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Finite (or Discrete) Fourier Transforms (FFT) are essential tools in engineering
disciplines based on signal transmission, which is the case in most of them. FFT
are related with circulant matrices, which can be viewed as group matrices of
cyclic groups. In this regard, we introduce a generalization of the previous
investigations to the case of finite groups, abelian or not. We make clear the
points which were not recognized as underlying algebraic structures. Especially,
all that appears in the FFT in engineering has been elucidated from the point
of view of linear representations of finite groups. We include many worked-out
examples for the readers in engineering disciplines.

1. The matrix of a finite abelian group

1.1. Matrix of a finite group

Let G be a finite group of order n, and let F be a field of characteristic not
dividing n. This setting will be used throughout; we also assume that F
contains a primitive n-th root ζ = ζn of 1, but sometimes we will consider
subfields of F which do not satisfy this condition. We use the symbols j =
ζ3 = e2πi/3 and i = ζ4 = e2πi/4 to mean a primitive cube and fourth root
of unity, the latter expressions valid in characteristic 0. Let X := (Xσ)σ∈G

be an n-tuple of variables indexed by the elements of G. The group matrix

AG :=
(
Xτ−1σ

)
τ,σ∈G

∈ Matn×n

(
F [X]

)
,
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(depending on a labeling of elements ofG) has been introduced by Dedekind
in the course of his investigation on normal bases for Galois extensions. In
1886, Frobenius gave a complete factorization of the determinant of AG

into irreducible factors in F [X] – this was the start of the theory of linear
representations and characters of finite groups.

1.2. Matrix of a finite abelian group

We will consider the general case of a finite group in §4; here we assume the
group G to be abelian and we take F = C. Let Ĝ be the dual of G, which
is the group Hom(G,C×) of characters of G. We will consider n–tuples of
complex numbers; when they are indexed by the elements of G, we say that
they are in CG; when they are indexed by the elements of Ĝ, we say that
they are in CĜ. For each χ ∈ Ĝ, the vector

(
χ(σ)

)
σ∈G

∈ CG

is an eigenvector of the matrix AG belonging to the eigenvalue given by the
linear form

Yχ :=
∑

σ∈G

χ(σ)Xσ. (1.1)

This follows from the relation, for χ ∈ Ĝ,
∑

σ∈G

χ(σ)Xτ−1σ = χ(τ)
∑

σ∈G

χ(σ)Xσ.

Therefore the n× n matrix

P :=
(
χ(σ)

)
σ∈G,χ∈Ĝ

∈ Matn×n(C) (1.2)

is regular and

AGP = PD, (1.3)

where D is the diagonal n× n matrix

D := Diag(Yχ)χ∈Ĝ :=
(
Yχδχ,ψ

)
χ,ψ∈Ĝ

.

We have used Kronecker’s symbol

δχ,ψ =

{
1 if χ = ψ,

0 if χ #= ψ.
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In particular the determinant of AG, called determinant of the group G
(Gruppendeterminant in German – see the historical note of [3]), is

detAG =
∏

χ∈Ĝ

Yχ =
∏

χ∈Ĝ

∑

σ∈G

χ(σ)Xσ. (1.4)

This formula is used by Hasse [9] to give an explicit formula for the number
of ideal classes of an algebraic number field (see also [15]). It is also useful
for computing the p–adic rank of the units of an algebraic number field [2].

The dual
̂̂
G of Ĝ, which is called the bidual of G, is canonically isomorphic

to G, the characters of Ĝ being given by χ $→ χ(σ) for σ ∈ G. Denoting by
Un the group of n–th roots of unity in C, namely the set of complex roots
of the polynomial Xn − 1, the pairing

G× Ĝ −→ Un

(σ,χ) $−→ χ(σ)

is non–degenerate. In parallel to the case of the dual of G, we introduce

their counterparts. Correspondence can be seen in the table below. Let T :=
(Tχ)χ∈Ĝ be an n-tuple of variables indexed by Ĝ. The matrix AĜ ∈ C[X]
of the dual of G is:

AĜ =
(
Tψ−1χ

)
ψ,χ∈G

∈ Matn×n

(
C[X]

)

For each σ ∈ G, the vector
(
χ(σ)

)
χ∈Ĝ

∈ CĜ

is an eigenvector of the matrix AĜ belonging to the eigenvalue given by the
linear form

Uσ :=
∑

χ∈Ĝ

χ(σ)Tχ. (1.1’)

This follows from the relation, for σ ∈ G,
∑

χ∈Ĝ

χ(σ)Tψ−1χ = ψ(σ)
∑

χ∈Ĝ

χ(σ)Tχ.

