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6.3 Pell’s equation

Let D be a positive integer which is not the square of an integer. It follows
that

√
D is an irrational number. The Diophantine equation

x2 −Dy2 = ±1, (74)

where the unknowns x and y are in Z, is called Pell’s equation.
An introduction to the subject has been given in the colloquium lecture

on April 15. We refer to
http://seminarios.impa.br/cgi-bin/SEMINAR−palestra.cgi?id=4752

http://www.math.jussieu.fr/∼ miw/articles/pdf/PellFermatEn2010.pdf
and
http://www.math.jussieu.fr/∼ miw/articles/pdf/PellFermatEn2010VI.pdf

Here we suply complete proofs of the results introduced in that lecture.

6.3.1 Examples

The three first examples below are special cases of results initiated by O. Per-
ron and related with real quadratic fields of Richaud-Degert type.
Example 1. Take D = a2b2 + 2b where a and b are positive integers. A
solution to

x2 − (a2b2 + 2b)y2 = 1

is (x, y) = (a2b + 1, a). As we shall see, this is related with the continued
fraction expansion of

√
D which is

√
a2b2 + 2b = [ab, a, 2ab]
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since
t =

√
a2b2 + 2b⇐⇒ t = ab +

1

a +
1

t + ab

·

This includes the examples D = a2 + 2 (take b = 1) and D = b2 + 2b (take
a = 1). For a = 1 and b = c− 1 his includes the example D = c2 − 1.

Example 2. Take D = a2b2 + b where a and b are positive integers. A
solution to

x2 − (a2b2 + b)y2 = 1

is (x, y) = (2a2b + 1, 2a). The continued fraction expansion of
√

D is
√

a2b2 + b = [ab, 2a, 2ab]

since
t =

√
a2b2 + b⇐⇒ t = ab +

1

2a +
1

t + ab

·

This includes the example D = b2 + b (take a = 1).
The case b = 1, D = a2 + 1 is special: there is an integer solution to

x2 − (a2 + 1)y2 = −1,

namely (x, y) = (a, 1). The continued fraction expansion of
√

D is
√

a2 + 1 = [a, 2a]

since
t =

√
a2 + 1⇐⇒ t = a +

1
t + a

·

Example 3. Let a and b be two positive integers such that b2 + 1 divides
2ab + 1. For instance b = 2 and a ≡ 1 (mod 5). Write 2ab + 1 = k(b2 + 1)
and take D = a2 + k. The continued fraction expansion of

√
D is

[a, b, b, 2a]

since t =
√

D satisfies

t = a +
1

b +
1

b +
1

a + t

= [a, b, b, a + z].
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A solution to x2 −Dy2 = −1 is x = ab2 + a + b, y = b2 + 1.
In the case a = 1 and b = 2 (so k = 1), the continued fraction has period

length 1 only: √
5 = [1, 2].

Example 4. Integers which are Polygonal numbers in two ways are given
by the solutions to quadratic equations.

Triangular numbers are numbers of the form

1 + 2 + 3 + · · · + n =
n(n + 1)

2
for n ≥ 1;

their sequence starts with

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, . . .

http://www.research.att.com/∼njas/sequences/A000217.
Square numbers are numbers of the form

1 + 3 + 5 + · · · + (2n + 1) = n2 for n ≥ 1;

their sequence starts with

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, . . .

http://www.research.att.com/∼njas/sequences/A000290.
Pentagonal numbers are numbers of the form

1 + 4 + 7 + · · · + (3n + 1) =
n(3n− 1)

2
for n ≥ 1;

their sequence starts with

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, . . .

http://www.research.att.com/∼njas/sequences/A000326.
Hexagonal numbers are numbers of the form

1 + 5 + 9 + · · · + (4n + 1) = n(2n− 1) for n ≥ 1;

their sequence starts with

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, . . .
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http://www.research.att.com/∼njas/sequences/A000384.
For instance, numbers which are at the same time triangular and squares

are the numbers y2 where (x, y) is a solution to Pell’s equation with D = 8.
Their list starts with

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, . . .

See http://www.research.att.com/∼njas/sequences/A001110.

Example 5. Integer rectangle triangles having sides of the right angle
as consecutive integers a and a + 1 have an hypothenuse c which satisfies
a2 + (a + 1)2 = c2. The admissible values for the hypothenuse is the set of
positive integer solutions y to Pell’s equation x2 − 2y2 = −1. The list of
these hypothenuses starts with

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965,

See http://www.research.att.com/∼njas/sequences/A001653.

