x (= y
in B′ such that x−y ∈ G. Now 2x and 2y are in B, and since B is symmetric
−2y ∈ B. Finally B is convex, hence (2x− 2y)/2 = x− y ∈ G ∩B \ {0}.

Corollary 9. With the notations of Corollary 8, if B is also compact in Rn,
then the weaker inequality µ(B) ≥ 2nv(G) suffices to reach the conclusion.

Proof. Assume µ(B) = 2nv(G). For ε > 0, set Bε = (1+ε)B = {(1+ε)t ; t ∈
B}. Since µ(Bε) > 2nv(G), we deduce from Corollary 8 Bε∩G (= {0}. Since
Bε is compact and G discrete, Bε ∩G \ {0} is a finite non–empty set. Also

Bε′ ∩G ⊂ Bε ∩G

for ε′ < ε. Hence there exists t ∈ G \ {0} such that t ∈ Bε for all ε > 0.
Define tε ∈ B by t = (1 + ε)tε. Since B is compact, there is a sequence
εn → 0 such that tεn has a limit in B. But limε→0 tε = t. Hence t ∈ B.

Remark. The example of G = Zn and B =
{
(x1, . . . , xn) ∈ Rn ; |xi| < 1

}

shows how sharp are Corollaries 8 and 9.

Minkowski’s Linear Forms Theorem (see, for instance, [32] Chap. II § 2
Th. 2C) is the following result.

Theorem 10 (Minkowski’s Linear Forms Theorem). Suppose that ϑij (1 ≤
i, j ≤ n) are real numbers with determinant ±1 . Suppose that A1, . . . , An

are positive numbers with A1 · · ·An = 1. Then there exists an integer point
x = (x1, . . . , xn) (= 0 such that

|ϑi1x1 + · · · + ϑinxn| < Ai (1 ≤ i ≤ n− 1)

and
|ϑn1x1 + · · · + ϑnnxn| ≤ An.
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Proof. We apply Corollary 8 with An replaced with An + ε for a sequence
of ε which tends to 0.

Here is a consequence of Theorem 10

Corollary 11. Let ϑ1, . . . ,ϑm be real numbers. For any real number Q > 1,
there exist p1, . . . , pm, q in Z such that 1 ≤ q < Q and

max
1≤i≤m

∣∣∣∣ϑi −
pi

q

∣∣∣∣ ≤
1

qQ1/m
·

Proof of Corollary 11. We apply Theorem 10 to the n × n matrix (with
n = m + 1) 



1 0 0 · · · 0
−ϑ1 1 0 · · · 0
−ϑ2 0 1 · · · 0

...
...

... . . . ...
−ϑm 0 0 · · · 1





corresponding to the linear forms X0 and −ϑiX0 + Xi (1 ≤ i ≤ m), and
with A0 = Q, A1 = · · · = Am = Q−1/m.

Proof of (i) ⇒ (iv) in Proposition 4 using Minkowski’s geometry of numbers.
Let ε > 0. The subset

Cε =
{
(x0, x1) ∈ R2 ; |x0| < Q, |x0ϑ− x1| < (1/Q) + ε

}

of R2 is convex, symmetric and has volume > 4. By Minkowski’s Convex
Body Theorem (Corollary 8 below), it contains a non–zero element in Z2.
Since Cε is also bounded, the intersection Cε ∩ Z2 is finite. Consider a non–
zero element (x0, x1) in this intersection with |x0ϑ − x1| minimal. Then
(x0, x1) ∈ Cε for all ε > 0, hence |x0ϑ − x1| ≤ 1/Q + ε for all ε > 0. Since
this is true for all ε > 0, we deduce |x0ϑ − x1| ≤ 1/Q. Finally, since ϑ is
irrational, we also have |x0ϑ− x1| (= 1/Q.

2.3 Irrationality of at least one number

Proposition 12. Let ϑ1, . . . ,ϑm be real numbers. The following conditions
are equivalent:
(i) One at least of ϑ1, . . . ,ϑm is irrational.
(ii) For any ε > 0, there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

|qϑi − pi| < ε.
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(iii) For any ε > 0, there exist m + 1 linearly independent linear forms
L0, . . . , Lm in m + 1 variables with coefficients in Z in m + 1 variables
X0, . . . , Xm, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . ,ϑm)| < ε.