Therefore the transpose tP of the matrix P given by (1.2), namely

tP :=
(
χ(σ)

)
χ∈Ĝ,σ∈G

∈ Matn×n(C) (1.2’)

satisfies

AĜ
tP =tPD̂, (1.3’)
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where D̂ is the diagonal n× n matrix

D̂ := Diag(Uσ)σ∈Ĝ.

Table. Correspondence between G and Ĝ

group n-tuples eigenvalues vectors

G Xσ Yχ χ(σ)σ∈G

Ĝ Tχ Uσ χ(σ)χ∈Ĝ

1.3. Matrix of a cyclic group

We consider here the special case where the group G is the cyclic group
Cn of order n. Let σ1 be a generator of G and χ1 a generator of the cyclic
group Ĝ. Then the number ζ = χ1(σ1) is a primitive n–th root of unity
which we have assumed to belong to F . We have G = {1,σ1, . . . ,σn−1

1 },
Ĝ = {1,χ1, . . . ,χ

n−1
1 } and we set Xi = Xσi

1
and Y& = Yσ!

1
. Then

ACn =





X0 X1 X2 · · · Xn−1

Xn−1 X0 X1 · · · Xn−2

...
...

...
. . .

...
X2 X3 X4 · · · X1

X1 X2 X3 · · · X0





is a circulant (see [4]) and may be expressed as
∑n−1
&=0 X&K& (cf. §1.4), where

K is the n× n matrix which is the specialization of ACn at

(X0, X1, X2, . . . , Xn−1) = (0, 1, 0, . . . , 0).

Since χi(σ&1) = ζi&, (1.1) reads

Y& =
n−1∑

i=0

ζi&Xi.

The matrix P is

P =
(
ζij

)
0≤j,j≤n−1

=





1 1 1 · · · 1
1 ζ ζ2 · · · ζn−1

1 ζ2 ζ4 · · · ζ2(n−1)

...
...

...
. . .

...
1 ζn−1 ζ2(n−1) · · · ζ(n−1)(n−1)




,
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where the exponent of ζ is given by the multiplication table of the ring
Z/nZ. The determinant ∆n of P is considered by Massey in [12]. It is a
Vandermonde determinant, with its value

∆n =
n−1∏

&=1

&−1∏

i=0

ζi(ζ&−i − 1).

For instance

∆1 = 1, ∆2 = det

(
1 1
1 −1

)
= −2,

∆3 = det




1 1 1
1 j j2

1 j2 j



 = 3j(j − 1),

∆4 = det





1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



 = 16i,

where j = ζ3 and i = ζ4 are the primitive third root and fourth root of 1,
respectively. In general, the sum of the n rows is

(n, 0, 0, . . . 0),

and the determinant of P is n times the determinant ∆′
n of the (n − 1) ×

(n − 1) matrix
(
ζij

)
1≤i,j≤n−1

. If n is prime, after a suitable permutation
of the rows, one can write ∆′

n as a circulant determinant with first row
(ζ, ζ2, . . . , ζn−1). There are various subfields of F over which one can de-
compose the group determinant into a product of irreducible factors. Firstly,
over F itself (which contains the n-th roots of unity), the decomposition
is given by (1.4). Secondly, in characteristic zero, over Q, the polynomial
Xn − 1 splits as

Xn − 1 =
∏

d|n

Φd(X), (1.5)

where Φd is the cyclotomic polynomial of index d, which is an irreducible
polynomial in Z[X] of degree ϕ(d). Let ζd be a root of Φd (i.e. a primitive
d–th root of unity). Then it generates the d-th cyclotomic field over Q

Γd := Q[X]/(Φd(X)) = Q(ζd). (1.6)
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Accordingly, the group determinant (1.4) of a cyclic group of order n
splits into a product of irreducible polynomials in Q[X]

detAG =
∏

d|n

ψd(X),

where the homogeneous polynomial ψd ∈ Q[X] is given by the norm NΓd/Q

of Γd

ψd(X) = NΓd/Q(X0 + ζdX1 + · · ·+ ζn−1
d Xn−1).