6.3.2 Existence of integer solutions

Let D be a positive integer which is not a square. We show that Pell’s
equation (74) has a non–trivial solution (x, y) ∈ Z × Z, that is a solution
*= (±1, 0).

Proposition 75. Given a positive integer D which is not a square, there
exists (x, y) ∈ Z2 with x > 0 and y > 0 such that x2 −Dy2 = 1.

Proof. The first step of the proof is to show that there exists a non–zero in-
teger k such that the Diophantine equation x2−Dy2 = k has infinitely many
solutions (x, y) ∈ Z×Z. The main idea behind the proof, which will be made
explicit in Lemmas 77, 78 and Corollary 79 below, is to relate the integer
solutions of such a Diophantine equation with rational approximations x/y
of
√

D.
Using the implication (i)⇒ (v) of the irrationality criterion 4 and the fact

that
√

D is irrational, we deduce that there are infinitely many (x, y) ∈ Z×Z
with y > 0 (and hence x > 0) satisfying

∣∣∣∣
√

D − x

y

∣∣∣∣ <
1
y2

·

For such a (x, y), we have 0 < x < y
√

D + 1 < y(
√

D + 1), hence

0 < |x2 −Dy2| = |x− y
√

D| · |x + y
√

D| < 2
√

D + 1.
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Since there are only finitely integers k *= 0 in the range

−(2
√

D + 1) < k < 2
√

D + 1,

one at least of them is of the form x2 −Dy2 for infinitely many (x, y).
The second step is to notice that, since the subset of (x, y) (mod k) in

(Z/kZ)2 is finite, there is an infinite subset E ⊂ Z×Z of these solutions to
x2 −Dy2 = k having the same (x (mod k), y (mod k)).

Let (u1, v1) and (u2, v2) be two distinct elements in E. Define (x, y) ∈ Q2

by

x + y
√

D =
u1 + v1

√
D

u2 + v2

√
D

·

From u2
2 −Dv2

2 = k, one deduces

x + y
√

D =
1
k
(u1 + v1

√
D)(u2 − v2

√
D),

hence
x =

u1u2 −Dv1v2

k
, y =

−u1v2 + u2v1

k
·

From u1 ≡ u2 (mod k), v1 ≡ v2 (mod k) and

u2
1 −Dv2

1 = k, u2
2 −Dv2

2 = k,

we deduce
u1u2 −Dv1v2 ≡ u2

1 −Dv2
1 ≡ 0 (mod k)

and
−u1v2 + u2v1 ≡ −u1v1 + u1v1 ≡ 0 (mod k),

hence x and y are in Z. Further,

x2 −Dy2 = (x + y
√

D)(x− y
√

D)

=
(u1 + v1

√
D)(u1 − v1

√
D)

(u2 + v2

√
D)(u2 − v2

√
D)

=
u2

1 −Dv2
1

u2
2 −Dv2

2

= 1.

It remains to check that y *= 0. If y = 0 then x = ±1, u1v2 = u2v1,
u1u2 −Dv1v2 = ±1, and

ku1 = ±u1(u1u2 −Dv1v2) = ±u2(u2
1 −Dv2

1) = ±ku2,

which implies (u1, u2) = (v1, v2), a contradiction.
Finally, if x < 0 (resp. y < 0) we replace x by −x (resp. y by −y).
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Once we have a non–trivial integer solution (x, y) to Pell’s equation, we
have infinitely many of them, obtained by considering the powers of x+y

√
D.

6.3.3 All integer solutions

There is a natural order for the positive integer solutions to Pell’s equation:
we can order them by increasing values of x, or increasing values of y, or
increasing values of x+y

√
D - it is easily checked that the order is the same.

It follows that there is a minimal positive integer solution8 (x1, y1), which
is called the fundamental solution to Pell’s equation x2 −Dy2 = ±1. In the
same way, there is a fundamental solution to Pell’s equations x2−Dy2 = 1.
Furthermore, when the equation x2 − Dy2 = −1 has an integer solution,
then there is also a fundamental solution.

