On the work of S.S. Pillai

Michel Waldschmidt
Institut de Mathématiques de Jussieu \& CIMPA

Collected works of S. S. Pillai,
ed. R. Balasubramanian and R. Thangadurai, 2007.

Kumbakonam, December 21, 2006

On the work of S.S. Pillai
Michel Waldschmidt Institut de Mathématiques de Jussieu \& CIMPA
(1) Consecutive integers
(2) Normal Numbers
(3) Waring's Problem
(4) Diophantine equations

- Any two consecutive integers are relatively prime
- Given three consecutive integers
for instance $3,4,5$: any two of them are relatively prime
for $2,3,4$: only 3 is prime to 2 and to 4
Ine general case $n, n+1, n+2$, the middle term is elatively prime to each other
Given four consecutive integers $n, n+1, n+2, n+3$, the
odd number among $n+1, n+2$ is relatively prime to the
hree remaining integers. Hence one at least of the four
numbers is relatively prime to the three others.

On m consecutive integers

On 17 consecutive integers, following S.S. Pillai

- In every set of not more than 16 consecutive integers there is a number which is prime to all the others.
- This is not true for 17 consecutive numbers : take $n=2184$ and consider the 17 consecutive integers $2184, \ldots, 2200$. Then any two of them have a gcd >1.
- One produces infinitely many such sets of 17 consecutive numbers by taking

$$
\begin{aligned}
& n+N, n+N+1, \ldots, n+N+16 \\
& N-n-16, n-N-15, \ldots, N-n
\end{aligned}
$$

or
where N is a multiple of $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13=30030$.

On m consecutive integers (continued)

S.S. Pillai, 1940.

- In every set of not more than 16 consecutive integers there is a number which is prime to all the others.
- For any $m \geq 17$ there exists a set of m
consecutive integers that has not this property.
- Application to the Diophantine equation

$$
n(n+1) \cdots(n+m-1)=y^{r}
$$

(See more recent work, esp. by T.N. Shorey).
First decimals of $\sqrt{2}$ (Combinatorics)
1.41421356237309504880168872420969807856967187537694807317667973 799073247846210703885038753432764157273501384623091229702492483 605585073721264412149709993583141322266592750559275579995050115 278206057147010955997160597027453459686201472851741864088919860 955232923048430871432145083976260362799525140798968725339654633 1808829640620615258352395054745750287759961729835575220393753185 01135437460340849884716038689997069900481503054402779031645424 82306849293691862158057846311159666871301301561856898723723528 50926486124949771542183342042856860601468247207714358548741556 70696776537202264854470158588016207584749226572260020855844665 214583988939443709265918003113882464681570826301005948587040031 864803421948972782906410450726368813137398552561173220402450912 27700226941275736272804957381089675040183698683684507257993647 290607629969413804756548237289971803268024744206292691248590521 1471017111168391658172688941975871658215212822951848847

- The fabulous destiny of $\sqrt{2}$

Benoît Rittaud, Editions Le Pommier, 2006
http://www.math.univ-paris13.fr/~rittaud/RacineDeDeux

- Computation of decimals of $\sqrt{2}$

1542 computed by hand by Horace Uhler in 195
14000 decimals computed in 1967
000000 decimals in 1971
$137 \cdot 10^{9}$ decimals computed by Yasumasa Kanada and
Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours
and 31 minutes.

- Motivation : computation of π.

Complexity of the g-ary expansion of an irrational algebraic real number

Let $g \geq 2$ be an integer

- É. Borel (1909 and 1950) : the g-ary expansion of an algebraic irrational number should satisfy some of the laws shared by almost all numbers (with respect to Lebesgue's measure).
- In particular each digit should occur, hence each given sequence of digits should occur infinitely often.
- There is no explicitly known example of a triple (g, a, x), where $g \geq 3$ is an integer, a a digit in $\{0, \ldots, g-1\}$ and x an algebraic irrational number, for which one can claim that the digit a occurs infinitely often in the q-ary expansion of x

Conjecture 1 (Émile Borel)

- Rendiconti del Circolo matematico di Palermo, 27 (1909), 24-271.

Comptes Rendus de l'Académie des Sciences de Paris 230 (1950), 591-593.

- Conjecture 1. Let x be an irrational algebraic real number, $g>3$ a positive integer and a an integer in the range $0 \leq a \leq g-1$. Then the digit a occurs at least once in the g-ary expansion of x
- If a real number x satisfies Conjecture 1 for all g and a, then it follows that for any g, each given sequence of digits occurs infinitely often in the g-ary expansion of x.
- This is easy to see by considering powers of g.
- For instance, Conjecture 1 with $g=4$ implies that each of the four sequences $(0,0),(0,1),(1,0),(1,1)$ should occur infinitely often in the binary expansion of each irrational algebraic real number x.
- K. Mahler : For any $g \geq 2$ and any $n \geq 1$, there exist algebraic irrational numbers x such that any block of n digits occurs infinitely often in the g-ary expansion of x.