For instance, for n = 3, the determinant of the cyclic group C3 of order 3
is

detAC3 =

∣∣∣∣∣∣

X0 X1 X2

X2 X0 X1

X1 X2 X0

∣∣∣∣∣∣
= X3

0 +X3
1 +X3

2 − 3X0X1X2,

over C the decomposition (1.4) is

(X0 +X1 +X2)(X0 + jX1 + j2X2)(X0 + j2X1 + jX2), (1.7)

while over Q the decomposition is

(X0 +X1 +X2)(X
2
0 +X2

1 +X2
2 −X0X1 −X1X2 −X2X0), (1.8)

where the second factor is

NQ(j)/Q(X0 + jX1 + j2X2).

Thirdly, in finite characteristic, over a finite field Fq with q elements (and
gcd(q, n) = 1), the decomposition of the determinant of the cyclic group
Cn is given by the decomposition of the cyclotomic polynomials Φd, with
d ranging over the set of divisors of n, over Fq. For such a d, let r be the
order of q in the multiplicative group (Z/dZ)×. Then Φd splits in Fq[X]
into ϕ(d)/r polynomials, all of the same degree r. If H is the subgroup
generated by the class q modulo d in (Z/dZ)×, the choice of a primitive
d-th root of unity ζd gives rise to an irreducible factor

PH(X) =
∏

h∈H

(X − ζhd ),

and all factors of Φd are obtained by taking the ϕ(d)/r classes of (Z/dZ)×

modulo H; for any m ∈ (Z/dZ)×, set

PmH(X) =
∏

h∈H

(X − ζmh
d ).
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Then the decomposition of Φd into irreducible factors over Fq is

Φd(X) =
∏

mH∈(Z/dZ)×/H

PmH(X).

Here is another description of the decomposition of the polynomial Xn − 1
into irreducible factors over Fq. The 2n factors of the polynomial Xn − 1
over a field containing a primitive n–th root of unity ζ are

QL(X) =
∏

&∈L

(X − ζ&), (L ⊆ {1, . . . , n})

(with Q∅ = 1, as usual), and such a polynomial belongs to Fq[X] if and
only if QL(X)q = QL(Xq). This condition is satisfied if and only if the
label set L of {1, . . . , n} is stable under multiplication by q in Z/nZ. Hence
the irreducible factors of Xn − 1 over Fq are the QL with L stable under
multiplication by q and minimal for this property. Once we know the de-
composition of Xn− 1, we deduce the decomposition of the determinant of
the cyclic group G of order n.
Example. Consider the cyclic group C3 of order 3, assuming that the charac-
teristic is not 3. For q ≡ 1 mod 3, the polynomial X3−1 has the decompo-
sition (1.7) with three homogeneous linear factors (because Fq contains the
primitive cubic roots of 1), while for q ≡ 2 mod 3, the polynomial X3 − 1
has the decomposition (1.8) with one homogeneous linear factor and one
irreducible factor of degree 2 (because X2 +X + 1 is irreducible over Fq).

1.4. The group ring of a cyclic group and the algebra of
circulants

Recall that F is a field whose characteristic does not divide n. Let K denote
the n × n circulant matrix with its first row (0, 1, 0, . . . , 0) (often referred
to as the shift-forward matrix), where a circulant matrix is one whose rows
consists of the n cycles

(c0, . . . , cn−1), (cn−1, c0, . . . , cn−2), . . . ,

which therefore can be written as




c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

...
...

...
. . .