Proposition 76. Denote by (x1, y1) the fundamental solution to Pell’s equa-
tion x2 − Dy2 = ±1. Then the set of all positive integer solutions to this
equation is the sequence (xn, yn)n≥1, where xn and yn are given by

xn + yn

√
D = (x1 + y1

√
D)n, (n ∈ Z, n ≥ 1).

In other terms, xn and yn are defined by the recurrence formulae

xn+1 = xnx1 + Dyny1 and yn+1 = x1yn + xny1, (n ≥ 1).

More explicitly:
• If x2

1−Dy2
1 = 1, then (x1, y1) is the fundamental solution to Pell’s equation

x2−Dy2 = 1, and there is no integer solution to Pell’s equation x2−Dy2 =
−1.
• If x2

1 − Dy2
1 = −1, then (x1, y1) is the fundamental solution to Pell’s

equation x2 − Dy2 = −1, and the fundamental solution to Pell’s equation
x2 − Dy2 = 1 is (x2, y2). The set of positive integer solutions to Pell’s
equation x2 −Dy2 = 1 is {(xn, yn) ; n ≥ 2 even}, while the set of positive
integer solutions to Pell’s equation x2−Dy2 = −1 is {(xn, yn) ; n ≥ 1 odd}.
The set of all solutions (x, y) ∈ Z× Z to Pell’s equation x2 −Dy2 = ±1 is
the set (±xn, yn)n∈Z, where xn and yn are given by the same formula

xn + yn

√
D = (x1 + y1

√
D)n, (n ∈ Z).

The trivial solution (1, 0) is (x0, y0), the solution (−1, 0) is a torsion element
of order 2 in the group of units of the ring Z[

√
D].

8We use the letter x1, which should not be confused with the first complete quotient
in the section § SSS:InfiniteSCF on continued fractions
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Proof. Let (x, y) be a positive integer solution to Pell’s equation x2−Dy2 =
±1. Denote by n ≥ 0 the largest integer such that

(x1 + y1

√
D)n ≤ x + y

√
D.

Hence x + y
√

D < (x1 + y1

√
D)n+1. Define (u, v) ∈ Z× Z by

u + v
√

D = (x + y
√

D)(x1 − y1

√
D)n.

From
u2 −Dv2 = ±1 and 1 ≤ u + v

√
D < x1 + y1

√
D,

we deduce u = 1 and v = 0, hence x = xn, y = yn.

6.3.4 On the group of units of Z[
√

D]

Let D be a positive integer which is not a square. The ring Z[
√

D] is the
subring of R generated by

√
D. The map σ : z = x + y

√
D -−→ x − y

√
D

is the Galois automorphism of this ring. The norm N : Z[
√

D] −→ Z is
defined by N(z) = zσ(z). Hence

N(x + y
√

D) = x2 −Dy2.

The restriction of N to the group of unit Z[
√

D]× of the ring Z[
√

D] is a
homomorphism from the multiplicative group Z[

√
D]× to the group of units

Z× of Z. Since Z× = {±1}, it follows that

Z[
√

D]× = {z ∈ Z[
√

D] ; N(z) = ±1},

hence Z[
√

D]× is nothing else than the set of x+y
√

D when (x, y) runs over
the set of integer solutions to Pell’s equation x2 −Dy2 = ±1.

Proposition 75 means that Z[
√

D]× is not reduced to the torsion sub-
group ±1, while Proposition 76 gives the more precise information that this
group Z[

√
D]× is a (multiplicative) abelian group of rank 1: there exists a

so–called fundamental unit u ∈ Z[
√

D]× such that

Z[
√

D]× = {±un ; n ∈ Z}.

The fundamental unit u > 1 is x1 +y1

√
D, where (x1, y1) is the fundamental

solution to Pell’s equation x2 −Dy2 = ±1. Pell’s equation x2 −Dy2 = ±1
has integer solutions if and only if the fundamental unit has norm −1.
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That the rank of Z[
√

D]× is at most 1 also follows from the fact that the
image of the map

Z[
√

D]× −→ R2

z -−→
(
log |z|, log |z′|

)

is discrete in R2 and contained in the line t1 + t2 = 0 of R2. This proof is
not really different from the proof we gave of Proposition 76: the proof that
the discrete subgroups of R have rank ≤ 1 relies on Euclid’s division.

6.3.5 Connection with rational approximation

Lemma 77. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = 1.