(iv) For any real number Q > 1, there exists p1, . . . , pm, q in Z such that
1 ≤ q < Q and

0 < max
1≤i≤m

|qϑi − pi| ≤
1

Q1/m
·

(v) There is an infinite set of q ∈ Z, q > 0, for which there exist p1, . . . , pm

in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi −
pi

q

∣∣∣∣ <
1

q1+1/m
·

We shall prove Proposition 12 in the following way:

(i) ⇒ (iv)
↘

⇑ (v)
↙

(iii) ⇐ (ii)

Proof of (iv) ⇒ (v). We first deduce (i) from (iv). Indeed, if (i) does not
hold and ϑi = ai/b ∈ Q for 1 ≤ i ≤ m, then the condition

max
1≤i≤m

|qϑi − pi| <
1
b

implies qϑi − pi = 0 for 1 ≤ i ≤ m, hence (iv) does not hold as soon as
Q > bm.

Let {q1, . . . , qN} be a finite set of positive integers. Using (iv) again, we
are going to show that there exists a positive integer q (∈ {q1, . . . , qN} satis-
fying the condition (v). Recall that ‖ · ‖ denotes the distance to the nearest
integer. From (i) it follows that for 1 ≤ j ≤ N , the number max1≤i≤m ‖qjϑi‖
is non–zero. Let Q > 1 be sufficiently large such that

Q−1/m < min
1≤j≤N

max
1≤i≤m

‖qjϑi‖.

We use (iv): there exists an integer q in the range 1 ≤ q < Q such that

0 < max
1≤i≤m

‖qϑi‖ ≤ Q−1/m.
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The right hand side is < q−1/m, and the choice of Q implies q (∈ {q1, . . . , qN}.

Proof of (v) ⇒ (ii). Given ε > 0, there is a positive integer q > max{1, 1/εm}
satisfying the conclusion of (v). Then (ii) follows.

Proof of (ii) ⇒ (iii). Let ε > 0. From (ii) we deduce the existence of (p1, . . . , pm, q)
in Zm+1 with q > 0 such that

0 < max
1≤i≤m

|qϑi − pi| < ε.

Without loss of generality we may assume gcd(p1, . . . , pm, q) = 1. Define
L1, . . . , Lm by Li(X0, . . . , Xm) = piX0−qXi for 1 ≤ i ≤ m. Then L1, . . . , Lm

are m linearly independent linear forms in m + 1 variables with rational
integer coefficients satisfying

0 < max
1≤i≤m

|Li(1, ϑ1, . . . ,ϑm)| < ε.

We use (ii) once more with ε replaced by

max
1≤i≤m

|Li(1, ϑ1, . . . ,ϑm)| = max
1≤i≤m

|qϑi − pi|.

Hence there exists p′1, . . . , p
′
m, q′ in Z with q′ > 0 such that

0 < max
1≤i≤m

|q′ϑi − p′i| < max
1≤i≤m

|qϑi − pi|. (13)

It remains to check that one at least of the m linear forms

L′i(X0, . . . , Xm) = p′iX0 − q′Xi

for 1 ≤ i ≤ m is linearly independent of L1, . . . , Lm. Otherwise, for 1 ≤ i ≤
m, there exist rational integers si, ti1, . . . , tim, with si (= 0, such that

si(p′iX0 − q′Xi) = ti1L1 + · · · + timLm

= (ti1p1 + · · · + timpm)X0 − q(ti1X1 + · · · + timXm).