...
c2 c3 c4 · · · c1
c1 c2 c3 · · · c0




= c0I + c1K + · · ·+ cn−1K

n−1,



November 4, 2012 23:2 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

8 SHIGERU KANEMITSU AND MICHEL WALDSCHMIDT

so that the algebra of circulant n× n matrices is nothing other than F [K],
which we denote by R subsequently. Further, the minimal polynomial of K
is Tn − 1. Hence F [K] is isomorphic to F [T ]/(Tn − 1).

If Cn denotes a cyclic group of order n, then the algebra F [Cn], called
the group ring of Cn over F , is also isomorphic to F [T ]/(Tn−1). Altogether,

R = F [K] ) F [T ]/(Tn − 1) ) F [Cn]. (1.9)

Assume F contains a primitive n–th root ζ of unity. We split the poly-
nomial Tn − 1 into irreducible factors over F , say

Tn − 1 =
n−1∏

&=0

(T − ζ&).

Then the algebra F [Cn] splits accordingly into a product of n algebras, all
isomorphic to F :

F [Cn] )
n−1∏

&=0

F [T ]/(T − ζ&). (1.10)

For 0 ≤ ( ≤ n − 1, denote by R& the subset of R which is the image of
the factor F [T ]/(T − ζ&) (0 ≤ ( ≤ n − 1) on the right hand side of (1.10).
Then R& is a simple F– algebra and R = R0 × · · · × Rn−1. Let E& be
the unity element of R&. Then we have the decomposition into orthogonal
idempotents

R& = RE&, 1 = E0 + · · ·+ En−1 and EiE& = δi& (0 ≤ i, ( ≤ n− 1).

For the structure theorem of semi–simple rings, see for instance [11], Th. 4.4
in Chap. XVII or [3]. The special case of the algebra R = F [K] of circulants
of order n is worked out in [14]: the solution is

Eh =
1

n

n−1∑

&=0

ζ−h&K&, (0 ≤ h ≤ n− 1). (1.11)

In the other direction we have

Kh =
n−1∑

&=0

ζh&E&, (0 ≤ h ≤ n− 1).

These formulae are easy to check, but it is interesting to explain where
they come from. The isomorphism (1.10) from F [G] to the product of the
algebras F [T ]/(T − ζ&) maps the class modulo Xn − 1 of a polynomial
P to the n–tuple (P (ζ&))0≤&≤n−1. We want to explicitly write down the
inverse isomorphism. Given an n–tuple (b&)0≤&≤n−1, one deduces from the
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Chinese Remainder Theorem that there is a unique polynomial P of degree
≤ n−1 such that P (ζh) = bh for 0 ≤ h ≤ n−1. To write down the solution
P amounts to solving the associated interpolation problem, which is done
by classical interpolation formulae. In this specific case, they lead us to
introducing the polynomial

P0(X) =
1

n
· X

n − 1

X − 1
=

1

n
(Xn−1 + · · ·+X + 1).

It satisfies P0(1) = 1 and P1(η) = 0 for any n–th root of unity η not equal
to 1. Hence for 0 ≤ h ≤ n − 1, the polynomial Ph(X) := P0(X/ζ&), which
is

Ph(X) =
1

n

n−1∑

&=0

ζ−h&X&,

satisfies

Ph(ζ
&) = δh,& for 0 ≤ h, ( ≤ n− 1.

This is how (1.11) arises: Eh = Ph(K). Also, the solution of the interpola-
tion problem is therefore the following: the polynomial

P (X) =
n−1∑

h=0

bhPh(X)

satisfies P (ζh) = bh for 0 ≤ h ≤ n− 1.
In characteristic 0, there is another basis for the circulant algebra, which

is rational over Q. Let n be a positive integer. We consider the decomposi-
tion, into a product of simple algebras over Q, of the semi–simple algebra
Q[X]/(Xn − 1) associated with the decomposition (1.5) of the polynomial
Xn − 1 into irreducible factors over Q:

Q[X]/(Xn − 1) =
∏

d|n

Γd,

where Γd is the cyclotomic polynomial defined by (1.6). For each divisor d
of n, define

Ψn,d(X) =
Xn − 1

Φd(X)
=

∏

d′|nd′ $=d

Φd′(X).