(ii) 0 <
x

y
−
√

D <
1

2y2
√

D
·

(iii) 0 <
x

y
−
√

D <
1

y2
√

D + 1
·

Proof. We have
1

2y2
√

D
<

1
y2
√

D + 1
, hence (ii) implies (iii).

(i) implies x2 > Dy2, hence x > y
√

D, and consequently

0 <
x

y
−
√

D =
1

y(x + y
√

D)
<

1
2y2
√

D
·

(iii) implies

x < y
√

D +
1

y
√

D
< y
√

D +
2
y
,

and
y(x + y

√
D) < 2y2

√
D + 2,

hence
0 < x2 −Dy2 = y

(
x

y
−
√

D

)
(x + y

√
D) < 2.

Since x2 −Dy2 is an integer, it is equal to 1.

The next variant will also be useful.

Lemma 78. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. The following conditions are equivalent:
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(i) x2 −Dy2 = −1.

(ii) 0 <
√

D − x

y
<

1
2y2
√

D − 1
·

(iii) 0 <
√

D − x

y
<

1
y2
√

D
·

Proof. We have
1

2y2
√

D − 1
<

1
y2
√

D
, hence (ii) implies (iii).

The condition (i) implies y
√

D > x. We use the trivial estimate

2
√

D > 1 + 1/y2

and write

x2 = Dy2 − 1 > Dy2 − 2
√

D + 1/y2 = (y
√

D − 1/y)2,

hence xy > y2
√

D − 1. From (i) one deduces

1 = Dy2 − x2 = (y
√

D − x)(y
√

D + x)

>

(√
D − x

y

)
(y2
√

D + xy)

>

(√
D − x

y

)
(2y2

√
D − 1).

(iii) implies x < y
√

D and

y(y
√

D + x) < 2y2
√

D,

hence
0 < Dy2 − x2 = y

(√
D − x

y

)
(y
√

D + x) < 2.

Since Dy2 − x2 is an integer, it is 1.

From these two lemmas one deduces:

Corollary 79. Let D be a positive integer which is not a square. Let x and
y be positive rational integers. The following conditions are equivalent:
(i) x2 −Dy2 = ±1.

(ii)
∣∣∣∣
√

D − x

y

∣∣∣∣ <
1

2y2
√

D − 1
·

(iii)
∣∣∣∣
√

D − x

y

∣∣∣∣ <
1

y2
√

D + 1
·
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Proof. If y > 1 or D > 3 we have 2y2
√

D − 1 > y2
√

D + 1, which means
that (ii) implies trivially (iii), and we may apply Lemmas 77 and 78.

If D = 2 and y = 1, then each of the conditions (i), (ii) and (iii) is
satisfied if and only if x = 1. This follows from

2−
√

2 >
1

2
√

2− 1
>

1√
2 + 1

>
√

2− 1.

If D = 3 and y = 1, then each of the conditions (i), (ii) and (iii) is
satisfied if and only if x = 2. This follows from

3−
√

3 >
√

3− 1 >
1

2
√

3− 1
>

1√
3 + 1

> 2−
√

3.

It is instructive to compare with Liouville’s inequality (see § 5.2).

Lemma 80. Let D be a positive integer which is not a square. Let x and y
be positive rational integers. Then

∣∣∣∣
√

D − x

y

∣∣∣∣ >
1

2y2
√

D + 1
·

Proof. If x/y <
√

D, then x ≤ y
√

D and from

1 ≤ Dy2 − x2 = (y
√

D + x)(y
√

D − x) ≤ 2y
√

D(y
√

D − x),

one deduces √
D − x

y
>

1
2y2
√

D
·

We claim that if x/y >
√

D, then

x

y
−
√

D >
1

2y2
√

D + 1
·

Indeed, this estimate is true if x−y
√

D ≥ 1/y, so we may assume x−y
√

D <
1/y. Our claim then follows from

1 ≤ x2 −Dy2 = (x + y
√

D)(x− y
√

D) ≤ (2y
√

D + 1/y)(x− y
√

D).
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This shows that a rational approximation x/y to
√

D, which is only
slightly weaker than the limit given by Liouville’s inequality, will produce a
solution to Pell’s equation x2−Dy2 = ±1. The distance |

√
D−x/y| cannot

be smaller than 1/(2y2
√

D + 1), but it can be as small as 1/(2y2
√

D − 1),
and for that it suffices that it is less than 1/(y2

√
D + 1)
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