These relations imply, for 1 ≤ i ≤ m,

siq
′ = qtii, tki = 0 and sip

′
i = pitii for 1 ≤ k ≤ m, k (= i,

meaning that the two projective points (p1 : · · · : pm : q) and (p′1 : · · · : p′m :
q′) are the same. Since gcd(p1, . . . , pm, q) = 1, it follows that (p′1, . . . , p′m, q′)
is an integer multiple of (p1, . . . , pm, q). This is not compatible with (13).
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Proof of (iii) ⇒ (i). We proceed by contradiction. Assume (i) is not true:
there exists (a1, . . . , am, b) ∈ Zm+1 with b > 0 such that ϑk = ak/b for
1 ≤ k ≤ m. Use (iii) with ε = 1/b: we get m + 1 linearly independent linear
forms L0, . . . , Lm in ZX0 + · · · + ZXm. One at least of them, say Lk, does
not vanish at (1, ϑ1, . . . ,ϑm). Then we have

0 < |Lk(b, a1, . . . , am)| = b|Lk(1, ϑ1, . . . ,ϑm)| < bε = 1.

Since Lk(b, a1, . . . , am) is a rational integer, we obtain a contradiction.

Proof of (i) ⇒ (iv). Use Corollary 11. From the assumption (i) we deduce

max
1≤i≤m

|qϑi − pi| (= 0.

Remark. This proof of the implication (i) ⇒ (iv) in Proposition 12 (com-
pare with [32] Chap. II § 2 p. 35) relies on Minkowski’s linear form Theorem.
Another proof of (i) ⇒ (iv) in the special case where Q1/m is an integer,
by means of Dirichlet’s box principle, can be found in [32] Chap. II Th. 1E
p. 28. A third proof (using again the geometry of numbers, but based on a
result by Blichfeldt) is given in [32] Chap. II § 2 p. 32.

3 Criteria for linear independence

3.1 Hermite’s method

Let ϑ1, . . . ,ϑm be real numbers and a0, a1, . . . , am rational integers, not all
of which are 0. The goal is to prove that, under certain conditions, the
number

L = a0 + a1ϑ1 + · · · + amϑm

is not 0.
Hermite’s idea (see [18] and [13] Chap. 2 § 1.3) is to approximate si-

multaneously ϑ1, . . . ,ϑm by rational numbers p1/q, . . . , pm/q with the same
denominator q > 0.

Let q, p1, . . . , pm be rational integers with q > 0. For 1 ≤ k ≤ m set

εk = qϑk − pk.

Then qL = M + R with

M = a0q + a1p1 + · · · + ampm ∈ Z
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and
R = a1ε1 + · · · + amεm ∈ R.

If M (= 0 and |R| < 1 we deduce L (= 0.
One of the main difficulties is often to check M (= 0. This question

gives rise to the so-called zero estimates or non-vanishing lemmas. In the
present situation, we wish to find a (m + 1)–tuple (q, p1, . . . , pm) such that
(p1/q, . . . , pm/q) is a simultaneous rational approximation to (ϑ1, . . . ,ϑm),
but we also require that it lies outside the hyperplane a0X0 + a1X1 + · · · +
amXm = 0 of Qm+1. Our goal is to prove the linear independence over Q
of 1, ϑ1, . . . ,ϑm; hence this needs to be checked for all hyperplanes. The
solution to this problem is to construct not only one tuple (q, p1, . . . , pm)
in Zm+1 \ {0}, but m + 1 such tuples which are linearly independent. This
yields m + 1 pairs (Mk, Rk) (k = 0, . . . ,m) in place of a single pair (M, R).
From (a0, . . . , am) (= (0, . . . , 0), one deduces that one at least of M0, . . . ,Mm

is not 0.
It turns out (Proposition 14 below) that nothing is lost by using such

arguments: existence of linearly independent simultaneous rational approx-
imations for ϑ1, . . . ,ϑm are characteristic of linearly independent real num-
bers 1, ϑ1, . . . ,ϑm.

3.2 Rational approximations

The following criterion is due to M. Laurent [22].

Proposition 14. Let ϑ = (ϑ1, . . . ,ϑm) ∈ Rm. Then the following condi-
tions are equivalent:
(i) The numbers 1, ϑ1, . . . ,ϑm are linearly independent over Q.
(ii) For any ε > 0, there exist m+1 linearly independent elements u0,u1, . . . ,um

in Zm+1, say
ui = (qi, p1i, . . . , pmi) (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk −
pki

qi

∣∣∣∣ ≤
ε

qi
(0 ≤ i ≤ m). (15)

The condition of linear independence on the elements u0,u1, . . . ,um

means that the determinant
∣∣∣∣∣∣∣

q0 p10 · · · pm0
...