Since Φd and Ψn,d are relatively prime, there is a unique polynomial Ψ̃n,d

of degree ≤ ϕ(d)− 1 which is the inverse of Ψn,d modulo Φd:

Ψ̃n,dΨn,d ≡ 1 mod Φd.
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Then a basis of the Q–algebra Q[Cn] is given by
{
Ed,j | 0 ≤ j ≤ ϕ(d)− 1, d | n

}
, (1.12)

where

Ed,j ≡ XjΨ̃n,d(X)Ψn,d mod (Xn − 1).

As an example, consider the case where n = p is a prime. We have

Ψp,1 =
Xp − 1

X − 1
= Φp, Ψp,p =

Xp − 1

Φp
= X − 1 = Φ1,

hence Ψ̃p,1 = 1/p. To compute Ψ̃p,p, we start by taking the derivative of
Xp − 1 = (X − 1)Φp:

pXp−1 = Φp(X) + (X − 1)Φ′
p(X).

Hence the polynomial

Ψ̃p,p :=
1

p
Φ′

p −
Xp−1 − 1

X − 1

satisfies

(X − 1)Ψ̃p,p = 1− 1

p
Φp.

Therefore a basis of the circulant algebra with n = p is given by
(1/p)Φp, F0, F1, . . . , Fp−2), with

Fj ≡ Xj(X − 1)Ψ̃p,1(X) mod (Xp − 1) (0 ≤ j ≤ p− 2).

For instance, when p = 3, we have

Ψ̃3,1(X) = −1

3
(X + 2), (X − 1)Ψ̃3,1(X) = −1

3
(X + 2)(X − 1),

(X − 1)XΨ̃3,1(X) = −1

3
(X + 2)(X − 1)X ≡ −1

3
(X − 1)2 mod (X3 − 1),

and the basis of Q[X]/(X3−1) which is associated to the basis (1, 0), (0, 1),
(0, X) of the product

Q[X]/(X − 1)×Q[X]/(X2 +X + 1)

under the natural isomorphism is given by the classes modulo X3 − 1 of
the polynomials

1

3
(X2 +X + 1), −1

3
(X2 +X − 2), −1

3
(X2 − 2X + 1).

Remark. There is no element J in the algebra Q[X]/(X3−1) which satisfies
1+J+J2 = 0. This is analogous to the fact that the product algebraQ×Q[i]
does not contain a square root of −1. In a product A1×A2 of two algebras,
there are in general no subalgebras isomorphic to the factors A1 and A2.
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1.5. The group ring F [G] of a finite abelian group G

We extend the results of the previous section to the algebra F [G] of a finite
abelian group G. Here we assume that F× contains a subgroup of order n,
where n is the order of G. Hence the characteristic of F does not divide
n. According to Maschke’s Theorem (see for instance [11] Chap. XVIII, §1,
Th. 1.2; see also [13] Chap. 6, Prop. 9 for the characteristic zero case), the
algebra F [G] is semi–simple: it is a product of n algebras isomorphic to F .
Under such an isomorphism, the canonical basis of FG is associated with a
basis (eχ)χ∈Ĝ of F [G] satisfying

eχeψ = δχ,ψeχ.

An explicit solution is given by

eχ =
1

n

∑

σ∈G

χ−1(σ)σ (χ ∈ Ĝ).

This follows from the relation of orthogonality of characters (see [13], Th. 3,
§2.3 and [11] Chap. XVIII, §5, Th. 5.1):

1

n

∑

τ∈G

χ(τ)ψ−1(τ) = δχ,ψ.

One obtains a basis of Q[G] rational over Q by writing the group G as a
product of cyclic groups Cd1 × · · · × Cdk of orders d1, · · · , dk respectively,
with d1 | d2 | · · · | dk, where d1, . . . , dk are the elementary divisors of the
finitely generated Z–module G (for the elementary divisors theorem, see for
instance [11] Chap. III, Th. 7.8). Then each algebra Q[Cdi ] has a rational
basis given by (1.12), and one deduces a rational basis for the product
Q[Cd1 ] × · · · ×Q[Cdk ] = Q[G]. The norm of the generic element gives the
decomposition into irreducible factors of the group determinant over Q.