Borel's Conjecture 2

- Conjecture 2. Let x be an irrational algebraic real number. Then x is normal.
- Almost all real numbers (for Lebesgue's measure) are normal.
- Examples of computable normal numbers have been constructed (W. Sierpinski, H. Lebesgue, V. Becher and S. Figueira) but the known algorithms to compute such examples are fairly complicated ("ridiculously exponential", according to S. Figueira)

$\substack{\text { onsecutive integers } \\ \text { Normal } \\ \text { Norinis } \\ \text { Nurbors } \\ \text { Natlom }}$

Example of normal numbers

An example of a 2-normal number (Champernowne 1933, Bailey and Crandall 2001) is the binary Champernowne number, obtained by the concatenation of the sequence of integers
0.1101110010111011110001001101010111100 .

$$
=\sum_{k \geq 1} k 2^{-c_{k}} \quad c_{k}=k+\sum_{j=1}^{k}\left[\log _{2} j\right] .
$$

Proof : Pillai, 1939 and 1940.

Further examples of normal numbers

- (Korobov, Stoneham ...) : if a and g are coprime integers >1, then

$$
\sum_{n \geq 0} a^{-n} g^{-a^{n}}
$$

- A.H. Copeland and P. Erdős (1946) : a normal number in base 10 is obtained by concatenation of the sequence of prime numbers
0.2357111317192329313741434753596167

On Waring's Problem : $g(6)=73$
S.S. Pillai, 1940

- Any positive integer N is sum of at most 73 sixth powers : $N=x_{1}^{6}+\cdots+x_{s}^{6}$ with $s \leq 73$.
- Since $2^{6}=64$, the integer $N=63=1^{6}+\cdots+1^{6}$ requires at least 63 terms x_{i}.

$$
\text { is normal in base } g \text {. }
$$

- Any decomposition of an integer $N \leq 728=3^{6}-1$ as a sum of sixth powers involves only 1 and 2
- The decomposition as a sum of sixth powers of any integer $N \leq 728$ of the form $63+k 64$ requires at least $63+k$ terms.
- The number $703=63+64 \times 10$ requires $63+10=73$ terms.

Results on Waring's Problem		
$g(2)=4$	J-L. Lagrange	(1770)
$g(3)=9$	A. Wieferich	(1909)
$g(4)=19$	R. Balasubram F. Dress	anian, (1986)
$g(5)=37$	J. Chen	(1964)
$g(6)=73$	S.S. Pillai	(1940)
$g(7)=143$	L.E. Dickson	(1936)

Conseculve itegors Normil Nubor Warings Nroblom

The ideal Waring's Theorem
For each integer $k \geq 2$, define $I(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$. It is easy to show that $g(k) \geq I(k)$. Indeed, write

$$
3^{k}=2^{k} q+r \quad \text { with } \quad 0<r<2^{k}, \quad q=\left[(3 / 2)^{k}\right],
$$

and consider the integer

$$
N=2^{k} q-1=(q-1) 2^{k}+\left(2^{k}-1\right) 1^{k} .
$$

Since $N<3^{k}$, writing N as a sum of k-th powers can involve no term 3^{k}, and since $N<2^{k} q$, it involves at most $(q-1)$ terms 2^{k}, all others being 1^{k}; hence it requires a total number of at least $(q-1)+\left(2^{k}-1\right)=I(k)$ terms.

The ideal Waring's Theorem
On Waring's Problem with exponents $\geq n$ that $g(k)=I(k)$, provided that $r=3^{k}-2^{k} q$ satisfies

$$
r \leq 2^{k}-q-2 .
$$

The condition $r \leq 2^{k}-q-2$ is satisfied for
$3 \leq k \leq 471600000$, and (K. Mahler) also for all
sufficiently large k.
The conjecture, dating back to 1853, is
$g(k)=I(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$ for any $k \geq 2$. This is true
as soon as

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\| \geq\left(\frac{3}{4}\right)^{k},
$$

where $\|\cdot\|$ denote the distance to the nearest integer

Lower bound for $g_{2}(n)$
Value of $g_{2}(n)$ for $n \geq 32$

One easily deduces $g_{2}(n) \geq 2^{n}+h-1$ as soon as h satisfies
$2^{n+h}<3^{n}$
This condition on h is $2^{h} \leq(3 / 2)^{n}$, which means $2^{h} \leq I$
with $I_{n}=\left[(3 / 2)^{n}\right]$.
Define

$$
h_{n}=\left[\log I_{n} / \log 2\right] \quad \text { where } I_{n}=\left[(3 / 2)^{n}\right] \text {. }
$$

Pillai's Theorem : For $n \geq 32, g_{2}(n)=2^{n}+h_{n}-1$.
which is a sum of h numbers 2^{m} with $m \geq n$ and $2^{n}-1$ powers of 1 .

It is remarkable that this asymptotic value is related to another problem which Pillai studied later and which originates in the following claim by Ramanujan
The number of numbers of the form $2^{u} \cdot 3^{v}$ less than n is

$$
\frac{\log (2 n) \log (3 n)}{2 \log 2 \log 3} .
$$

Waring's Problem and the abc Conjecture
S. David : the estimate

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\| \geq\left(\frac{3}{4}\right)^{k}
$$

(for sufficiently large k) follows not only from Mahler's estimate, but also from the $a b c$ Conjecture!
Hence the ideal Waring Theorem $g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$. would follow from an explicit solution of the $a b c$ Conjecture.

SASTRA International Conference on
"NUMBER THEORY \& COMBINATORICS"
Kumbakonam, December 21, 2006

On the work of S.S. Pillai
Michel Waldschmidt
Institut de Mathématiques de Jussieu \& CIMPA
(1) Consecutive integers
(2) Normal Numbers
(3) Waring's Problem
(4) Diophantine equations