... . . . ...
qm p1m · · · pmm

∣∣∣∣∣∣∣
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is not 0.
For 0 ≤ i ≤ m, set

ri =
(

p1i

qi
, . . . ,

pmi

qi

)
∈ Qm.

Further define, for x = (x1, . . . , xm) ∈ Rm,

|x| = max
1≤i≤m

|xi|.

Also for x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , ym) ∈ Rm set

x− y = (x1 − y1, . . . , xm − ym),

so that
|x− y| = max

1≤i≤m
|xi − yi|.

Then the relation (15) in Proposition 14 can be written

|ϑ− ri| ≤
ε

qi

, (0 ≤ i ≤ m).

The easy implication (which is also the useful one for Diophantine appli-
cations: linear independence, transcendence and algebraic independence)
is (ii) ⇒ (i) . We shall prove a more explicit version of it by check-
ing that any tuple (q, p1, . . . , pm) ∈ Zm+1, with q > 0, producing a tuple
(p1/q, . . . , pm/q) ∈ Qm of sufficiently good rational approximations to ϑ sat-
isfies the same linear dependence relations as 1, ϑ1, . . . ,ϑm.

Lemma 16. Let ϑ1, . . . ,ϑm be real numbers. Assume that the numbers
1, ϑ1, . . . ,ϑm are linearly dependent over Q: let a, b1, . . . , bm be rational in-
tegers, not all of which are zero, satisfying

a + b1ϑ1 + · · · + bmϑm = 0.

Let ε be a real number satisfying

0 < ε<

(
m∑

k=1

|bk|
)−1

.

Assume further that (q, p1, . . . , pm) ∈ Zm+1 satisfies q > 0 and

max
1≤k≤m

|qϑk − pk| ≤ ε.

Then
aq + b1p1 + · · · + bmpm = 0.
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Proof. In the relation

qa +
m∑

k=1

bkpk =
m∑

k=1

bk(pk − qϑk),

the right hand side has absolute value less than 1 and the left hand side is
a rational integer, so it is 0.

Proof of (ii) ⇒ (i) in Proposition 14. Let

aX0 + b1X1 + · · · + bmXm

be a non–zero linear form with integer coefficients. For sufficiently small ε,
assumption (ii) show that there exist m + 1 linearly independent elements
ui ∈ Zm+1 such that the corresponding rational approximation satisfy the
assumptions of Lemma 16. Since u0, . . . ,um is a basis of Qm+1, one at least
of the L(ui) is not 0. Hence Lemma 16 implies

a + b1ϑ1 + · · · + bmϑm (= 0.

Proof of (i) ⇒ (ii) in Proposition 14. Let ε > 0. By Corollary 11, there
exists u = (q, p1, . . . , pm) ∈ Zm+1 with q > 0 such that

max
1≤k≤m

∣∣∣∣ϑk −
pk

q

∣∣∣∣ ≤
ε

q
·

Consider the subset Eε ⊂ Zm+1 of these tuples. Let Vε be the Q-vector
subspace of Qm+1 spanned by Eε.

If Vε (= Qm+1, then there is a hyperplane a0x0 + a1x1 + · · · + amxm = 0
containing Eε. Any u = (q, p1, . . . , pm) in Eε has

a0q + a1p1 + · · · + ampm = 0.

For each n ≥ 1/ε, let u = (qn, p1n, . . . , pmn) ∈ Eε satisfy

max
1≤k≤m

∣∣∣∣ϑk −
pkn

qn

∣∣∣∣ ≤
1

nqn
·

Then

a0 + a1ϑ1 + · · · + amϑm =
m∑

k=1

ak

(
ϑk −

pkn

qn

)
.
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Hence

|a0 + a1ϑ1 + · · · + amϑm| ≤ 1
nqn

m∑

k=1

|ak|.

The right hand side tends to 0 as n tends to infinity, hence the left hand side
vanishes, and 1, ϑ1, . . . ,ϑm are Q–linearly dependent, which means that (i)
does not hold.

Therefore, if (i) holds, then Vε = Qm+1, hence there are m + 1 linearly
independent elements in Eε.
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