2. Finite Fourier Transform associated with a finite abelian
group

2.1. Generalized Finite Fourier Transform

We keep the notation introduced in §1, with the field F , the finite abelian
group G with n elements, with n being relatively prime to the characteristic
of F . An element b in FG is an n–tuple of elements of F indexed by G,
and an element B in F Ĝ is an n–tuple of elements of F indexed by Ĝ.
The following proposition gives a Finite Fourier Transform Pair for G. For
Finite Fourier Transforms on a more general finite group, cf. e.g. [1] and [6].
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Proposition 2.1. For b = (bσ)σ∈G in FG, define F(b) = B = (Bχ)χ∈Ĝ in

F Ĝ by

Bχ :=
∑

σ∈G

χ(σ)bσ (χ ∈ Ĝ).

Then F is a bijective map from FG to F Ĝ, with inverse F−1 defined by
F−1(B) = b with

bσ =
1

n

∑

χ∈Ĝ

χ(σ−1)Bχ (σ ∈ G).

Proof. This follows from the relation (see [13], Prop. 7, §2.5 and [11]
Chap. XVIII, §5 cor. 5.6)

1

n

∑

χ∈Ĝ

χ(σ)χ(τ−1) = δσ,τ

for σ and τ in G.

For b ∈ FG, let M(b) be the n× n matrix

M(b) := (bτ−1σ)σ,τ∈G .

Then

P−1M(b)P = Diag(Bχ)χ∈Ĝ,

where P is the matrix (1.2) and B = (Bχ)χ∈Ĝ = F(b). For B ∈ F Ĝ, let

M̂(B) be the n× n matrix

M̂(B) :=
(
Bψ−1χ

)
χ,ψ∈Ĝ

.

Applying the inverse transform F−1 given by Proposition 2.1 with (1.2′),
we deduce

tP−1M̂(B)tP = nDiag(bσ−1)σ∈G. (2.13)

2.2. Case of a cyclic group: Finite Fourier Transform

In the case of a cyclic group G, we recover the classical Finite Fourier
Transform Pair

Bh :=
n−1∑

&=0

ζh&b&, b& :=
1

n

n−1∑

h=0

ζ−h&Bh,

where, as before, ζ is a primitive n–th root of unity.
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3. Hamming weight and Generalized Finite Fourier
Transform

A theorem of Blahut [10] relates the Hamming weight of a vector with the
rank of a matrix defined by means of the Finite Fourier Transform. We
extend it by replacing a cyclic group by an arbitrary finite abelian group
G.

Theorem 3.1. The Hamming weight of b is the rank of the matrix M̂(B)
where B = F(b).

Proof. The rank of the diagonal matrix in (2.13) is the number of non–zero
terms.

4. The matrix of a finite group

4.1. An example: S3

The symmetric group S3 of order 6 can be presented by generators and
relations (with the unity element e), with the generators σ and τ and the
relations σ3 = τ2 = e, τστ = σ2. There exists an invertible n×n matrix P
such that

P−1AS3P =





L0 0 0 0
0 L1 0 0
0 0 M 0
0 0 0 M



 ,

where L0 and L1 are the linear forms

L0 = Xe +Xσ +Xσ2 +Xτ +Xτσ +Xτσ2 ,

L1 := Xe +Xσ +Xσ2 −Xτ −Xτσ −Xτσ2

and M is the 2× 2 matrix

M =

(
Xe + jXσ + j2Xσ2 Xτ + j2Xτσ + jXτσ2

Xτ + jXτσ + j2Xτσ2 Xe + j2Xσ + jXσ2

)
.

The linear forms L0 and L1 correspond to the representations of S3 of
degree 1, namely the trivial representation and the signature, while the
matrix M corresponds to the irreducible representation of degree 2 (see [13]
Chap. 5) defined by

σ $→
(
j 0
0 j2

)
and τ $→

(
0 1
1 0

)
.
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Hence it also satisfies

e $→
(
1 0
0 1

)
, σ2 $→

(
j2 0
0 j

)
, τσ $→

(
0 j2

j 0

)
, τσ2 $→

(
0 j
j2 0

)
.

The determinant of M is an irreducible polynomial in the ring

C[Xe, Xσ, Xσ2 , Xτ , Xτσ, Xτσ2 ].

It can be written

N(Xe, Xσ, Xσ2)−N(Xτ , Xτσ, Xτσ2),

where

N(X0, X1, X2) = NQ(j)/Q(X0 + jX1 + j2X2)

(see (1.8)). Cf. also [6].

4.2. The general case

We assume again that the characteristic of the field F does not divide
the order n of G and that F contains the primitive n–th roots of unity.
The regular representation of G has dimension n, its decomposition is well
known (see for instance [13] Cor. 1 of Prop. 5 in §2.4 and Chap. 5, or [11],
Chap. VIII, §4): each irreducible representation of G is contained in the
regular representation with a multiplicity equal to its degree f , so that the
sum of the squares of these degrees f is n. Let *1, . . . , *h be the irreducible
representations and f1, . . . , fh be their degrees. Hence there is a basis of
the space of the regular representation so that the associated matrix can
be written as diagonal blocs

Diag(B1, . . . , Bh),

where, for 1 ≤ j ≤ h, the matrix Bj is a f2
j ×f2

j matrix, which is a diagonal
bloc of fj identical square matrices

Bj = Diag(B0
j , . . . , B

0
j ),

and B0
j is the fj × fj matrix associated with the representation *j . Using

this change of bases and considering the generic element in the group ring
F [G], one deduces that the matrix AG is equivalent to a matrix with the
same shape, yielding a decomposition of the determinant into a product of
polynomials

detAG =
h∏

j=1

Ψfj
'j ,
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where Ψ'j is a homogeneous polynomial of degree fj . The fact that the rep-
resentation *j is irreducible implies that the polynomial Ψ'j is irreducible
in F [X].

4.3. Frobenius

It is interesting, from a historical point of view, to look at the way Frobenius
succeeded to produce the decomposition of the Gruppendeterminant into
irreducible factors. The theory of linear representations of finite group was
not yet fully developed: Frobenius was in the process of creating it. See [3],
historical note, and the references [5,7,8]. Let * be an irreducible represen-
tation of a finite group G, χ its character, f its degree. Let us extend the
map χ : G $→ C into a a function (again denoted by χ) on

⋃
k≥1 G

k with
complex values by the induction formula, for k ≥ 1,

χ(s, s1, . . . , sk) = χ(s)χ(s1, . . . , sk)−
k∑

i=1

χ(s1, . . . , ssi, . . . , sk).

For instance

χ(s1, s2) = χ(s1)χ(s2)− χ(s1s2),

χ(e, s1, . . . , sk) = (f − k)χ(s1, . . . , sk)

and

χ(s1, . . . , sk) = 0 for k > f.

Define

Ψ' := (−1)f
∑

(s1,...,sf )∈Gf

χ(s1, . . . , sf )Xs1 · · ·Xsf ∈ C[X].

This is a homogeneous polynomial of degree f . An equivalent definition of
Ψ' is the following. Let A be the set of elements (a1, . . . , af ) in Zf satisfying

aj ≥ 0 for 1 ≤ j ≤ f and
f∑

i=1

iai = f.

For 1 ≤ k ≤ f , set

Sk =
∑

(s1,...,sk)∈Gk

χ(s1 · · · sk)Xs1 · · ·Xsk .

Then

Ψ' = (−1)f
∑

(a1,...,af )∈A

f∏

k=1

Sak
k

(−k)akak!
·
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Proposition 4.1 (Frobenius). The polynomial Ψ' is irreducible. If
*1, . . . , *h are the irreducible representations of G with degrees f1, . . . , fh
respectively, then

detAG =
h∏

i=1

Ψfi
'i

is the decomposition of the polynomial detAG into irreducible factors in
F [X].
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